
American Journal of Software Engineering and Applications

2024, Vol. 12, No. 1, pp. 5-13

https://doi.org/10.11648/j.ajsea.20241201.12

*Corresponding author:

Received: 8 February 2024; Accepted: 23 February 2024; Published: 13 March 2024

Copyright: © The Author(s), 2024. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Article

Prioritization of Application Security Vulnerability

Remediation Using Metrics, Correlation Analysis, and

Threat Model

Santanam Kasturi
1, *

, Xiaolong Li
2
, John Pickard

3
, Peng Li

3

1
Department of Technology Management, Indiana State University, Terre Haute, USA

2
Department of Electronics and Computer Engineering, Indiana State University, Terre Haute, USA

3
Department of Technology Systems, East Carolina University, Greenville, USA

Abstract

As part of a continuing research for evaluating threats posed for exposed attack surface, this study will provide a consolidated

view of exploitability of vulnerable applications presenting a web attack surface of an organization exposed to an attacker. While

testing and scanning technologies like Static Analysis Security Testing (SAST), Dynamic Analysis Security Testing (DAST),

Application Ethical Hack (Penetration Testing), a monitoring technology like the Web Application Firewall (WAF) provides web

traffic information of the number of transaction requests for every application under study. To ensure validity, reliability, and

completeness of observation multiple applications must be observed. Research from a prior study is referenced that shows

correlation between incoming WAF requests and existing vulnerabilities. Using correlation analysis, vulnerabilities metrics, and

a threat model analysis help identify pathways to an attack. A vulnerability map-based attack tree can be developed using

Common Weakness Enumeration (CWE) and Common Vulnerabilities and Exposures (CVE) information. The threat model

analysis and vulnerability-based attack tree can help in simulation studies of possible attacks. This attack tree will show the

linkages between vulnerabilities and a lineage pointing to how an attack could travel from the incoming WAF requests to deep

down into the application code of exposed and existing, open vulnerabilities travelling laterally to create a more expanded attack

crossing trust boundaries using application data flow.

Keywords

Application Security, Vulnerability Metrics, Correlation Analysis, Threat Model, Vulnerability Map, Attack Tree,

Simulation Study, Remediation Prioritization

1. Introduction

The State of Software Security report provides a compre-

hensive outlook on what goes on in the application security

world from a code analysis standpoint [1].

The report highlights growing security technical debt

year-over-year if left unremedied can lead to a dormant risk

that cannot be easily quantified. Many factors influence the

about:blank
http://www.sciencepg.com/journal/137/archive/1371201
http://www.sciencepg.com/journal/137/archive/1371201
about:blank
about:blank
about:blank
about:blank

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

6

growing number of vulnerabilities, and these include devel-

oper experience, choice of programming language, import of

open-source software (OSS), and integration of third-party

software, the last two mentioned contributing to spread of

vulnerabilities in view of multiple business domains within an

organization sharing the code. So, it is imperative to objec-

tively assess the volume of vulnerabilities and execute a re-

mediation program to reduce risk gradually over a period.

An effective remediation program requires:

1. That application is reducing security debt.

2. An aggressive three-month closure rate is being pursued.

3. That 50% of flaws are closed in a quarter, rather than in

two quarters, with all applications written in any language.

Multiple application security testing and monitoring tools

are deployed at different layers of an application architecture

and capture activities that occur at that layer, Table 1, that

includes Static Application Security Testing (SAST), Dy-

namic Application Security Testing (DAST), Software

Composition Analysis (SCA), Penetration Testing also re-

ferred as Application Ethical Hack test (AEH), and Web Ap-

plication Firewall (WAF) / Hybrid WAF, and Runtime Ap-

plication Self-Protection (RASP). References and details can

be found in [1-9]. With web applications exposed to attackers

due to their widespread use, vulnerability data discovered

through tests reveals existing, new, and evolving weaknesses

in application code that has the potential for a threat actor to

exploit. Consolidating all application security vulnerability

information from monitoring, detection, and discovery tools

into a physical system allows for convergence of observation

and response to an event that is a threat.

Table 1. Test / Scan Data.

Capability Application Layer Vulnerability Information Alerts

Static Analysis Security Testing (SAST) Code CWEs, Severity, Exploitability Point in time scan reports

Software Composition Analysis (SCA) Component CVEs, Severity, Exploitability Point in time scan reports

API Security API
CVE’s, CWE’s, Severity, Ex-

ploitability
Point in time reports

Dynamic Analysis Security Testing

(DAST)
URL/UI CWEs, Severity, Exploitability Point in time scan reports

Penetration Testing URL/UI CWEs, Severity, Exploitability Point in time test reports

Web Application Firewall (WAF)
Deployed in front of the web

app server

Blocked Attack Requests, In-

coming threats
Continuous monitoring

Hybrid WAF
Deployed as an agent in the

web app server

Blocked Attack requests, In-

coming threats, target IP and

host information

Continuous monitoring

Runtime Application Self Protection

(RASP)

Deployed as an agent in the

web app server

Blocked Attack requests, In-

coming threats, target IP and

host information

Continuous monitoring

External Threat Hunting External Agency Web header Issues, Ranking Point in time reports

Historical vulnerability data also provides deeper insights

into hidden issues, and these include:

1. Development priorities and pressures lead to piling se-

curity debt. Security is a culture, a mindset!

2. Vulnerabilities getting embedded in a spaghetti code that

is hard to separate from dependencies and code-sharing.

Especially, vulnerabilities in open-source software (OSS)

that is freely available and eases developer pains to

avoid re-inventing the wheel by using features and

functionalities readily available can be hard to remedy,

and due to sharing of these components, hard to replace

easily.

3. Linkages between vulnerabilities lead to an attack tree

that shows multiple pathways for an attacker.

While the first two items require process improvements and

evolving a maturity model [10-12]; the third requires a

step-by-step approach to monitor and detect, measure, analyze

and correlate, and develop an attack tree. Historical vulnera-

bility data that is still unremedied is a dormant risk that can be

exploited by insiders as well as outsider threat actors.

2. Sequence of Measurements and Data

Organization

The following steps need to be followed as outlined in [13].

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

7

1. Identify and choose the attack types in the form of re-

quests.

2. Identify statistical techniques for correlation analysis.

3. Identify the CWEs and CVEs involved.

A brief description of each step is given below.

2.1. Identify and Pick the Attack Types in the

Form of Requests

The information from all the test, scan, and monitoring

results provides insight of vulnerability and attack infor-

mation with various attributes as seen in Table 1. Given below

is a list of vulnerability categories chosen for this study. These

are some of the commonly exposed vulnerabilities exploited

by attackers, to expose a weakness in an application code [13

-16].

1. Cross-site scripting (XSS)

2. Injection / SQL Injection (SQLI)

3. Path Traversal (Directory Traversal)

4. Command Execution

5. Backdoor

2.2. Identify Statistical Techniques for

Correlation Analysis

The next step would be to do a Pearson’s (and / or Spear-

man) correlation analysis as discussed in an earlier work in

this series [13]. Identifying dependent and independent vari-

ables is critical to make an accurate analysis. The statistical

measures that are analyzed from correlation analysis are –

Pearson Correlation, Spearman Correlation (non-parametric

in case the dependent variable is not a normal distribution)

and Significance (two-tailed) over large number of data points

N [17].

Two types of correlations are studied [13]:

1. Correlations of vulnerabilities between test types.

2. Correlation of vulnerabilities between valid requests

and vulnerabilities.

2.3. Identify CWEs and CVEs Involved

A vulnerability profile can be created using the CWEs

(SAST, DAST, and AEH tests / scans) and the CVEs (from

SCA) discovered from monitoring and detection methods

through a parent-peer-child relationship between CWEs and

between CWEs and CVEs, and project an applica-

tion-to-application spread of an attack [14-16]. This can be

further developed into a meaningful attack tree based on the

application profile, equating to a threat model. Using the

results from a prior study XSS, SQLI, and Command Execu-

tion vulnerabilities were found as most suitable from the

correlation analysis [13]. A representative vulnerability map

can be shown by linking CWEs and CVEs for the purposes of

highlighting how multi-application testing and monitoring

can provide an insightful view of a topology of vulnerabilities

[14-16]. The point here is to show that vulnerabilities are not

only correlated, but also linked, and spread laterally across the

enterprise.

3. Security Governance Program to

Analyze and Report Vulnerabilities

An effective security governance program ensures that

there are enough controls to protect all weaknesses, there are

monitoring and detection technologies to scan and report

issues, a full visibility of all existing issues and potential risks,

and effective remediation plans if any in place to plug gaps in

controls, assess monitoring and detection coverage, and im-

proving the security posture of the organization by addressing

any inadequacies. The key highlights of an effective govern-

ance program entail the following:

1. Effectiveness of measures, which track top threats by

monitoring the subtle variations from a known pattern

exposes gaps in the implemented controls.

2. Inadequacy of current security posture, measured

through continuous monitoring of people, process, and

technology that requires periodic revisions and en-

forcement of newer policies, controls, standards, and

strategize for future organizational security investment.

3. Assessing and evaluating the impact of the risks, com-

ing from uncertain threats that lack reliable data and

may potentially possess false positives. Prioritization

and organization of threats based on relevance, urgency,

feasibility of attacks, maturity, and measurability of

remediation actions is an absolute necessity considering

the vast amount of vulnerability information that a

misstep could lead the organization in a completely

wrong direction looking at irrelevant objects.

4. Nontechnology threats, usually stem from behavior and

mindset of human resources are grouped as ‘insider

threats’ are those that organization has no direct control

through technology or by authority of people until after

the fact. These require process improvement from les-

sons learnt through qualitative metrics gathered over

time.

3.1. Security Technical Debt

Development priorities and pressures lead to piling security

debt and that vulnerabilities getting embedded in a spaghetti

code are hard to separate from dependencies and code-sharing,

causing much pain, and remaining open for a long time

without being remediated. Looking at some hard facts, a case

can be made for creating a vulnerability map that spans across

all business domains, across all applications giving a topology

of vulnerability spread. Without this view, it will be hard to

emphasize the risks to the organization due to this expansive

vulnerability prevalence across the organization. First, build

an effective metrics program for analysis and action, to see the

lay of the land, and to understand the net risk. Net risk is a

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

8

relative term to define what remains as risk after covering for

all known risks through technology, process, and personnel

awareness. The theme is that security is a mindset and not an

option, debunk the myth that measurement is difficult, asking

if what is measured makes sense. Then look at the layers of

metrics that are shared with every level of the organization –

board metrics, management metrics, and operational ground

truth metrics. This comprehensive metrics program will throw

light on what lies beneath, and this will be quite a revelation,

and therefore it is worth looking at how to build a metrics

program [18].

3.1.1. Security Is a Culture, a Mindset

Secure by design must be a data driven conversation to

create the space for an effective remediation program. The

emphasis should be that security should be a mindset, an

embedded feature in a development activity, not an after-

thought with reactive chaotic fixes to make up for a lost brand

name or equity.

Ignoring secure-by-design principles has resulted in new

flaws being introduced by developers inadvertently, besides

already existing flaws. Code sharing has benefits if good code

is passed around to share common features, but if bad code is

being shared it further results flaw-multiplication effect.

Remediation and fix rates with the newly introduced flaws

reveal that applications have accumulated flaws over time

exponentially. Many applications have had no flaws intro-

duced at all, but this could be no scans done in the past, and no

scans could be due to no new code being written at all or

nothing has changed Observing code size data helps deter-

mine whether there has been a change. The fact that there are

no flaws does not mean no new code was written and this is

where code size helps to determine if there was a change and a

scan was missed. Integrating application code scanning into

the Continuous Integration / Continuous Development

(CI/CD) pipeline via API scanning reduces the probability of

vulnerabilities being introduced by 2% on average. However,

an increase in the application size by 10% has 0.6% chances

of introducing one or more new flaws. Applications with

higher security debt (as measured by flaw density of one flaw

per one mb of code) have a higher correlation to introduce

more flaws in future. The more you scan, the fewer newer

vulnerabilities are found. So, frequency of scans is important

to ensure that we constantly monitor introduction of newer

vulnerabilities that adds to the security debt [1].

3.1.2. Running an Effective Metrics Program

All threats are not equally formed and do not require the

same response. However, understanding the anatomy of a

threat and its genesis is important, and this requires elaborate

monitoring, detection, and validation. In the recent decade,

the same threats have remained as the top trends: malware,

phishing, and credential abuse. Any amount of funding may

seem insufficient to meet all the needs for catching these in

time to prevent an attack and most breaches still find their

origins in one of these threats. The question is how much is

enough, and what is the extent of measures and metrics that

are needed to make a true analysis to prevent a threat? Table 2

gives an exhaustive list of operational metrics that can provide

a deeper insight to catch the hidden threat. These operational

metrics can then be used to derive the board and management

metrics as appropriate,

Table 2. Ground Truth Metrics.

Questions that a Ground Truth data

collection team should be asking
Responses Comments

What’s in scope, what’s out of scope?

Include only software applications, do

not include infrastructure application as

part of the scope in this context.

Include internally accessible applications to take cog-

nizance of insider threat.

What’s external internet facing and

what’s internal facing?

Web applications that are externally

and internally accessible.

All customer facing application are called external

facing, and most applications catering to internal re-

sources are called as internal facing.

Where was this scanned or tested?

Testing can be of applications hosted on

physical on-premises hosts and those

hosted on a vendor cloud.

Some scan engines of application code exist in a vendor

cloud [1].

What are tools used?

SAST, DAST, SCA, Pen test, WAF,

API tests, and External Rating Agen-

cies

[1-9, 14-16, 19-23].

What are the applicable standards?
BSIMM and SAMM, [12], discussed in

a later section.

One can engage consulting firms to do an evaluation of

current state and identify gaps to recommend im-

provements.

How many critical and high flaws did we Measure of flaws by severity is an Discovered through all the tests and scans, this helps in

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

9

Questions that a Ground Truth data

collection team should be asking
Responses Comments

find? important metric to assess risk of ex-

posure.

reporting application weaknesses to the development

teams

How many were carried over from last

scan?

This gives us a measure of flaw aging,

of how long have these flaws been in

existence without remediation.

The ageing of flaws is a clear indication of time spent

on remediation. Critical and high severity flaws re-

maining in the code needs to be analysed for dormancy,

of whether they were found recently or were carried for

a long time from previous code versions.

Overall, how many critical and high are

pending resolutions?
Gives an indication of risk and impact

Set a threshold for risk acceptance and request a time-

line or a compliance window for remediation beyond

which these must be reported and escalated.

What is the remediation timeline?

Gives a timeline or a plan to remediate

before the grace period for compliance

expires.

If a remediation timeline is not given it means the flaws

are not getting the right visibility and this needs to be

reported.

Has something gone out of grace and out

of compliance?

All out of grace period flaws become

non-compliant per the accepted policy.
This needs to be handled as an issue for remediation.

Are there critical issues still unresolved?
Needs escalation for leadership visibil-

ity on the risks these issues pose.

No further deployment of the code can be allowed

when the issue is past due for remediation.

What is the reporting format and fre-

quency?

Electronic, dashboards, visualization,

and analytics.

Can be daily, weekly, monthly, or even quarterly de-

pending upon the value of information.

What are the data sources?
All the data that come from each test,

scan, monitoring, and rating tools

A composite data report needs to be presented for an

overall assessment of the security posture.

Who is the responsible party to have

found, and who is to remediate?

Everyone involved with the applica-

tion.
Security is everyone’s responsibility.

3.2. Layers of Metrics as Applicable

The information required at each level of the organization

is different and must be addressed appropriately to gain or-

ganizational support. The Board of Directors metrics are

driven by the Information technology (IT) Leader, Chief

Information Officer (CIO) and Chief Information Security

Officer (CISO). The management metrics are driven by the IT

Manager, and the ground truth metrics are driven by the IT

Leads at the operational level. Each is discussed briefly below,

and these become the basis for developing a maturity model

based on a standard industry best practice. A comparison of

Building Security In Maturity Model (BSIMM) and Software

Assurance Maturity Model (SAMM), two commonly used

models in Information Security is explained in [12]

3.2.1. Ground Truth "Metrics" – The Operational

Metrics

Gather the operational metrics to begin with, which are the

most detailed, Table 2. The board metrics and the management

metrics derive the key metrics and key performance indicators

(KPI) from the operational metrics, layered in such a way that

the appropriate level of leadership can get the state of security

posture and the associated risks in the organization.

3.2.2. Management Metrics – Presented to Chief

Information Security Officer (CISO)

A mature cybersecurity program requires formalizing the

organization’s ability to measure and report cybersecurity

performance. With an ever-expanding attack surface, and a

growing digital sphere that encompasses all types of mobile

and wearable technology networked into the internet, IT

Leaders, especially the CISO, today are under immense

pressure to demonstrate their value beyond just reducing risk

with an added requirement to validate their security plans with

simulation exercise and show that everything worked as per

the plan. Thus, the management metrics are a subset of the

operational metrics, with key emphasis on the various security

programs that are in place and to demonstrate how effective

security governance is.

3.2.3. Board Metrics – Presented to the Board of

Directors

The Board looks at the risk to an organization from multiple

angles, and what that could mean to the organization over-

coming the risks, protecting the brand name, and the business

eventually. A look at past issues, strategies, and controls will

reveal the adequacy or the opposite so newer strategies and

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

10

controls could be evolved. They also look at the success and

failure rates of the current measures that are in place and make

a blunt assessment of organization’s vulnerable areas. The

security organization’s governance practices highlighted

through a dashboard, possibly adding external ratings, as-

sessments, and score by which the organization can compare

itself with peers. All of this provides red-flags and vulnera-

bility alerts for addressing issues that demand immediate

attention. Many organizations conduct simulation exercises of

a threat and study the consequence and response to see how

effective Business Continuity and Disaster Recovery are

addressed. To that effect, the Board will look at certain met-

rics and Key Performance Indices (KPI) that reflect the or-

ganization’s preparedness and security posture. The board

metrics is an even high-level metrics, a subset of the man-

agement metrics, which provides a risk statement. These

metrics put in spotlight the real pain points and the efforts

underway to overcome the pain points, to assure the board of

directors that the organization is headed in the right direction.

4. An Attack Tree as a Threat Model and

Its Benefits

Some key questions the board presents to the IT leadership

and the CISO is by asking,

1. If they have done a simulation of an attack.

2. How did the simulation run?

3. Did they find a pathway for an attack?

4. What are the control gaps identified?

5. What is the remediation plan to address those gaps?

6. When is the next simulation run?

4.1. Threat Modeling Process

The simulation and its effectiveness are a continuously

improving iterative study, which has now become a manda-

tory exercise for all organizations. From a purely IT perspec-

tive, simulations cannot be enacted without understanding the

following [24]:

1. Identification of resources to be protected. They cover

the three tenets of security – confidentiality, integrity,

and availability, commonly termed as CIA.

2. Documenting the technical architecture that defines the

entire system and the technologies involved, and ap-

plication architecture that defines the business function

of the application.

3. Defining the security profile of the applications that

details trust boundaries, data flow, identify the entry

points of the application into the network, identifying

privileged code, and the overall security architecture of

the application.

4. Identifying the threats associated with architecture. The

MITRE ATT@CK Enterprise Matrix lists 266 threat

patterns [25], and most organizations look for those

threat patterns and attacks that are spoofing, tampering,

repudiation, information disclosure, denial of service

(DoS), and elevation of privilege. However, application

security vulnerabilities that abound in plenty in the

systems, are often viewed as an afterthought, most

common of those are mentioned in section 2.1 of this

paper and listed below for convenience.

1) Cross-site scripting – XSS

2) Injection / SQL Injection – SQLI

3) Path Traversal / Directory Traversal

4) Command Execution

5) Backdoor

5. Documenting the threats and their attributes

6. Assessing threats, scoring the risk and impact, and as-

signing a cost in case of a breach.

There are two ways of applying a threat model [24]:

1. To design a system based on the security architecture

with the intent to protect assets. The emphasis here is to

embed security measures to protect all the assets that are

perceived as a potential target of a cyber-attack and are

at risk of a costly breach.

2. To view all the pathway for attacks and assets being

exposed along that every path of those attacks. In es-

sence this forms an attack tree.

Three types of threat models are in use in general:

1. Attacker-centric method, which is focused on the at-

tacker and the source of attack.

2. Software-centric method, where focus is more on the

data flow and the boundaries or the edges where an ap-

plication belonging to a particular domain hand off data

to the next application sitting on the other side of the

trust-boundary. This is where the vulnerabilities of one

application leads to spread of an attack into the next

application, at the edges called as common nodes of

traffic.

3. Asset-centric methods, the key assets where everything

critical to an organization’s business operation begins

and ends, from servers, databases, and data itself.

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

11

Figure 1. Threat model and attack tree.

4.2. Software-Centric Attack Tree Method

The focus of the present research is the area of applica-

tion security that does not receive enough visibility. The

first step for developing an effective threat model is to look

at all vulnerabilities in the systems, as suggested in the

software-centric method. A comprehensive threat model

should look at infrastructure-based and application-based

vulnerabilities. While most threat models are infrastruc-

ture-centric looking at exposed ports, servers, end points,

and devices, much attention is needed in the application

security space especially considering the security technical

debt discussed in section 3.1 of this paper. The next step in

the process is to develop an attack tree to look at how

vulnerabilities are spread across the enterprise. Figure 1

shows the threat model process and the attack tree at the

bottom. Web applications have become target of attacks in

recent times, and this is a growing issue in cybersecurity.

Thus, initial access is very common, and then once in

discovery phase when many vulnerabilities are found

within an application, the attacker tries to make a lateral

move as applications are linked by business functions and

shared code. Vulnerabilities existing in one can be linked to

those found in other applications and attacker can visualize

that a vulnerability spread across application topology can

transmit an attack and spread it laterally which provides the

attacker multiple pathways for attack.

When dealing with applications that are stacked with

technical debt, and that it has security implications due to

unremedied vulnerabilities, the threat actor is looking at the

inter-linking of these vulnerabilities as a source-to-target

vulnerability lineage, all linked through like a chain, and

clearly sees multiple pathways for an attack even across

domains and trust boundaries. With hundreds of vulnerabil-

ities, it is not easy to identify specific threat patterns and

pathways to a precise attack that the threat actor is planning

without developing a vulnerability-based threat model and

an attack tree resembling a vulnerability map. The attack tree

not only helps in focusing on the possible pathways to attack,

but it also helps in creating simulation exercises along the

same path as identified by an attack tree. The result of the

simulation helps in prioritizing remediation efforts to elim-

inate the most vulnerable attack paths. The result of simula-

tion also exposes inadequacies in coverage of monitoring

and detection, gaps in controls, and a security technical debt

that could be the root cause of much of the pain points.

While a metrics program reports issues, a simulation exer-

cise following an attack tree shakes up the organization to

prioritize remediation efforts.

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

12

5. Conclusions

This paper has discussed an approach to use correlation

analysis and vulnerability metrics to define prioritization of

remediation using a threat model analysis and vulnerability

attack tree. The attack tree will show multiple pathways for an

attack to shape using vulnerability linkages. By further relat-

ing to a parent, peer, or child CWE (including CWEs that

follow another CWE and in some cases precede other CWEs)

will provide more insight into the attack patterns. These pat-

terns will reveal a multi-vulnerability, multi-application at-

tack pattern which will be hard to visualize without data

consolidation and correlation analysis. The correlation anal-

ysis tied to the test and scan data supports a vulnerability

lineage starting from incoming requests to individual vul-

nerabilities found in the code that traces a possible attack path.

The attack tree will give a better visualization of the possible

attack pathways in creating simulations of possible attacks.

This simulation can force immediate focus on vulnerabilities

along the pathway of the most probable attacks. This prompts

a call to action to resolve the vulnerabilities as a priority.

Next step in this research is to create an actual attack tree

from existing vulnerability, then create an enterprise-wide

vulnerability map with domain specific attack trees, with each

tree connecting with an adjoining common shared service or

group of services and common application or set of common

applications between domains that can enable lateral move-

ment of an attack spreading through vulnerabilities. One can

also by correlating the incoming WAF requests, combining

with a RASP technology, and integrating with an incident

response system that comprises of a Security Information and

Event Management (SIEM) / Extended / Security Orchestra-

tion and Automated Response X/SOAR / Extended Detection

and Response (XDR), build a comprehensive threat intelli-

gence system that covers networks, devices, end points, and

applications. This will be future work.

Abbreviations

AEH: Application Ethical Hack.

BSIM: Building Security in Maturity Model

CIA: Confidentiality, Integrity, and Availability

CIO: Chief Information Officer

CISO: Chief Information Security Officer

CI/CD: Continuous Integration / Continuous Development

CVE: Common Vulnerabilities and Exposures

CWE: Common Weakness Enumeration

DAST: Dynamic Analysis Security Testing

OSS: Open-Source Software

OWASP: Open Worldwide Application Security Project

RASP: Runtime Application Self-Protect

SAMM: Soft-ware Assurance Maturity Model

SAST: Static Analysis Security Testing SCA - Software

Composition Analysis

SIEM: Security Information and Event Management

SCA: Software Composition Analysis

SOAR: Security Orchestration, Automation, and Response

SQLI: SQL Injection

XDR: Extended detection and Response

XSOAR: Extended Security Orchestration, Automation,

and Response

XSS: Cross-Site Scripting

WAF: Web Application Firewall

Acknowledgments

This research has been supported and guided by Dr. Xiao-

long Li of Indiana State University, USA, and Dr. John Pick-

ard and Dr. Peng Li of East Carolina University, USA.

Dr. Xiaolong Li is a professor in the Department of Elec-

tronics and Computer Engineering Technology at Indiana

State University. He received his PhD in Computer Engi-

neering from the University of Cincinnati in 2006. His pri-

mary areas of research include modeling and performance

analysis of MAC protocol, Internet of Things, Wireless Ad

Hoc networks, and sensor networks.

Dr. John Pickard is a professor of Information and Cyber-

security Technology at East Carolina University, North Caro-

lina, USA. He received his PhD in Technology Management

from Indiana State University in 2014. His main research

areas are internet protocols, convergence of information and

operations technologies, and Internet of Things applications.

Dr. Peng Li received his Ph.D. in Electrical Engineering

from the University of Connecticut. His professional certifi-

cations include CISSP, RHCE and VCP. Dr. Li is currently an

Associate Professor at East Carolina University. He teaches

undergraduate and graduate courses in programming, com-

puter networks, information security, web services and virtu-

alization technologies. His research interests include virtual-

ization, cloud computing, cybersecurity, and integration of

information technology in education.

Conflicts of Interest

The authors declare no conflicts of interests.

References

[1] Veracode. State Of Software Security Vol. 11. Veracode,

state-of-software-security-volume-11-veracode-report.pdf

[2] Checkmarx. Correlation: The Application Security Testing

Imperative in Modern Application Development”, Checkmarx,

https://www.forrester.com/report/the-forrester-wave-software-co

mposi-

tion-analysis-q3-2021/RES176091?ref_search=3502061_167483

5391293&utm_source=PANTHEON_STRIPPED&utm_medium

=email&utm_campaign=summit21na&utm_content=blog&categ

ory-

id=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_

STRIPPED

https://www.veracode.com/sites/default/files/pdf/resources/sossreports/state-of-software-security-volume-11-veracode-report.pdf
https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED
https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED
https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED
https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED
https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED
https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED
https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED
https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

13

[3] Carielli, S., DeMartine, A., Provost, A.C. and Dostie, P. The

Forrester Wave™: Software Composition Analysis, Q3

2021-The 10 Providers That Matter Most And How They Stack

Up. Forrester, August,

https://www.forrester.com/report/the-forrester-wave-software-

composi-

tion-analysis-q3-2021/RES176091?ref_search=3502061_167

4835391293&utm_source=PANTHEON_STRIPPED&utm_

medi-

um=email&utm_campaign=summit21na&utm_content=blog

&categoryid=a89c0000000AKp1AAG%3Futm_source%3DP

ANTHEON_STRIPPED

[4] Primeon. Enterprise Applications: Wide Open to Attack in

2018. Primeon,

https://www.primeon.com/whitepaper/primeon_wp2_r.pdf?1

[5] Akamai. Slipping Through the Security Gaps: The Rise of

Application and API Attacks. Akamai,

https://www.akamai.com/blog/security/the-rise-of-application

-and-api-attacks

[6] Carielli, S., DeMartine, A., Provost, A.C. and Dostie, P. The

Forrester Wave™: Web Application Firewalls, Q3 2022, The

12 Providers That Matter Most And How They Stack Up.

Forrester, September,

https://www.forrester.com/report/the-forrester-wave-tm-web-a

pplication-firewalls-q3-2022/RES176396

[7] Signal Sciences. Identifying Web Attack Indicators. Available

from:

https://info.signalsciences.com/rs/025-XKO-469/images/signa

l-sciences-white-paper-identifying-web-attack-indicators.pdf

[8] FASTLY. 10 Key Capabilities of the Fastly Next-Gen WAF.

FASTLY, 2022,

https://learn.fastly.com/security-10-key-capabilities-of-fastlys

-next-gen-waf.html

[9] Na, J. Introducing Secure Application: True Runtime Applica-

tion Self-Protection (RASP) for the Modern Application.

CISCO App Dynamics,

https://www.appdynamics.com/blog/product/application-secur

ity/

[10] Brumfield, C., & Haugli, B. Cybersecurity Risk Management:

Mastering the Fundamentals Using the NIST Cybersecurity

Framework. Wiley, ISBN: 978-1-119-81628-7.

[11] Geer, D. E. Jr., & McClure, S. (2016). How to Measure Any-

thing in Cybersecurity. John Wiley & Sons, 2016, ISBN

978-1-119-08529-4.

[12] Glas, B. (2020). Comparing BSIMM & SAMM: Building

Security In Maturity Model (BSIMM) compared to Software

Assurance Maturity Model (SAMM).

https://owaspsamm.org/blog/2020/10/29/comparing-bsimm-a

nd-samm/

[13] Kasturi, S., Li, X., Pickard, J., and Li, P. Understanding Sta-

tistical Correlation of Application Security Vulnerability Data

from Detection and Monitoring Tools. 2023 33rd International

Telecommunication Networks and Applications Conference,

Melbourne, Australia, 2023, pp. 289-296,

https://doi.org/10.1109/ITNAC59571.2023.10368476

[14] MITRE. 2023 CWE Top 25 Most Dangerous Software

Weaknesses, CWE - 2023 CWE Top 25 Most Dangerous

Software Weaknesses (mitre.org)

[15] OWASP. OWASP Top 10. OWASP. https://owasp.org/Top10/

[16] MITRE. Common Vulnerabilities and Exposures (CVE)

Numbering Authority (CNA) Rules. MITRE,

https://cve.mitre.org/cve/cna/CNA_Rules_v2.0.pdf

https://nvd.nist.gov/vuln

[17] Warner, R. M. (2020) Applied Statistics – II Multivariable and

Multivariate Techniques. SAGE Publications

[18] Christopher, J. D. How to Mature ICS Security with Metrics.

Industrial Control Systems Security, 2022.

https://www.sans.org/blog/mature-ics-security-with-metrics/

[19] OWASP-API. OWASP API Security Top 10, OWASP.

https://owasp.org/API-Security/editions/2023/en/0xa2-broken

-authentication/

[20] Veracode. State Of Software Security Vol. 10. Veracode,

https://www.veracode.com/sites/default/files/pdf/resources/so

ssre-

ports/state-of-software-security-volume-10-veracode-report.p

df

[21] Veracode. State Of Software Security Vol. 12. Veracode,

https://www.veracode.com/sites/default/files/pdf/resources/so

ssreports/state-of-software-security-v12-nwm.pdf

[22] SALT. State of API Security Q1 2023. SALT LABS,

https://content.salt.security/rs/352-UXR-417/images/SaltSecu

rity-Report-State_of_API_Security.pdf

[23] Morgan, S. (2021). 10 Hot Security Ratings Companies To

Watch In 2021. Cybercrime Magazine,

https://cybersecurityventures.com/security-ratings-companies/

[24] Hajrić, A., Smaka, T., Baraković, S., and Husić, J.B. Methods,

Methodologies, and Tools for Threat Modeling with Case

Study, Telfor Journal, Vol. 12, No. 1, 2020,

https://scindeks.ceon.rs/Article.aspx?artid=1821-3251200105

6H

Xiong, W., Legrand, E., Aberg, O., and Lagerstrom, R. Cyber

security threat modeling based on the MITRE Enterprise

ATT&CK Matrix. Software and Systems Modeling (2022) 21:

157–177

https://link.springer.com/article/10.1007/s10270-021-00898-7

https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED
https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED
https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED
https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED
https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED
https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED
https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED
https://www.forrester.com/report/the-forrester-wave-software-composition-analysis-q3-2021/RES176091?ref_search=3502061_1674835391293&utm_source=PANTHEON_STRIPPED&utm_medium=email&utm_campaign=summit21na&utm_content=blog&categoryid=a89c0000000AKp1AAG%3Futm_source%3DPANTHEON_STRIPPED
https://www.primeon.com/whitepaper/primeon_wp2_r.pdf?1
https://www.akamai.com/blog/security/the-rise-of-application-and-api-attacks
https://www.akamai.com/blog/security/the-rise-of-application-and-api-attacks
https://www.forrester.com/report/the-forrester-wave-tm-web-application-firewalls-q3-2022/RES176396
https://www.forrester.com/report/the-forrester-wave-tm-web-application-firewalls-q3-2022/RES176396
https://info.signalsciences.com/rs/025-XKO-469/images/signal-sciences-white-paper-identifying-web-attack-indicators.pdf
https://info.signalsciences.com/rs/025-XKO-469/images/signal-sciences-white-paper-identifying-web-attack-indicators.pdf
https://learn.fastly.com/security-10-key-capabilities-of-fastlys-next-gen-waf.html
https://learn.fastly.com/security-10-key-capabilities-of-fastlys-next-gen-waf.html
https://www.appdynamics.com/blog/product/application-security/
https://www.appdynamics.com/blog/product/application-security/
https://owaspsamm.org/blog/2020/10/29/comparing-bsimm-and-samm/
https://owaspsamm.org/blog/2020/10/29/comparing-bsimm-and-samm/
https://doi.org/10.1109/ITNAC59571.2023.10368476
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://owasp.org/Top10/
https://cve.mitre.org/cve/cna/CNA_Rules_v2.0.pdf
https://nvd.nist.gov/vuln
https://www.sans.org/blog/mature-ics-security-with-metrics/
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://www.veracode.com/sites/default/files/pdf/resources/sossreports/state-of-software-security-volume-10-veracode-report.pdf
https://www.veracode.com/sites/default/files/pdf/resources/sossreports/state-of-software-security-volume-10-veracode-report.pdf
https://www.veracode.com/sites/default/files/pdf/resources/sossreports/state-of-software-security-volume-10-veracode-report.pdf
https://www.veracode.com/sites/default/files/pdf/resources/sossreports/state-of-software-security-volume-10-veracode-report.pdf
https://www.veracode.com/sites/default/files/pdf/resources/sossreports/state-of-software-security-v12-nwm.pdf
https://www.veracode.com/sites/default/files/pdf/resources/sossreports/state-of-software-security-v12-nwm.pdf
https://content.salt.security/rs/352-UXR-417/images/SaltSecurity-Report-State_of_API_Security.pdf
https://content.salt.security/rs/352-UXR-417/images/SaltSecurity-Report-State_of_API_Security.pdf
https://cybersecurityventures.com/security-ratings-companies/
https://scindeks.ceon.rs/Article.aspx?artid=1821-32512001056H
https://scindeks.ceon.rs/Article.aspx?artid=1821-32512001056H
https://link.springer.com/article/10.1007/s10270-021-00898-7

