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Abstract: The paper conducts an assessment of the impact of varying response time distributions on ambulance deployment
plans by integrating forecasting, simulation and optimisation techniques to predefined locations with heterogeneous demand
patterns. Bulawayo metropolitan city was used as a case study. The paper proposes use of future demand and allows for
simultaneous evaluation of operational performances of deployment plans using multiple performance indicators such as average
response time, total duration of a call in system, number of calls in response queue, average queuing time, throughput ratios and
ambulance utilisation levels. Increasing the fleet size influences the average response time below a certain threshold value across
all the heterogeneous regions. However, when fleet size is increased beyond this threshold value, no significant changes occur
in the performance indicators. Fleet size varied inversely to ambulance utilisation levels. As fleet size is gradually increased,
utilisation levels also gradually decreased. Due care must be taken to avoid under-utilisation of ambulances during deployment.
Under utilisation culminates to human and material equipment idleness and yet the resources available are scarce and should be
deployed where needed most. For critical resources such as ambulances in emergency response, increasing the resource did not
always translate to better performance. However, directing efforts towards reducing response time (call delay time, chute time,
queuing and travel time) results in improvement of service performance and corresponding reduction in number of ambulances
required to achieve a desired service level. Performance indicators such as utilisation levels and throughput ratios are imperative
in ensuring balanced resource allocation and capacity utilisation which avoids under or over utilisation of scarce and yet critical
resources. This has a strong bearing on both human and material resource workloads. The integrated strategy can also be
replicated with relative ease to manage other service systems with a server-to-customer relationship.

Keywords: Heterogeneous Regions, Simulation, Optimisation, Performance Indicators, Response Time Distributions,
Ambulance Deployment Plan

1. Introduction
According to [1], the provision of best possible service

to the public remains as a global challenge for emergency
medical services (EMS). Reference [2] defines EMS as public
safety systems established to coordinate the provision of pre-
hospital care to patients under medical emergency conditions.

An effective EMS that endeavours to minimise or eradicate
loss of human lives is an essential component of any health
care system [3]. Due to the complexity in EMS, it has
created problems for decision makers at strategic, tactical
and operational levels in trying to provide equitable, effective
and efficient service to the public. The major strategic
problem is the location of ambulance stations and ambulances
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while tactical problems involve the sizing of the fleet of
ambulances to the ambulance stations. Operational challenges
evolve around issues on deciding which ambulances should be
dispatched and the relocation of ambulances to ensure optimal
preparedness in a specific region.

Due to the ever evolving complexities of EMS, it has
led to the development of several models around the
interacting decision making pillars of location, relocation and
dispatch of ambulance resources. According to [4], these
models have been broadly classified into single coverage
models, multiple coverage models, probabilistic and stochastic
models, stochastic and robust location-allocation models,
fuzzy models, and human based models. In their analysis
they highlighted that despite derived benefits from considering
patient survivability in location models, response time
thresholds and coverage are still dominant and imperative
measures used in evaluating EMS performance. Emphasis has
always been placed on the response time and how it influences
the allocation of ambulances to fixed bases. However, there
is always an interacting influence between the response time
and service time on the overall performance of the EMS when
rendering service to patients in need of emergency medical
services which has to be considered simultaneously. Thus,
components of EMS can be viewed as interconnected queuing
systems that interact and influence one another. Reference [5]
generalised an EMS system as a server-to-customer system
where servers (ambulances) travel to render assistance to
customers (patients) in need of emergency services. Hence,
there is always need to balance the service desired to be offered
to the population against the infrastructure, equipment, human
resources and financial investment to attain this desired level
of service in the near or distant future.

To improve service delivery, there is growing need
to holistically consider the influence of response time
simultaneously with service time in the optimal allocation
of ambulances to base stations for future demand. This
can be achieved by adopting simulation modeling techniques
that allows for designing of models of a real system and
conducting experiments with these models for purposes of
understanding the behavior of the system and or evaluating
various strategies for the operation of the system. Several
authors such as [1] have acknowledged that the probability that
an ambulance is available at a station depends on the inter-
arrival of calls, number of ambulances allocated to the station
and the ambulance service time. Reference [6] insinuated that,
even though EMS are designed specifically for a local context,
many share common design elements. However, they further
highlighted that the use of several variables coupled with the
random nature of demand renders deterministic methods of
analysis unattractive. Simulation modelling techniques allows
one to acquire information in the operation of a system without
necessarily disturbing it. Operation policies can be developed
to improve the system performance by observing different
system scenarios through animation and visualisation.

When applying different analytical methods in operations
research such as network analysis, linear programming,
heuristics, game theory, queuing theory and simulation, each

has its own merits and demerits. Reference [7] concluded
that despite the hypercube model remaining as a powerful
modelling approach, it requires several assumptions with
regards to the way ambulances are dispatched and creating
a huge threat in convincing decision makers to adopt the
predictions due to these model complexities. This has been a
common feature for most analytical methods in the discipline
of operations research when applied to EMS systems.
Reference [8] insinuated that the need to assess the impact
of changes before actual implementation coupled with the
pressure for better services and low availability of resources in
EMS has created a huge opportunity in increasing simulation
and modelling in health-care. Reference [9] indicated that
comparing different scenarios allows us to identify in an
objective manner, different changes that can lead to enhanced
performance before committing resources which are usually
scarce. Reference [5] developed probabilistic models that
used the queuing theory and considered ambulances as servers
in a queuing system and were considered to be sometimes
unavailable. However, there has been a wide range of studies
and research aimed at integrating different techniques [2, 6,
10, 11] in order to improve the robustness of the analysis
and results of the models developed. According to [12],
simulation plays an important role in many problems of our
daily life. Simulation has been used over the years in various
disciplines all over the world such as production and planning,
port logistics, mining, software integration, construction, and
energy among many others [13-22].

Static ambulance deployment model entails having a fixed
number of ambulances to known fixed stations. Arrival rate
is considered as the number of calls received at a station per
unit time. This has often been referred to as the demand of
a geographical area in literature. Response time is defined by
[23] as the time taken to reach a patient after an emergency
call is received. Alternatively, response time can be defined as
the time that elapses from the moment a call is received by the
EMS call center until an ambulance arrives at the scene of the
patient. Response time in EMS is critical as it might determine
the difference between life and death of a patient. Service time
is defined as the duration an ambulance is occupied with a call.
Ambulance resource utilisation level used as a performance
measure is defined as the total workload time divided by the
total operating time. The throughput ratio, represents the total
number of emergency ambulance calls that are completely
served divided by the total number of emergency calls that
enters the emergency response system, generated for the 24
hour day period and is expressed as a fraction. A fraction
given by 10

15 , would imply that of the fifteen (15) received
emergency calls, ten (10) were served up to the point where a
patient was delivered at a health institution during the 24 hour
working period. The remaining five (5) calls were still within
the system awaiting some form of service.

Several researchers have made similar attempts in
conducting numerical experiments to specific areas of EMS
across the world in recent years. Reference [24] focused on
the allocation of ambulance vehicles to a set of ambulance
stations with known locations and alluded that the action
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to reduce response time due to delays (pre-trip delay and
queuing delay) are far more easier and less costly to reduce
than travel times. Pre-trip delays emanate from call delay
or chute delay. A call delay is the time spent on taking
a call, establishing the severity of the call and dispatching
an appropriate ambulance vehicle and crew. Chute delay is
the time that elapses from when a crew is dispatched until
the vehicle starts moving. Queuing delays occur when no
ambulance(s) are available either busy attending to other calls
and this is often attributed to system congestion. References
[24] and [25] agree that this aspect is prevalent especially when
limited EMS vehicles are used to serve extensive emergency
calls across large geographical zones. It often affects service
reliability, defined as the availability of EMS service when
it is desired. The prevalence of an unreliable EMS, in real
life would lead to individuals seeking other alternatives which
might be more expensive or leave everything to fate in an
emergency situation. Travel time, a critical contributor to the
overall response time, is considered as the time that elapses
from the moment the ambulance crew begin their journey until
they reach the patient requiring emergency services.

The study conducted by [24] indicates that reducing
the travel times usually requires adding ambulance stations
or hospitals which is costly as the municipality is
overwhelmingly under-resourced both in terms of equipment,
human and financial resources. Their emphasis on response
time was that reducing the time by 5 seconds, is actually
5 seconds saved and it does not matter which component
of response time these savings come from. Here, the
expectation is that reducing the response time plays a huge
impact in improving service delivery, survival rates and patient
satisfaction. Reference [26] alluded that the ability to provide
timely response is hugely affected by fleet size and the
locations of the ambulances. Reference [25] concurred that
the average response time, which is immensely affected by the
distribution of EMS vehicle stations and allocation of EMS
vehicles to the incident areas, remains as a key measure to
assess the efficiency and effectiveness of emergency responses.

Reference [24] argues that models that do not account for
the uncertainty in the four components (call delay, chute,
queuing and travel time) might overestimate or underestimate
the number of ambulances required to provide a desired
specific service level. The objective of optimisation for
simulation is for searching the best set of inputs that
optimises the performance of the system under predefined
constraints. The methodology also considered the use
of artificial neural networks, which are receiving a huge
amount of interest in areas of forecasting because of their
flexibility and remarkable features [27, 28]. Reference [29]
defined an artificial neural network (ANN) as a nonlinear
statistical model, which can be a classification or two-staged
regression model usually represented as a network diagram
and is good at modelling most complex functions where the
relationships between variables is unknown. Alternatively,

[30] defined an ANN as an information processing system
developed for the generalisation of mathematical models of
human neural biology. According to [31], ANN have been
successfully applied and proven to be useful in time series
modelling where the future values of a variable is determined
using its past values. Among these areas of application
include health, geophysics, geomechanics, stock markets,
chemical engineering, electrical engineering, global logistics,
construction engineering, financial business support, and
insurance [31-42]. In the integrated approach adopted in this
study, ANN were used to predict short-term annual demand
for future planning using historical data. The methodology
employed, removed several assumptions which are highly
necessary in other operations research analytic models. The
integrated research strategy developed can be used to manage
other service systems with a set of service entities (such
as taxis or service vehicles) that need to be located and
allocated such that customer entities (such as passengers or
customers) can be reached equitably, efficiently and effectively
as proposed by [43]. This implies that the strategy can be
replicated to other situations with minor adjustments.

2. Materials and Methods

2.1. Model Input Data

Historical public emergency ambulance demand data for
BEMS from January 2010 to December 2018 was used for
developing forecasting and simulation models. Numerical
experiments were then conducted to assess the impact of
varying response time distributions on the optimal ambulance
deployments plans through the use of sensitivity analysis and
optimisation techniques. A summary of the methodology is
presented in Figure 1.

2.2. Artificial Neural Network Forecasting

A feed-forward neural network (FFNN) was trained using
R-package by adopting the ¡§neuralnet¡¨ function, a network
training function that updates weights and bias values during
training. With the FFNN, information flows strictly from the
input layer to the output layer without recurrent or backward
connections as presented in Figure 2. Each layer has neurons
and there is no connection between neurons that are in the
same layer. The input vector is represented by Yj denoted
by Yj = {y1, y2, y3}; Wjk(j = 1, 2, 3; k = 1, 2) is the
connection weight vector of the j nodes of the input layer to
the k nodes of the hidden layer; Xk(k = 1, 2) is the vector of
k neurons in the hidden layer; Wk(k = 1, 2) is the connection
weights of the k nodes of the hidden layer to the output layer;
and Y is the unit output vector for the neural network with one
output neuron. Θk(k = 1, 2) is the bias value of the hidden
layer nodes and Θ is the bias value of the output layer.
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Figure 1. An Integrated Simulation Modelling Approach.

Figure 2. Feed-forward neural network for time series forecasting.

To facilitate the development and validation of the FFNN,
the data splitting approach was adopted. Data from January
2010 to December 2017 was allocated for model building
and 2018 was assigned for model cross-validation. Thus

96 observations were assigned for model building while 12
observations for model cross-validation. Data scaling using
the minimum-maximum criteria to an interval (0,1) to prevent
saturation in the hidden nodes and to increase the convergence
rate during training of the neural network. Data was split
into training and testing sets of seventy-two (72) and twenty-
four (24) observations which translates to 75% and 25%
respectively. The selection of the number of inputs in the
model was based on trial and error as proposed by [6].
The general architecture of the FFNN can be generalised by
equation 1.

I − (H1, H2, H3, ...,Hn)−O (1)

where I represents the number of input nodes, Hk number of
neurons in hidden layer k, and O the number of neurons in the
output layer. An example is an ANN with four (3) input nodes,
one hidden layer with two (2) neurons and one (1) output
neuron can be represented as 3-(2)-1 respectively. Supervised
training with resilient backpropagation was implemented using
2017 demand calls as target values in the training algorithm.
Training rate factors of 0.5 and 1.2 were adopted as the
minimum and maximum values. Default values for momentum
were set, with a threshold value set at 0.01 for training data.
The logistic function was implemented as activation function
in the hidden layer. A single output neuron with a linear
activation function was assumed. Number of hidden layers
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and neurons were varied systematically to obtain the best and
accurate model based on the mean absolute error (MAE) and
residual mean square error (RMSE) as performance measures.
According to [28], RMSE and MAE are both measures of
accuracy and the degree of of spread of data points. The MAE
is a measurement of how close forecasts are to the actual data
points; the average of the absolute errors [35]. The MAE
apportions equal weighting to differences from actual values
whilst the RMSE gives a huge penalty in these differences and
is more suitable in identifying outliers. The formulations of
MSE, RMSE and MAE are given by:

MSE =
1

N
ΣNt=1(yt − ŷt)2 (2)

RMSE =

√
1

N
ΣNt=1(yt − ŷt)2 (3)

MAE =
1

N
ΣNt=1|(yt − ŷt)| (4)

where yt is the actual observation for the period t, ŷt the
forecast for the same period, and N the length of the test set.
The mean square error (MSE) and mean absolute error (MAE)
were used as performance measures during training. Three
models were selected and forecasts were generated for the year
2018 as a model cross-validation process. The RMSE and
MAE were used as final performance measures for selecting
a suitable model for the neural network.

2.3. Simulation Modelling

Bulawayo Emergency Medical Services (BEMS) adopted
the regionalised response strategy where EMS teams are
assigned to serve a pre-specified geographical area or region.
It is assumed that if the assigned EMS team(s) is busy, the
closest team must perform the task. An important benefit
derived from this strategy is to minimise travel times due to the
reduced size of the geographic zone that the EMS teams need
to travel between call locations. Bulawayo City, for purposes
of emergency response is demarcated into two broad regions,
the eastern and western regions. The eastern region covers the
low density suburbs characterised by low population densities
and the the western region covers the high density suburbs

characterised by high population densities. Both the Eastern
and Western regions are further split into two sub-regions to
which an ambulance station is assigned. There are four sub-
stations, two in each region namely: Famona and Northend
(Eastern region), Nketa and Nkulumane (Western region). The
study will consider the geographical distribution of emergency
calls in reference to the four stations: Famona, Northend,
Nketa and Nkulumane.

2.3.1. Description of Components of BEMS Response
System

BEMS is operating using the Anglo-American response
strategy where the EMS is separated from the medical system
as it offers only paramedic care. BEMS uses different kinds
of vehicles but fitted with the same equipment features to
respond to emergency calls. Ambulance dispatch is performed
by a dispatcher upon receiving calls requiring EMS. BEMS
is inclined to call-initiated dispatch decision making strategy
where the dispatcher is required to select one of the idle
ambulance vehicles to be dispatched after the arrival of an
emergency call. BEMS employs the first in first out (FIFO)
dispatch strategy with priority given to road traffic accidents
in the case where waiting calls are in the response system.
BEMS assumed a multi-location dispatch model, where the
ambulances may be dispatched from wherever they are. When
responding to calls, EMS crews are not given specific routes
to follow as in the case of dynamic dispatch systems. Cases
where an ambulance call is cancelled, it is recorded and
such cases occur when there is a duplication of calls or the
use of other emergency ambulance service providers by the
caller. When responding, EMS medical crews can encounter:
false and malicious calls (FAM), false alarm with good intent
(FAGI) and true existence of a call. The EMS crew is
expected to provide service at the scene, deliver a patient
to a medical institution, perform hand-over and take over
procedure at medical centre, restocking and fueling of vehicle.
Emergencies are broadly categorised in three (3) categories
with an assigned unique code for tracking, rescue team
deployment and reporting purposes. These are summarised in
Table 1. For simulation modelling purposess, the model will
adopt the codes Cat A, Cat B and Cat C for distinguishing the
different emergency response categories.

Table 1. Categories and Codes of Emergency Response

Simulation Code Data Code Description

Cat A: Urgent and life threatening RTA Road traffic accidents

1A Accident/Emergencies

Cat B: Urgent but not life threatening symptoms 1B Maternity clinics

2 Clinics from home

Cat C: Non-urgent calls 3 Removals/transfers
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The study assumed a static ambulance deployment model
which endeavors to allocate a fixed number of ambulances
to a set of known fixed sub-stations to ensure that the best

medical outcomes for patients and workers are met. A logical
presentation of the BEMS multi-location dispatch model is
presented in Figure 3.

Figure 3. Bulawayo Emergency Medical Service Multi-location Dispatch Model.
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Part A of the dispatch model represents call generation
process whilst Part B represents the dispatch process. Part C
represents cancelled calls which emanate from calls that do not
require an ambulance response or occurs when the caller sort
for another service provider or there has been a duplication of
a call. Part D represents a case were service on the scene is
not required. Normally these are calls recorded as false and
malicious alarm (FAM) or false alarm good intention (FAGI).
Part E represents a case were service on the scene is required
and patient is transferred to the hospital. Part F represents
the material replenishment process were a decision is made
whether to replenish the medical resources or not. It also
includes aspects of vehicle service or refueling.

2.3.2. Assumptions of the Simulation Model
The simulation model will incorporate the randomness in

call arrivals, travel times and service time. The model will
assume the following:

1. The arrival rate of calls may vary and is time dependent,
2. Calls are related with socio-economic conditions of the

population,
3. Calls are serviced as per first come first serve (FIFO),
4. An ambulance could only serve one call at a time,
5. Ambulances have the same capacity in terms of size and

equipment and that each ambulance team is made up of
the driver and an attendant,

6. Ambulances are to be allocated randomly,
7. Response time is the time between the receipt of a call

and to when the ambulance team arrive at the scene,
8. Service time is the time between the arrival of the

ambulance team at the scene until they have performed
hand-over take-over at the medical centre and vehicle
is ready to depart for station and available to perform

another task,
9. Total duration in the system is the time from when when

a call is received up to when the ambulance is ready to
depart for station ready to perform another task.

2.3.3. Mathematical Representation of the Simulation
Model

The optimisation problem according to [44] can be
formulated as follows:

MinθεΘJ(θ) = E [C(θ, w)] (5)

subject to:
R(θ, w) ≤ RT (6)

Ni(θ, w) ≤ NLS ∼ ∀i (7)

where:
1. θ is vector of input variables (the set of substations for

allocation and quantity of ambulances at each base).
2. J(θ) is objective function.
3. w is number of replication.
4. E [C(θ, w)] is expected value of C(θ, w).
5. R(θ, w) is response times for the sample θ in replication
w for ambulance units respectively.

6. Ni(θ, w) is quantity of ambulance units allocated in base
i at the sample θ and replication w.

7. RT is upper response times of the ambulance units.
8. NLS is upper bounds for total ambulance units in each

base.
As suggested by [6], to solve the problem, an optimiser

and a simulator must work together as shown in Figure 4.
The simulator evaluates the performance of each candidate
solution, while the optimiser seeks to identify the candidate
solutions.

Figure 4. Schematic Diagram for Optimisation for Simulation.

2.3.4. Simulation Model Performance Indicators
The performance indicators considered for developing

optimum simulation models and sensitivity analysis are:

the average duration of a call in the system, average
response time, average response queue time, average number
of calls in response queue, throughput ratio and capacity
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utilization levels of ambulances. Sensitivity and numerical
experiments were conducted to achieve an in-depth analysis
of the simulation models developed. Sensitivity analysis and
numerical experiments entails changing model parameters and
subsequently observing how these changes affect the general
model performance and the deployment plan. The research
will explore the following scenarios as part of simulation
model development, sensitivity analysis and numerical
experiments: Optimum static ambulance deployment to
predicted ANN demand, maintaining the RTD and Assessment
of the influence of varying the response time to meet
international standards by adopting uniform distributions given
by U(10, 15) and U(5, 10).

2.3.5. Estimation of Simulation Model Parameters
The call inter-arrival time, response time, and service time

distributions were generated in ARENA simulation package
using the Input Analyser module on the 2018 historical data.
The service time distributions were separated for cases were
service needs to be rendered on scene (SOS) and cases
were service on scene is not required (NSOS) for each of
the heterogeneous sub-station. The NSOS emanate from
FAG and FAGI and usually results in less time required by
the responding crew team since no pre-hospital care is not
provided. However, these occur in different proportions in
the heterogeneous geographical zones of service and were
computed separately. The selection of the best distribution is

based primarily on the square error (s.e) and test for goodness
of fit, which was performed using non-parametric tests, Chi-
square and the Kolmogorov-Smirnov tests, both embedded in
the ARENA Input Analyser.

The monthly and daily occurrences of demand per station
were computed from the forecasts data generated by the
feed-forward neural network. Allocations to the different
stations (Famona, Northend, Nketa and Nkulumane) were
based on proportions calculated from the historical data of
2018. The probability of occurrence of each medical condition
or category (Cat A, Cat B and Cat C) shall be computed in
Excel also based on the 2018 annual historical data.

3. Results and Discussion

Results of forecasting from ANN, simulation and
optimisation techniques for ambulance deployment are
presented and discussed in this section.

3.1. Estimation of Simulation Model Input Parameters

Call inter-arrival time, response time, service on scene
delay time (SOS) and no-service on scene required delay time
(NSOS) distributions were generated in ARENA simulation
package using the 2018 historical data. A summary of the
results are presented in Table 2.

Table 2. Simulation Model Distributions of the Sub-stations.

Famona Inter-arrival time Response time

0.999+WEIB(180;1.17) 2+GAMM(22;1.48)

Service on scene delay No-service on scene delay

-0.001+164*BETA(2.7;6.47) -0.5+72*BETA(0.606;1.2)

Northend Inter-arrival time Response time

3+GAMM(143;1.33) 2+GAMM(23.9;1.36)

Service on scene delay No-service on scene delay

N(51.6;23.7) -0.001+WEIB(25.9;0.834)

Nketa Inter-arrival time Response time

-0.001+WEIB(64;1.06) -0.001+ERLA(18.5;2)

Service on scene delay No-service on scene delay

2+201*BETA(3.81;10.9) -0.001+EXPO(23.6)

Nkulumane Inter-arrival time Response time

0.999+GAMM(93.6;1.73) 0.999+GAMM(21.8;1.62)

Service on scene delay No-service on scene delay

N(53;19.8) -0.5+63*BETA(0.484;0.79)

It was also necessary to determine the proportion of
emergency calls and non-emergency calls. The emergency
calls are those that required the dispatch of an ambulance
after being assessed by the dispatcher in the call center. The
non-emergency calls included cancelled calls and those that
were attended to by other private emergency service providers.

Global values of these parameters were calculated for all the
four sub-stations and presented in Table 3. Calls required to
be categorised as: Cat A, Cat B or Cat C, together with their
corresponding probability of occurrences. As these vary from
one sub-station to another due to the heterogeneous nature of
the four regions they render service, computations were done
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separately for each sub-station. The service on scene delay
(SOS) and no service on scene delay (NSOS) proportions
of occurrence were also computed and the statistics are
summarised in Table 3. The no service required on scene

(NSOS) emergencies emanate from the FAM and FAGI where
the general service time is smaller as compared to cases where
service on the scene (SOS) is required and rendered.

Table 3. Summary of Expected Simulation Model Proportions by Sub-station.

Description Proportion Famona Northend Nketa Nkulumane

Call EC 0.92 0.92 0.92 0.92

Filter NEC 0.08 0.08 0.08 0.08

Total 1 1 1 1

Call CAT A 0.69 0.58 0.56 0.62

Category CAT B 0.26 0.34 0.37 0.36

Classification CAT C 0.05 0.08 0.07 0.02

Total 1 1 1 1

Nature SOS 0.84 0.84 0.93 0.94

of Service NSOS 0.16 0.16 0.07 0.06

Total 1 1 1 1

Expected Monthly Call Proportion EMCP (%) 18.1% 17.6% 47.1% 17.2%

The number of false alarm malicious (FAM) and false
alarm good intent (FAGI) calls are more prevalent in the
eastern suburbs (Famona and Northend) as compared to their
counterparts in the western suburbs (Nketa and Nkulumane).
This might imply that eastern suburb residents find themselves
with a wide range of alternatives for health emergencies
resulting in more cases of FAGI cases. This however, justifies
the need for equitable deployment of ambulance resources to
meet the heterogeneous needs of the populace.

3.2. Artificial Neural Network Public Ambulance Demand
Forecasts

An architecture of the FFNN given by (7 − (4) − 1), with
seven input nodes, one hidden layer (4 neurons) and one output
neuron was identified as the best appropriate model having the
lowest MAE of 94.0 and RMSE of 137.19 as summarised in
Table 4. The ∗ in the table represents the minimum value of
the performance measure across all models.

Table 4. Feed forward neural network model selection.

Model Structure Testing set (MSE) Testing set (MAE) Validation (RMSE) Validation (MAE)

1 7-(3)-1 268.14 5.29 165.28 114.54

2 7-(3,2)-1 169.41 3.26 138.20 108.08

3 7-(4)-1 402.18 6.26 137.19* 94.00*

Paired sample t-test at 5% level of significance was applied
to validate any significant differences between actual values
and predicted values of the selected FFNN model using
Minitab statistical package. The calculated p-value for FFNN
was 0.493(> 0.05) (Table 5) and we conclude that there is no
significant difference between the actual values and predicted

public emergency ambulance demand. The selected neural
network model (7-(4)-1) was used to forecast demand for 2019
and results are presented in Table 6. Demand is expected to be
high in January, March, September and December whilst lower
demand is projected for April, June and July 2019.

Table 5. Paired sample t-test for actual versus FFNN forecast of 2018 demand.

N Mean s.d. S.E. mean t-value p-value 95% C.I.

Actual 12 1506.92 94.54 27.29 -0.71 0.493 (-177.67,60.33)

FFNN 12 1535.58 127.78 36.89

Difference 12 -28.67 140.07 40.44
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Table 6. Expected Daily Ambulance Demand Per Station from ANN Forecasts.

Expected Values Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.

Y2019 ANN Forecasts 1622 1494 1713 1368 1482 1318 1391 1526 1572 1541 1532 1638

Days (2019) 31 28 31 30 31 30 31 31 30 31 30 31

Famona Monthly Calls 294 270 310 248 268 239 252 276 285 279 277 296

Daily Calls (N) 9 10 10 8 9 8 8 9 10 9 9 10

Northend Monthly Calls 285 263 301 241 261 232 245 269 277 271 269 289

Daily Calls (N) 9 9 10 8 8 8 8 9 9 9 9 9

Nketa Monthly Calls 764 704 807 644 698 620 655 719 740 726 722 771

Daily Calls (N) 25 25 26 21 23 21 21 23 25 23 24 25

Nkulumane Monthly Calls 279 257 295 235 255 227 239 262 270 265 264 282

Daily Calls (N) 9 9 10 8 8 8 8 8 9 9 9 9

3.3. Simulation Model Building for the Heterogeneous
Sub-stations

In developing the simulation model, number of ambulances
were gradually increased from one (1) to the allocated fleet
size at each of the heterogeneous sub-stations, while changes

in performance indicators were simultaneously being observed
and recorded. Current unoptimised ambulance deployment
plan has Famona one (1), Northend one (1), Nketa three (3)
and Nkulumane one (1) allocated ambulance(s) respectively.
A summary of results for the simulation models is presented
in Table 7.

Table 7. Simulation Model Performance Measures.

Description Abbrev. Famona Northend Nketa Nkulumane

Ambulance numbers NOA 1 1 1 2 3 1

Average time in system (min) AVTIS 86.15 102.74 358.69 112.88 94.33 97.81

Average response time (min) AVRT 40.51 58.7 306.04 64.92 49.02 43.21

Aveg. no. in response queue AVNRQ 0.04 0.19 4.95 0.42 0.05 0.02

Average queue time (min) AVQT 6.58 24.99 289.73 26.07 3.21 3.67

Throughput ratio TPR 8/9 11/11 16/22 22/23 24/24 7/7

Non-emergency calls NEC 0 0 0 0 0 0

Amb. 1 utility 0.48 0.6 1.0 0.78 0.54 0.46

Amb. 2 utility 0.66 0.45

Amb. 3 utility 0.53

Average utility ratio AUR 0.48 0.6 1.0 0.72 0.42 0.46

Models developed are a resemblance of the current
prevailing EMS process for Bulawayo city. Average response
times are relatively high when compared to internationally
recommended standards of 5 to 10 minutes. Average queuing
times and number of ambulances queuing remain undesirably
high posing a threat to human based outcomes of safety
and satisfaction. An introspect into Nketa Station simulation
model reveals important insights into the influence of varying
fleet size on key performance indicators such as average time
of a call in system, average response time, average number of
calls in response queue and the corresponding average time in
queue, throughput ratio (%) and average ambulance utility (%)
as presented in Figure 5.

It was observed that as the number of ambulances increases,
there is corresponding positive changes in performance
indicators. The average time of a call in system, average

response time, average number of calls in response queue, and
average time of a call in queue decrease as the number of
ambulance fleet size increases. Throughput ratios, increases
with increase in allocated number of ambulances as expected.
However, the ambulance utilisation levels decreases with
increase of ambulance fleet size. For an efficient and effective
EMS, it is a general expectation that no call should queue
for service with response time reduced to internationally
recognised levels of 5 to 10 minutes in urban areas. Hence,
there is need to determine the optimum ambulance deployment
models that minimise the number of ambulances needed to
provide a specific and desired service level. The next section
seeks to improve the EMS model performances by adopting
optimisation for simulation through the use of sensitivity
analysis whilst integrating future demand forecasts.
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Figure 5. Influence of varying fleet size on performance indicators.

3.4. Sensitivity Analysis

Sensitivity analysis was conducted to determine optimal
static ambulance deployment plans by varying the response
time against the predicted ANN values. Firstly, optimal
deployment plans using the initial response time distributions
were developed. Later, uniform distributions U(10; 15) and
U(5; 10) were adopted to represent response times that will
vary between 10 and 15 minutes and 5 to 10 minutes
respectively. Performance measures such as the average entity
time in system, average response time, average response queue
time, average number of calls in response queue and the
ambulance utility levels were used to evaluate the models. The
simulation model parameters such as the inter-arrival of calls

and service time distributions were not changed.

3.4.1. Optimum Deployment Plan for BEMS Using Initial
Response Distribution Functions

The ANN forecasts in Table 6 indicate that for 2019,
across the different 12 months would assume values of 8,
9 and 10 as expected daily calls for Famona, Northend and
Nkulumane sub-stations. Nketa sub-station assumed values
of 21, 23, 24, 25 and 26 respectively. Summaries of the
processes in determining the optimum development plans by
integrating forecasts, simulation and optimisation techniques
are presented in Table 8 and Table 9. Ambulance fleet sizes
were incremented from one (1) whilst monitoring performance
indicators.

Table 8. Optimum Deployment Plans for Famona, Northend and Nkulumane Stations: Initial RTD.

Station/RTD Calls (N) NOA AVTIS

(min.)

AVRT

(min.)

AVNRQ AVQT

(min.)

TPR AUR NSOS

(min.)

SOS

(min.)

1 86.15 38.80 0.03 5.32 8/8 0.45 16.44 65.9

N=8 2 76.06 33.07 0.0 0.0 8/8 0.21 15.62 64.37

3 73.06 33.07 0.0 0.0 8/8 0.14 15.62 64.37

1 86.15 40.51 0.04 6.58 8/9 0.48 16.44 65.9

Famona N=9 2 73.06 32.29 0.0 0.0 8/9 0.23 15.62 64.37

2+GAMM(22;1.48) 3 73.06 32.29 0.0 0.0 8/9 0.15 15.62 64.37

1 86.15 40.51 0.04 6.58 8/9 0.48 16.44 65.9

N=10 2 73.06 32.29 0.0 0.0 8/9 0.24 15.62 64.37

3 73.06 32.29 0.0 0.0 8/9 0.15 15.62 64.37

1 93.87 47.63 0.09 17.91 7/7 0.37 31.82 52.0

N=8 2 94.34 49.26 0.0 0.0 6/6 0.20 34.47 55.68

3 94.34 49.26 0.0 0.0 6/6 0.13 34.47 55.68

1 93.79 46.67 0.09 15.67 8/8 0.43 31.82 52.22

Northend N=9 2 85.65 49.26 0.0 0.0 6/6 0.18 27.78 53.63

2+GAMM(23.9;1.36) 3 85.65 49.26 0.0 0.0 6/6 0.13 27.78 53.63
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Station/RTD Calls (N) NOA AVTIS

(min.)

AVRT

(min.)

AVNRQ AVQT

(min.)

TPR AUR NSOS

(min.)

SOS

(min.)

1 103.01 54.85 0.14 22.61 9/9 0.50 31.82 52.84

N=10 2 78.89 44.40 0.0 0.0 7/7 0.19 26.84 53.63

3 78.89 44.40 0.0 0.0 7/7 0.13 26.84 53.63

1 97.81 43.21 0.02 3.67 7/7 0.46 50.86 56.06

N=8 2 83.04 43.95 0.0 0.0 6/7 0.20 34.5 53.54

3 83.04 43.95 0.0 0.0 6/7 0.13 34.5 53.54

1 97.81 43.21 0.02 3.67 7/7 0.46 50.86 56.09

Nkulumane N=9 2 83.04 43.95 0.0 0.0 6/7 0.20 34.5 53.54

0.999+GAMM(21.8;1.62) 3 83.04 43.95 0.0 0.0 6/7 0.13 34.5 53.54

1 97.81 43.21 0.02 3.67 7/7 0.46 50.86 56.09

N=10 2 83.04 43.95 0.0 0.0 6/7 0.20 34.5 53.54

3 83.04 43.95 0.0 0.0 6/7 0.13 34.5 53.54

Table 9. Optimum Deployment Plan for Nketa Station: RTD ∼ -0.001+ERLA(18.5;2).

Calls (N) NOA AVTIS (min.) AVRT (min.) AVNRQ AVQT (min.) TPR AUR NSOS (min.) SOS (min.)

2 120.75 66.38 0.30 24.20 18/18 0.61 53.18 54.61

3 101.16 51.82 0.05 4.05 19/19 0.43 0.0 49.34

N=21 4 93.72 44.02 0.01 0.97 20/20 0.32 11.84 51.7

5 92.21 41.75 0.0 0.0 20/20 0.26 11.84 52.49

6 92.21 41.75 0.0 0.0 20/20 0.26 11.84 52.49

2 113.3 61.06 0.3 22.48 19/19 0.60 53.18 52.06

3 102.59 53.74 0.05 3.66 21/21 0.48 0.0 48.84

N=23 4 94.47 42.95 0.01 0.88 22/22 0.36 11.84 53.41

5 89.23 39.71 0.0 0.0 22/22 0.27 11.84 51.32

6 89.23 39.71 0.0 0.0 22/22 0.23 11.84 51.32

2 112.16 59 0.3 21.36 20/20 0.63 53.18 53.16

3 98.97 51.62 0.05 3.5 22/22 0.48 23.42 49.75

N=24 4 95.74 42.95 0.01 0.88 22/22 0.37 11.84 54.74

5 89.73 40.7 0.0 0.0 23/23 0.29 19.56 53.45

6 89.73 40.7 0.0 0.0 23/23 0.24 19.56 53.45

2 115.24 59.58 0.31 20.98 21/21 0.69 53.18 56.08

3 96.87 49.79 0.05 3.35 23/23 0.50 23.42 49.33

N=25 4 95.74 41.49 0.01 0.84 22/23 0.39 11.84 54.74

5 88.97 41.07 0.0 0.0 24/24 0.30 20.14 53.45

6 88.97 41.07 0.0 0.0 24/24 0.25 20.14 53.45

2 113.51 62.25 0.35 23.01 22/22 0.69 43.77 52.93

3 94.33 49.02 0.05 3.21 24/24 0.51 17.09 49.33

N=26 4 95.74 41.49 0.01 0.81 22/23 0.37 11.84 54.74

5 87.43 40.68 0.0 0.0 25/25 0.30 15.78 52.65

6 87.43 40.68 0.0 0.0 25/25 0.25 15.78 52.65

Key insights are derived from Nketa Station with a wide
variation in expected number of calls and ambulance fleet size
required for deployment in achieving optimal solution. A
summary of key indicators were tracked as fleet sizes were
incremented to optimal levels as presented in Figure 6. As the
fleet size is increased there is corresponding decrease in the
average response time to a specific threshold (5 ambulances)
and beyond this optimal fleet size, the average response time
remains constant. It was also observed that as the fleet

size increases to a specific threshold, average queuing time
also decreases to zero. The same applies to the number of
calls queuing in the response time. However, the ambulance
utilisation levels vary inversely with increase in fleet size. The
optimum deployment plans still have high average response
time which are far above the recommended international
standards, hence the need to adjust accordingly through the
numerical experiments.



24 Tichaona Wilbert Mapuwei et al.: Impact of Varying Response Time on Ambulance Deployment Plans in Heterogeneous
Regions Using Multiple Performance Indicators

Figure 6. Implications of varying fleet sizes on performance indicators.

3.4.2. Comparison of Optimum Deployment Plans by
Varying Response Time Distributions

A comparison of the different performance changes due to
the influence of the changes in response time distributions on
the optimal deployment plan for all the stations was conducted.

The same optimisation process of gradually increasing the fleet
sizes while observing the multiple performance measures was
performed. Summaries are presented in Table 10, Table 11,
Table 12 and Table 13.

Table 10. Comparison of Optimum Deployment Plans For Famona Station.

ANN
Forecasts

Response Time Distribution Opt.
NOA

AVTIS
(min.)

AVRT
(min.)

AVNRQ AVQT
(min.)

NEC TPR AUR NSOS
(min.)

SOS
(min.)

2+GAMM(22;1.48) 2 76.06 33.07 0 0 0 8/8 0.21 15.62 64.37

N=8 U(10;15) 1 52.92 12.92 0 0 0 8/8 0.29 15.62 64.37

U(5;10) 1 47.92 7.92 0 0 0 8/8 0.27 15.62 64.37

2+GAMM(22;1.48) 2 73.06 32.29 0 0 0 8/9 0.23 15.62 64.37

N=9 U(10;15) 1 52.92 12.92 0 0 0 8/9 0.29 15.62 64.37

U(5;10) 1 47.92 7.89 0 0 0 8/9 0.30 15.62 64.37

2+GAMM(22;1.48) 2 73.06 32.29 0 0 0 8/10 0.24 15.62 64.37

N=10 U(10;15) 1 52.92 12.92 0 0 0 8/10 0.29 15.62 64.37

U(5;10) 2 47.92 7.79 0 0 0 8/10 0.30 15.62 64.37
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Table 11. Comparison of Optimum Deployment Plans For Northend Station.

ANN

Forecasts

Response Time Distribution Opt.

NOA

AVTIS

(min.)

AVRT

(min.)

AVNRQ AVQT

(min.)

NEC TPR AUR

(min.)

NSOS

(min.)

SOS

2+GAMM(23.9;1.36) 2 94.34 49.26 0 0 2 6/6 0.20 34.47 55.68

N=8 U(10;15) 2 56.61 11.83 0 0 2 6/6 0.12 34.47 55.68

U(5;10) 2 51.61 6.53 0 0 2 6/6 0.11 34.47 55.68

2+GAMM(23.9;1.36) 2 85.65 49.26 0 0 3 6/6 0.18 27.78 53.63

N=9 U(10;15) 2 58.04 11.63 0 0 2 7/7 0.14 34.47 55.36

U(5;10) 2 53.04 6.63 0 0 2 7/7 0.13 34.47 55.36

2+GAMM(23.9;1.36) 2 78.39 44.40 0 0 3 7/7 0.19 26.84 53.63

N=10 U(10;15) 2 58.90 11.63 0 0 2 8/8 0.17 34.47 54.95

U(5;10) 2 53.90 6.63 0 0 2 8/8 0.15 34.47 54.95

Table 12. Comparison of Optimum Deployment Plans For Nketa Station.

ANN(N) Response Time Distribution Opt.

NOA

AVTIS

(min.)

AVRT

(min.)

AVNRQ AVQT

(min.)

NEC TPR AUR NSOS

(min.)

SOS

(min.)

-0.001+ERLA(18.5;2) 5 92.21 41.75 0 0 1 20/20 0.26 11.84 52.49

N=21 U(10;15) 3 65.49 12.72 0 0 2 19/19 0.29 28.41 57.34

U(5;10) 3 60.49 7.72 0 0 2 19/19 0.26 28.41 57.34

-0.001+ERLA(18.5;2) 5 89.23 39.71 0 0 1 22/22 0.27 11.84 51.32

N=23 U(10;15) 3 65.48 12.63 0 0 2 20/21 0.31 28.41 57.10

U(5;10) 3 60.48 7.63 0 0 2 20/21 0.29 28.41 57.10

-0.001+ERLA(18.5;2) 5 89.73 40.7 0 0 1 23/23 0.29 19.56 53.45

N=24 U(10;15) 3 64.29 12.57 0 0 2 21/22 0.32 28.41 55.53

U(5;10) 3 60.48 7.56 0 0 2 20/22 0.30 28.41 57.10

-0.001+ERLA(18.5;2) 5 88.97 41.07 0 0 1 24/24 0.30 20.14 53.45

N=25 U(10;15) 3 64.29 12.68 0 0 2 21/23 0.33 28.41 55.53

U(5;10) 3 60.48 7.56 0 0 2 20/22 0.30 28.41 57.10

-0.001+ERLA(18.5;2) 5 87.43 40.68 0 0 1 25/25 0.30 15.78 52.65

N=26 U(10;15) 3 64.29 12.68 0 0 2 21/23 0.33 28.41 55.53

U(5;10) 3 60.48 7.56 0 0 2 20/22 0.30 28.41 57.10

Table 13. Comparison of Optimum Deployment Plans For Nkulumane Station.

ANN (N) Response Time Distribution Opt.

NOA

AVTIS

(min.)

AVRT

(min.)

AVNRQ AVQT

(min.)

NEC TPR AUR NSOS

(min.)

SOS

(min.)

0.999+GAMM(21.8;1.62) 2 83.04 43.95 0 0 0 6/7 0.20 34.5 53.54

N=8 U(10;15) 1 57.64 12.71 0 0 0 7/7 0.28 34.5 52.76

U(5;10) 1 52.64 7.71 0 0 0 7/7 0.26 34.5 52.76

0.999+GAMM(21.8;1.62)) 2 83.04 43.95 0 0 0 6/7 0.20 34.50 53.54

N=9 U(10;15) 1 57.64 12.71 0 0 0 7/7 0.28 34.5 52.76

U(5;10) 1 52.64 7.71 0 0 0 7/7 0.26 34.5 52.76

0.999+GAMM(21.8;1.62) 2 83.04 43.95 0 0 0 6/7 0.20 34.50 53.54

N=10 U(10;15) 1 57.64 12.71 0 0 0 7/7 0.28 34.5 52.76

U(5;10) 1 52.64 7.71 0 0 0 7/7 0.26 34.5 52.76

3.4.3. Optimal Fleet Sizes for ANN Forecasts and Response Time Distributions
A summary of the optimum deployment plans when integrating ANN forecast and the proposed response time distributions

are summarised in Table 14.
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Table 14. Optimal Fleet Sizes for ANN Forecasts and The Response Time Distributions.

Station RTD Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.

Famona 2+GAMM(22;1.48) 2 2 2 2 2 2 2 2 2 2 2 2

Northend 2+GAMM(23.9;1.36) 2 2 2 2 2 2 2 2 2 2 2 2

Nketa -0.001+ERLA(18.5;2) 5 5 5 5 5 5 5 5 5 5 5 5

Nkulumane 0.999+GAMM(21.8;1.62) 2 2 2 2 2 2 2 2 2 2 2 2

Ambulance Optimal Deployment 11 11 11 11 11 11 11 11 11 11 11 11

Deployment Current Fleet Size 6 6 6 6 6 6 6 6 6 6 6 6

Status Deficit 5 5 5 5 5 5 5 5 5 5 5 5

Famona 1 2 2 1 1 1 1 1 2 1 1 2

Northend U(10;15) 2 2 2 2 2 2 2 2 2 2 2 2

Nketa 3 3 3 3 3 3 3 3 3 3 3 3

Nkulumane 1 1 1 1 1 1 1 1 1 1 1 1

Ambulance Optimal Deployment 7 8 8 7 7 7 7 7 8 7 7 8

Deployment Current Fleet Size 6 6 6 6 6 6 6 6 6 6 6 6

Status Deficit 1 2 2 1 1 1 1 1 2 1 1 2

Famona 1 2 2 1 1 1 1 1 2 1 1 2

Northend U(5;10) 2 2 2 2 2 2 2 2 2 2 2 2

Nketa 3 3 3 3 3 3 3 3 3 3 3 3

Nkulumane 1 1 1 1 1 1 1 1 1 1 1 1

Ambulance Optimal Deployment 7 8 8 7 7 7 7 7 8 7 7 8

Deployment Current Fleet Size 6 6 6 6 6 6 6 6 6 6 6 6

Status Deficit 1 2 2 1 1 1 1 1 2 1 1 2

A summary for all the four deployment plans is presented
in Figure 7. The prevailing deployment plan has six (6)
ambulances available across the twelve (12) months. If
optimisation is applied by integrating the ANN demand
forecasts without varying the response time distributions,
eleven (11) ambulances are required. However, when
U(10, 15) and U(5, 10) response time distributions are

applied, ambulance deployment plans vary between seven
(7) and eight (8) ambulances as aligned to demand monthly
patterns. Implications are that reducing the response time
distribution from a range of 10 to 15 minutes to a range of
5 to 10 minutes did not change the deployment plans across
the whole year.

Figure 7. A Comparative of Deployment Plans By Varying Response Time Distributions.
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4. Conclusion

The paper integrated forecasting, simulation and
optimisation techniques to assess the impact of varying
response time distributions on ambulance deployment in
heterogeneous regions using multiple performance indicators.
Future ambulance demand were predicted using an ANN
model with a 7-(4)-1 architecture. Simulation model input
parameters were developed to capture the stochastic nature of
demand (inter-arrival rates of calls), response time, service
time, occurrences of emergency calls and their levels of
severity for the four heterogeneous demand zones in Bulawayo
Metropolitan City.

Simulation models developed resembled the current EMS
being provisioned by BEMS with six (6) operational
ambulances. The general simulation models developed
indicated that average response times are well above 15
minutes, and characterised by significantly high average
queuing times and number of ambulances queuing for service.
These performance outcomes were highly undesirable as they
pose a great threat to human based outcomes of safety and
satisfaction with regards to service delivery. Hence, there was
need to determine the optimum ambulance deployment plans
that minimised the average response time, number of calls in
queue and queuing time, and adjusting for fleet size to provide
a specific service level using optimisation for simulation whilst
monitoring other performance indicators such as utilisation
levels and throughput ratios.

It was observed that increasing the fleet size influences the
average response time below a certain threshold value across
all the heterogeneous regions. When fleet size is increased
beyond this threshold value, no significant changes would
occur in the performance indicators. Fleet size varied inversely
to ambulance utilisation levels. As fleet size is gradually
increased, utilisation levels also gradually decreased. Due
care must be taken to avoid under-utilisation of ambulances
during deployment. Under utilisation culminates to human and
material equipment idleness and yet the resources available are
scarce and should be deployed where needed most. For all the
other performance indicators, increase in fleet size resulted in
the decrease of the values as expected.

Standardising the response time between 10 to 15 minutes
by adopting a uniform distribution (U(10, 15)) resulted in
significant decrease in the number of ambulances required for
deployment from eleven (11) down to a maximum of eight (8)
ambulances. The decrease in ambulances deployed together
with the response time distributions improved the overall
performance of EMS provision as it resulted in decreases of
average response time, average total duration of call in the
system and reduced number of calls in queue and queuing time
to zero. The ambulance utilisation levels and the throughput
ratios remained relatively high. Thus, reducing the response
time culminated in the reduction of the number of ambulances
required to achieve optimum deployments. However, further
reduction of response time to between 5 and 10 minutes by
adopting a uniform distribution (U(5, 10)) did not affect the

deployment plans as compared to a scenario when a U(10, 15)
distribution was adopted. Despite a decrease in average
response time across all the heterogeneous regions, the total
number of ambulances required to obtain optimum deployment
plans did not change.

It can be concluded that increasing the fleet size helps to
improve service delivery to a certain level. For ambulances
as a medical resource, the more resources deployed does
not always translate to better performance. To complement
this, efforts must be directed in reducing the response time,
which only does not improve service delivery, but help reduce
the number of ambulances to attain the desired level of
service. Reducing the response time is easier, cheaper and
feasible for management as this is directly linked to key
components and contributors of response time such as pre-
trip delays, chute time and queuing time which are more
concentrated in the call centre. It is also equally imperative
to simultaneously consider multiple performance indicators to
complement the average response time. This goes a long way
in balancing resource mobilisation, allocation and capacity
utilisation. Digitisation of switch boards in the call center,
continuous staff training coupled with provision of standard
modern equipment to response teams will go a long way in
reducing the response time. An important contribution of
this paper is that the simplified methodology strategy can
further be adopted to similar cases that involve a server-to-
customer operation environment with relative ease with few
adjustments.

Abbreviations
EMS Emergency Medical Services
ANN Artificial Neural Network
FFNN Feed-forward Neural Network
MAE Mean Absolute Error
RMSE Residual Mean Square Error
MSE Mean Square Error
BEMS Bulawayo Emergency Medical Services
FIFO First In First Out
FAM False and Malicious
FAGI False Alarm with Good Intent
SOS Service on Scene
NSOS No Service on Scene
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