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Abstract: Strongly correlated electron systems, where localized magnetic moments interact with conduction electrons,
continue to challenge our understanding of quantum phases. In particular, the competition between the Kondo effect-which
promotes the formation of singlet states via the screening of localized spins-and magnetic ordering driven by the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, plays a crucial role in defining the electronic properties of materials such
as graphene and other honeycomb lattice systems. In this work, we investigate the interplay between these competing
mechanisms using a Kondo-Hubbard model on the hexagonal lattice. Our model incorporates key interactions including the
Kondo coupling J; between conduction electrons and localized spins, the Heisenberg exchange Jy between localized
moments, the onsite Coulomb repulsion U for conduction electrons, and a second nearest-neighbor hopping term ¢’. The study
is conducted at half-filling, where each lattice site hosts one electron on average, and the system is analyzed via the variational
cluster approximation (VCA) combined with an exact diagonalization solver at zero temperature. Our analysis focuses on
mapping the phase diagrams in different parameter spaces, particularly the (Jg,J, ) and (J,UJ, ) planes. We find that the
antiferromagnetic phase is favored at smaller J, and larger Jx, while an increase in J stabilizes the Kondo singlet phase. The
transition between these phases occurs smoothly, indicating a second-order phase transition. Additionally, the inclusion of the
hopping term ¢’ is shown to enhance the stability of the Kondo singlet phase. Overall, our results provide new insights into the
delicate balance between magnetic order and Kondo singlet formation in low-dimensional correlated systems, potentially
guiding future experimental and theoretical investigations in graphene-based materials and related compounds.
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1. Introduction

Quantum systems featuring both itinerant electrons and
localized moments continue to draw significant attention in
modern condensed matter physics due to their intriguing
behaviors. These include the formation of heavy quasi-
particles in heavy electron compounds containing rare
earth elements [1], the discovery of unconventional
superconductivity [2] first observed in UBejs [3], and non-
Fermi liquid behavior [4]. Two key interactions between
itinerant and localized moments are the Kondo effect [5] and

the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [6].

On one hand, the Kondo effect results from the
coupling between conduction electrons and localized magnetic
moments, which tends to form a singlet state. In this
scenario, a localized spin interacts with the surrounding sea
of conduction electrons, and through a process of repeated
scattering, the magnetic moment is screened by the electrons.
This leads to the formation of a Kondo singlet state. As a
result, the system tends towards a non-magnetic, Fermi-liquid-
like ground state at low temperatures.

On the other hand, the RKKY interaction arises from
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indirect exchange interactions between localized magnetic
moments, mediated by the conduction electrons. In contrast
to the Kondo effect, the RKKY interaction favors the
establishment of a magnetically ordered state. The competition
between the Kondo singlet formation and RKKY-induced
magnetic ordering creates balance. In certain materials, the
balance can be tuned by changing external parameters such
as pressure, magnetic field, or doping, leading to a quantum
critical point.

Two-dimensional magnetic materials have attracted
substantial interest in recent years due to their potential
applications in spintronic devices, the presence of quantum
spin liquid phases, which have potential uses in topological
quantum computing. The physics of the Kondo lattice model
on non-frustrated lattices, such as square lattices, has been
extensively studied [7]. Recently, it has also been explored in
frustrated lattices, such as the triangular lattice [8].

The honeycomb lattice systems have been extensively
explored, particularly in correlated electron systems like
graphene [9] and silicene [10], where numerous exotic
phenomena have been discovered both theoretically and
experimentally. Although the honeycomb lattice is bipartite,
it has the smallest possible coordination number among
proper two-dimensional lattices. This distinction allows the
honeycomb lattice to exhibit physical phenomena that are
fundamentally different from those seen in square lattices.
Examples include the spin-liquid phase and quantum criticality
in the Hubbard model [11], as well as the topological Mott
insulator in the extended Hubbard model [12]. The coupling
of conduction electrons to local magnetic moments has been
achieved in graphene, leading to the observation of the Kondo
effect associated with point defects [13]. The formation of
the Kondo singlet causes the system to transition from a
semimetal to a Fermi liquid with a finite density of states
[14]. The Kondo effect in honeycomb lattice could be realized
in transition metal oxides such as (BisMnyO12)NOs and

Hy = -t Z (c;UcHej,g +H.e.) +J1 Z Sy
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In addition to the Kondo term characterized by J,, Hg
incorporates the first and second-nearest neighbor hopping
terms ¢ and ¢’. To take into account spin interactions between
the two localized electrons, labeled with indices w and d,
we introduce the Heisenberg interaction term, defined by the
coupling constant Jy. J,;, which we will assume to have an
antiferromagnetic coupling, couples the conduction spins, at
site v, s; = 1¢l,75,0/Cror and the localized spins si @ =
% l(d) oToo! fu(d) o> Where 7, ./ are the Pauli matrices; ¢y,
(CIU) annihilate (create) a conduction electron at site r with
spin orientation o, while f,4), ( fz( d)U) annihilate (create) a
localized electron at site w or d with spin orientation o.

LioMnOj3, with Mn ions forming the honeycomb lattice [15].
The Kondo effect can also be realized in ultracold atom [16].
Howeyver, the interaction between conduction electrons and the
densely localized spins on the honeycomb lattice, which can
be described by the Hubbard-Kondo lattice model, remains a
largely unresolved issue.

This papers explores the interplay between the Kondo effect
and magnetic ordering induced by RKKY interaction on the
honeycomb lattice model, employing the variational cluster
approximation with an exact diagonalization solver at zero
temperature. The infinite lattice is divided into identical
6-site clusters, that together tile the entire lattice. Two
localized spins, interacting via the Heisenberg interaction
(Jm), are introduced, which interact with the conduction
electrons through the coupling constant J,. At half-filling,
we obtain two phase diagrams. In the (Jp, 1) plane, the
antiferromagnetic phase is favored for small Jg and moderate
J1, while the Kondo singlet is favored at larger values of
Ji. In the (J.,UJ,) plane, the antiferromagnetic phase
dominates for small to moderate values of J, and U.J |, while
the Kondo singlet phase appears elsewhere.

The paper is organized as follows: Section 2 provides
a description of the model Hamiltonian and the variational
cluster approximation method. Section 3 discusses the results,
and we conclude in Section 4.

2. Model and Method

2.1. Model Hamiltonian

The model Hamiltonian consists of two terms: the Kondo
Hamiltonian Hyk and the Hubbard Hamiltonian Hyy:

H = Hgk + Hu (D

The Kondo Hamiltonian can be written as follows:

. si + JL Z Sy - sg ¢ Z (cigcrizejg + H.C.)

rcB rcA,o,j
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The Hubbard Hamiltonian writes:

Hy =U > neyney + Up (ndynd, +0dind) @
rcA,B

Here, U is the one-site Coulomb interaction for conduction
electrons, Uy = 20t for itinerant electrons, and 1., = clacw
denotes the electron density operator, which determines the
number of electrons at site r with spin orientation o.

2.2. Variational Cluster Approximation Method

The model described by Eq. (1) incorporates the interaction
term through the one-site Coulomb interaction U. Addressing
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U necessitates employing a method capable of handling it
exactly, at least with a restricted space. In this context, we
utilize the Variational Cluster Approximation (VCA) with an
exact diagonalization solver at zero temperature [17].

VCA is a method that divides the lattice into small identical
clusters, each described by the Hamiltonian H’, referred to as
the reference Hamiltonian. The Hamiltonian H' is derived
from the lattice Hamiltonian H by setting to zero the off-
diagonal elements of the hopping matrix, but conserving
exactly the interaction term. The hopping terms connecting
the clusters are treated using perturbation theory. Thus, VCA
can be regarded as an extension of the Cluster Perturbation
Theory (CPT) [18], which is rooted in Potthoff’s self-energy
functional approach [19].

To study broken symmetries of different phases and their
competitions, a Weiss field for each phase should be added to
H’. Tt is also possible to add to H' any single-body term, which
can be varied as a model parameter.

VCA has been shown to perform well when studying
the competition between different broken symmetries such
as superconductivity and magnetism in strongly correlated
systems such as cuprates [20].

In Figure 1, we present the tiled hexagonal lattice featuring
a 6-site cluster with the impurity positioned at its center. It is
worth noting that, in the VCA, the cluster size is constrained
due to the requirement for exact diagonalization to solve the
cluster accurately.

Figure 1. (Color online) Tiling of the hexagonal lattice by 6-site clusters (gray shading)
used in VCA. The A and B sublattices are indicated, as well as the three elementary
vectors e1,2,3. The red dots represent the impurities.

To find the optimal one-body part of H’, that is the solution,
we use the variational principle, where the electron self-energy
3 associated with H' is the variational parameter. The Potthoff
self-energy functional can be written as: [19]:

QATM)] = QEN]+Trin[—(Gg' —X(\) 7]
Trin(-G'())) 4)

In Eq. (4), G’ and G are respectively the physical and the
non-interacting Green function of the cluster and the lattice;
and all the parameters that define H' are incorporated in A.
The trace, Tr, is a functional trace in the sense that it includes a

sum of frequencies, momenta, and bands. The grand potential
of the cluster is denoted by €2’. It will correspond to the ground
state energy of the cluster when the electron self-energy X is
at its optimal value. In order to obtain the values of G'(w)
and €, we use numerical techniques, such as the Lanczos
method. Within the restricted space of the self-energies X (),
we exactly compute the Potthoff functional Q[3()\)] that are
the physical self-energies of H'. We use the Newton-Raphson
optimization method to find the stationary value of Q2(\) as
follows:

ON(N) —_ 0 5)
oA

The stationary value of () leads to the best value of 3 that
we combine with G to construct an approximate G for the
original lattice Hamiltonian H. Finally, for G, we compute the
expectation values of all the one-body operators added to H'.
In this work, the expectation value of the antiferromagnetism
operator M, in Eq. (6), is computed leading to its order
parameter, denoted AFM.

Eq. (5) can yield two stationary solutions:  one
corresponding to a zero Weiss field and the other to a
finite Weiss field. =~ The solution with zero Weiss field
represents the normal state, while the solution with a
non-zero Weiss field describes the broken symmetry state,
specifically antiferromagnetism in this context. Between those
possibilities, the true solution corresponds to the one with the
lowest grand potential 2.

In summary, the VCA implementation involves dividing
the lattice into manageable clusters solved by ED and then
reintroducing inter-cluster correlations perturbatively. The
choice of cluster size and boundary conditions are critical to
the quality of the approximation, and additional variational
parameters can be used to correct for boundary effects. The
limitations of ED, notably the exponential scaling of the
Hilbert space and finite-size effects, restrict the size of clusters
that can be used, which in turn limits the extent to which
non-local correlations are captured. This careful balance
between computational feasibility and physical accuracy is
central to the practical application of VCA in studying strongly
correlated systems.

3. Results and Discussions

To capture the antiferromagnetism, we add in Hamiltonian
(1) the operator:

AFM = hAF (Z (an - nl‘i) - Z (an - nr¢)> ) (6)

rcA reB

based on the difference in spin density between two sub-
lattices of the original system where hay represents the Weiss
field.

In Figure 2, we present the antiferromagnetic order
parameter (AFM), the expectation value of M, as a function
of J, for different Jy, at U = 5t. All the results are obtained
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at half-filling (v = U/2) where each site in the cluster has one
electron on average and are given in units of ¢.

To avoid double occupancy of localized electron sites, we
set Uy = 20t, larger than the other model parameters. The
system is then studied for two different cases of t' = 0 and
t/ = —0.1t for different values of Jy, represented in the top
and lower panels, respectively.

The results for t' = 0 reveal how the critical values of J |
increase as Jy are enhanced. Thus, for larger values of Jy,
higher values of J are required to transition the system from
the antiferromagnetic phase to the Kondo singlet phase.

The lower panel, t' = —0.1t, shows the effect of t/, where
the increase in the critical value of J;, with increasing
Ju is less pronounced compared to the top panel. This
observation can be explained by the fact that t’ tends to
promote the formation of the Kondo singlet phase, as it creates
a favorable environment for the coupling between conduction
and localized electrons. On the other hand, Jy supports the
formation of the antiferromagnetic phase, as it couples the
localized spins in such a way that they tend to align antiparallel
to each other, leading to a non-zero magnetization.

We observe that as J | increases, the antiferromagnetic order
parameter gradually decreases. At a certain critical value
of J,, the order parameter vanishes completely, signaling
the transition from the antiferromagnetic phase to the Kondo
singlet phase. This smooth decrease of the antiferromagnetic
order parameter as a function of J | is consistent with a second-

33

phases occurs without any discontinuous jump in the order
parameter.

Iy =00

Figure 2. AFM order parameter as a function of J, for different values of Ju at
U = 5t. The top panel displays results for t' = 0, while the bottom panel shows
the case for t’ 0.1t. A second-order phase transition is evident from the smooth

order phase transition, where the transition between the two disappearance of the AFM.
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Figure 3. Phase diagrams: (i) In the U, J | plane for (a) (Ju = 0) and (b) Jg = 0.2t, with (top left) t' = 0 and (top right) t’
0.1t at U = 5t, and (bottom right) for U = 5t and U = 6t ar t’

left) for t' = 0 and t’
indicated.

—0.1t. (ii) In the (Jw, J 1 ) plane: (bottom
0.1t. The Kondo singlet (KS) and the antiferromagnetism (AFM) phases are
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Figure 3 presents a comprehensive set of phase diagrams,
exploring various parameter combinations that govern the
system’s behavior. These diagrams are organized into two
primary sections, providing insights into the interplay between
different interactions: the top panels show the phase diagrams
in the (J,U) plane, while the bottom panels examine the
phase diagrams in the (J , Jg) plane.

Top panel: phase diagrams in the (J . ,U) plane — The left
panel, corresponding to t' = 0, reveals significant insights
into the system’s phase behavior as a function of U. We
observe that increasing U does not lead to the stabilization
of the AFM phase, which is a typical characteristic of many
strongly correlated systems. U tends to localize the electrons,
promoting the formation of Kondo singlets, which dominate
over the AFM phase.

The inclusion of Jy changes the dynamics significantly.
Increasing Jy expands the region of the AFM phase and
simultaneously reduces the Kondo singlet phase. This shows
that Jy and J,; have opposing effects on these two phases.
While Jy promotes antiferromagnetism, J | tends to favor the
Kondo singlet phase, and their combined effects govern the
overall phase structure.

The right panel of the top row corresponds to t' = —0.1¢.
We remark that, in the presence of t’, a stronger U is required
to transition the system from the Kondo singlet phase to the
AFM phase.

Bottom panel: phase diagrams in the (J 1, Ju) plane — The
left panel explores the phase diagram in the (J |, J1) plane for
U = 5t, and compares the cases for t' = 0 and t' = —0.1¢.
The results show how the AFM gets more room by pushing
the Kondo singlet phase to smaller regions as Jy increases.
In contrast, the presence of t’ reduces this effect. When
t' = —0.1t¢, the Kondo singlet phase is more pronounced
compared to the case t’ = 0.

Bottom right panel: effect of Coulomb interaction on
the phase diagram — As U increases, the phase diagram
undergoes a transition, with the Kondo singlet phase shrinking
and the AFM phase expanding.
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Figure 4. Phase diagram in the (J 1, UJ | ) plane (blue dotted curve) for Uy = 20t,
Jg = 0, and t' = —0.1t. The fitting to the data lead to « = 1.0 and B = 0.30 in
equation (7) represented by the black curve.

The phase diagram presented in Figure 4, consolidates all
critical values of J | obtained for various values of U at Jy =
0 and t' = —0.1t. The obtained phase diagram aligns well
with other results from VCA and Monte Carlo simulations.
A particularly interesting observation is the behavior of the
critical value of U as a function of J;. When J, is small,
the critical value of U scales inversely with J , i.e., the phase
boundary approaches a finite value of the product U.J, as
J1 — 0. However, despite this trend, at J; = 0, the system
remains strictly in the AFM phase. Conversely, when J
becomes sufficiently large, the system always transitions into
the Kondo singlet phase.

Theoretical insights from the study of Kondo insulators offer
a deeper understanding of the critical boundary separating the
AFM and Kondo singlet phases. The leading-order behavior
of the phase boundary is described by the equation:

J?2 +aJiU =0 @)

where the fitting to the data leads to ¢ = 1.0 and b =
0.3. This equation implies that the phase boundary has a
parabolic shape, which is consistent with the appearance of
the phase diagram in Figure 4. This formulation highlights
how the Hubbard interaction U enhances the Kondo singlet
phase. Specifically, U contributes to the effective coupling
in a manner analogous to J , effectively increasing the total
interaction strength that stabilizes the Kondo singlet phase.

4. Conclusion

In this work, we investigate the competition between Kondo
singlet and magnetic order phases using the Kondo-Hubbard
model on the hexagonal lattice. The model includes the
local Coulomb interaction U, the Kondo coupling J,;, and
the Heisenberg exchange interaction Jg. An impurity atom
is added at the center of each hexagon (cluster) of the
lattice. We use Variational Cluster Approximation with exact
diagonalization at zero temperature to solve the Hamiltonian
of the lattice.

At half-filling, we obtain the phase diagram in the
(J1,UJ1) plane, which indicates that the Néel magnetic order
phase is dominant at lower and intermediate J, and U, while
the Kondo singlet phase gets more room at higher J,. We
show that the transition from the antiferromagnetic order phase
to the Kondo singlet phase is a second-order phase transition.

Inthe (J, , Jy ) plane, we find that the Heisenberg exchange
interaction Jy effectively pushes the magnetic order to higher
values of J, . Our results provide valuable insights into the
complex nature of competing interactions within the Kondo-
Hubbard model, contributing to the understanding of quantum
phase transitions of Kondo lattice model.

Abbreviations

RKKY Ruderman-Kittel-Kasuya-Yosida
VCA Variational Cluster Approximation
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