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Abstract: In the realm of Space Domain Awareness (SDA), precise photometric measurements are essential for applications
such as stability analysis, shape recovery, and material studies of satellites. However, current methods that rely on manual
data collection and analysis are not scalable to autonomous frameworks, which are increasingly necessary due to the growing
congestion in space. This research presents an approach to automate photometric measurements within a network of telescopes
operating in non-ideal conditions. Our work focuses on achieving reliable photometry in degraded weather conditions, where
traditional methods might fail, leading to false detections and unnecessary follow-up efforts. We utilize the SatSim space scene
simulator to generate synthetic data for training and testing photometry algorithms. These algorithms include both traditional
aperture photometry and machine learning-based approaches. Our methodology employs dynamic segmentation techniques to
optimize the detection of satellites and stars under various adverse conditions. The segmentation methods were evaluated for
their robustness in different scenarios, with the Depth-First Search + Interquartile Range (DFS + IQR) approach showing the
most promise. Through extensive experimentation, we demonstrate that our approach can achieve a photometric precision of
approximately 10−1, even in adverse conditions. This represents a significant advancement in the field, as it enables more
reliable satellite detection and tracking in real-world, non-photometric environments. Additionally, our ablation studies highlight
the importance of balanced datasets in reducing error metrics, particularly for underrepresented satellite classes. This work
contributes to the development of more effective autonomous SDA systems, capable of operating efficiently in a wide range of
environmental conditions.
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1. Introduction

The applications of photometry in Space Domain Awareness
(SDA) include stability analysis [1], shape recovery [2], and
size and materials studies [3, 4]. Proper measurement of
the input photometric data into these tools determines the
quality of output information. Typically, such studies involve
manual collection, reduction, and analysis of small sets of
data on one or few targets. These narrow studies do not
scale to autonomous frameworks and limit the applicability of
the statistical techniques to the increasingly congested space
environment.

Automatic and general photometric measurements facilitate

the extraction of useful data from routine catalog maintenance
missions and enhance efficiency within autonomous networks.
While overall sensor characterization can assess ideal
telescope performance, SDA telescopes seldom operate
under such optimal “photometric” conditions. Furthermore,
the quality of astronomical observations is expected to
decline further in the future [5]. The SDA mission
set prioritizes temporal and spatial coverage over extreme
scientific precision. In non-photometric conditions, the
effective performance of telescopes is compromised by factors
such as observing location and pointing (extinction), local
weather conditions (e.g., cloud cover and turbulence), and
changes in equipment over time (e.g., dust accumulation and
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periodic cleaning).
In the astronomical sciences, precision photometry is

calculated only in pristine conditions, and telescopes tend
to be used for different experiments in “non-photometric”
weather. Detection and measurement of on-orbit assets is
critical even in degraded weather conditions. In conditions
causing degraded performance relative to measured system
zero point, automated photometry is critical: An object may
sink below the actual zero point of a system and be flagged
as missing when, in fact, it is simply too dim to be observed
given actual conditions. This situation drives unnecessary
follow-up search and recovery efforts which consume cycles
in autonomous systems and can create false alerts to operators
and decision makers.

In pristine photometric weather and carefully controlled
experiments, astronomers can achieve better than 10−3

photometric accuracy from the ground and 10−5 from space
[6–8]. These levels of precision are costly in exposure
time, experiment design, and data analysis. In this work we
demonstrate ∼ 10−1 photometric precision in an autonomous
telescope network operating in adverse weather conditions and
tuned to maximize source detections in minimized exposure
times.

2. Related Works
The application of neural networks to the problem of

detecting satellites in high contrast ground-based telescope
images has spawned the field of learned SDA [9]. The
underlying models applied and training techniques have been

explored and optimized since [10–12], driving enhanced
detection performance. Automatic detection of stars [13]
provides the necessary astrometric information to convert
pixel locations to on-sky coordinates and measure the orbits
of objects detected. The combined algorithms enabled this
work; by aligning stars with astrometric catalogs, the counts
collected from field stars enable automatic derivation of the
photometric system and application of that zero point to
determine the magnitudes of detected satellites.
The Kepler satellite, designed to detect transiting exoplanets,
regularly achieves ∼ 10−5 photometric precision [7]. From
the ground, astronomers have achieved ∼ 10−4 on two meter
apertures using specialty orthogonal transfer Charge-Coupled
Devices (CCDs) and novel Point Spread Function (PSF)
shaping techniques [8, 14, 15].

3. Approach

3.1. Data

SatSim is a high-fidelity, modular, Graphics Processing
Unit (GPU)-accelerated space scene simulator developed to
support the detection of Resident Space Objects (RSOs) using
machine learning. It focuses on creating large volumes of
annotated electro-optical imagery, which is useful for training,
improving, and validating RSO detection models. SatSim’s
capabilities include generating synthetic images of satellite
breakups and other rare or complex events, making it an
invaluable tool for SDA research and testing. Figure 1 shows
the SatSim scene generation pipeline.

Start Add
Stars

Add
Objects

Apply
PSF Blur

Add
Background

Apply
Pixel Response

Add
Dark Current

Apply
Shot Noise

Add
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Add
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Figure 1. SatSim Scene Generation Pipeline. Each pipeline stage is configurable with input parameters, allowing users to easily configure a static, procedural, or random sample
simulation.

SatSim was used in this experiment to procedurally generate synthetic data for the training and testing of machine learning
models and traditional photometry algorithms. This dataset includes raw synthetic images and ground-truth photometry
annotations for RSOs and stars. Examples from the dataset are shown in Figure 2.
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(a) (b) (c)

Figure 2. Examples from the dataset: (a) an image with no fixed pattern noise and no stray light; (b) an image with fixed pattern noise; (c) an image with stray light.

The synthetic data were modeled from two Raven-class telescopes. The simulation parameters are detailed in Table 1.

Table 1. SatSim scene generation parameters for learned photometry dataset.

Parameter Observatory 1 Observatory 2

Spatial Oversampling Factor 15 15

Field-of-View (FOV) 0.3 degrees 0.3 degrees

Pixels 512x512 1024x1024

Dark Current 0 0

Gain 1 1

Bias 0 0

Zero Point 21.5 22.1

Analog-to-Digital (A2D) Response Linear Linear

A2D Gain 1.5 1.5

A2D Bias 1000 1000

Read Noise 9 e- 9 e-

PSF Mode Physical Optics Propagation Physical Optics Propagation

Aperture Diameter 0.4 m 0.4 m

Atmosphere None None

Exposure Time U([1, 2, 3, 4, 5]) sec U([1, 2, 3, 4, 5]) sec

Images per Subset 6 6

Background U(17.5, 22.5) mv U(17.5, 22.5) mv

Stray Light U(On, Off) U(On, Off)

Stars SSTRC7 Catalog SSTRC7 Catalog

Objects per Image U(10, 20) U(10, 20)

Object Apparent Magnitude U(9.0, 18.5) U(9.0, 18.5)

Total Images 24,000 24,000

3.2. The Method

The inputs to our photometry pipeline are FITS files
that contain astronomical images representing observed data,
calibration information (sensor gain and exposure time), and
annotations (star and satellite bounding box and centroid
coordinates). The images are stored as a two-dimensional
array of pixel values, where each pixel value corresponds to

a digital number (DN) count. These DN counts provide a
quantification of the detected signal at each pixel in the image.
These inputs serve as the foundation for our subsequent feature
extraction process.

To facilitate feature extraction, we employ a segmentation
method detailed in Section 3.3. This segmentation method
extracts DN counts for stars and satellites’ aperture, annulus,
and background regions. These regions are defined based on
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the bounding box and centroid coordinates associated with
each target.

To derive relevant physical parameters using aperture
photometry, we apply the following formula:

flux =
apt− r × ann

g × t

Here, apt and ann represent the sums of DN counts within
the aperture and annulus, respectively; g is the sensor’s gain;
r represents the ratio of the area between the aperture and
annulus; and t is the exposure time. We then calculate the
instantaneous magnitude,

minst = −2.5 log (flux)

Next, we estimate the zero point, with the equation:

Zero Point = VMcatalog −minst

Here, VMcatalog corresponds to the visual magnitude
obtained from the catalog.

For our learned approaches, we input the following features
into our models: apt, ann, g, t, r, obj type. Here, the obj type
is satellite or star. We found that this indicator variable
significantly helped with the data imbalance between stars and
satellites in our dataset. The overall pipeline for our method is
shown in Figure 3.

Figure 3. Overview of the photometry method pipeline. Each Fits file is accompanied by calibration information and annotations for stars and satellites. The pipeline involves parsing
out individual stars and satellites from the image, segmenting the aperture and annulus regions for each object, and generating visual magnitude estimates for stars and satellites within
the Fits file.

3.3. Segmentation Methods

We assessed three segmentation threshold techniques:
Mean, Interquartile Range (IQR), and Depth-First Search +
Interquartile Range (DFS + IQR). The Mean threshold method
identifies aperture pixel locations where the DN count exceeds
the mean DN count of the bounding box frame, multiplied
by a dynamic threshold. The IQR threshold method defines
the aperture as pixel locations with DN count surpassing
a dynamic threshold calculated from the IQR. The DFS +
IQR threshold approach utilizes prior knowledge of target
placement, initiating from the center pixel and expanding
outward based on an upper dynamic threshold derived from

the IQR. Notably, we considered other search algorithms like
breadth-first and greedy search but found DFS to be the most
accurate and memory-efficient solution.

Each of these methods delineates an annulus by identifying
pixels surrounding the aperture while categorizing the
remaining pixels as background. The segmentation results are
depicted in Figure 4. Qualitatively, the DFS + IQR method
demonstrated the greatest robustness in handling noise and
clustered stars/targets in the reference frame. As a result, we
selected this threshold technique as our primary segmentation
method. The overall algorithm is outlined in Figure 1. Notably,
the dynamic threshold determines the tightest aperture and
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annulus bounds by initially setting the threshold at 2.5 and
iteratively decreasing it by 0.1 until reaching 0.0. From Figure
5, it is evident that lower thresholds tend to capture higher
levels of noise and off-centered target and star cases, while the

highest IQR threshold yields the most accurate segmentation.
Figure 6 illustrates how the aperture region expands as the IQR
threshold decreases.

Input Mean IQR DFS + IQR

Star

Satellite

High Variance Pixel Frame

Multi-Object Frame

Figure 4. Visual representation of segmentation thresholds. The mean threshold frequently results in an underestimation of the aperture region, while the IQR threshold tends to include
additional pixels, typically those with a high DN count. The combination of DFS and IQR consistently produces segmentation results that closely resemble the visual aperture regions.

Fits (Base Image)

Aperture and Annulus Segmentations
0.0 0.5 1.0 1.5 2.0 2.5

Figure 5. Visual examples illustrating aperture (white), annulus (red), and background (black) segmentation cases for stars across the dynamic IQR threshold range from 0.0 to 2.5 at
0.5 increment steps.
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Fits (Base Image) 0.5 1.5 2.5

Figure 6. The aperture segmentation region expands as the threshold increases from 0.5 to 1.5 to 2.5.

Algorithm 1: Segmentation Algorithm “IQR + DFS”
Data: Input data: .fits, centroid of star/target

xcenter, ycenter
Result: Output apt and ann
for each star and satellite s in .fits do

Define bounding box area for star as ±10 pixels from
center coordinates (xcenter, ycenter).
Store DN counts in list sDN .
Define Aperture
for threshold tIQR in range(2.5, 0.0, -0.1) do

if len(apt) > 0 and len(ann) > 0 and flux > 0
then

break
end
else

Run DFSaperture(tIQR, sDN ) to add
neighboring pixels from starting centroid
(xcenter, ycenter) to aperture list.

end
end
Define Annulus
Add the pixels 1-pixel around the aperture to the
annulus list.

end

Algorithm 2: DFSaperture(tIQR) Algorithm
Data: Input data: tIQR, sDN , .fits, centroid of star/target

xcenter, ycenter
Result: Output list of aperture coordinates
Define tthreshold = Q3 + tIQR ∗ (Q3 −Q1) where Q3

and Q1 are first and third quartiles in sDN , respectively.
if DN(x,y) < tthreshold then

o
end
r visited or outside of bounding box return aperture list
else

mark (x, y) as visited
add (x, y) to aperture list
for all bordering pixels to x, y do

DFSaperture(tIQR)
end

end

3.4. Metrics

We conduct a comprehensive assessment of our method’s
effectiveness through both qualitative and quantitative
analysis. Our qualitative evaluation involves a visual
examination of aperture and annulus segmentation quality.
For quantitative analysis, we employ three established
performance metrics: error, mean absolute error (MAE), and
mean percent error. The disparity between estimated/predicted
values and true values is gauged by the error, as expressed in
the equation below.

Error = yi − xi

where yi is the true value and xi is the estimated value.
Individual estimation errors are computed to discern potential
underestimation or overestimation tendencies of the method.

Mean absolute error is computed as follows:

Mean absolute error =
1

n

n∑
i=1

|yi − xi|

where n denotes the total count of targets within the pertinent
dataset.

Percent error serves as the established photometry measure
for evaluating the error of visual magnitudes, enabling a
straightforward appraisal of estimated values against expected
values. The mean percent error is determined using the
subsequent formula:

% error =

n∑
i=1

|yi − xi|
xi

× 100%

The aforementioned metrics are employed for quantitative
performance assessment of our methodologies. Error
functions as a foundational performance baseline. While
absolute error introduces a measure of deviation magnitude,
percent error provides relative accuracy information, albeit
with limitations when expected values approach zero or are
very small.

4. Experiments

4.1. Synthetic Data

We investigate traditional aperture photometry and learned
photometry techniques. Our approach utilizes DFS + IQR
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with dynamic thresholds to delineate aperture and annulus
regions for all celestial objects. Expanding on the foundation
of Aperture Photometry, we integrate key variables such as
the sum and ratio of aperture and annulus regions, along
with gain and exposure time, as pivotal features in five
machine learning methods: Multilayer Perceptron (MLP), 1-

Dimensional CNN (Conv1D), K-Nearest Neighbors (KNN),
XGBoost, and Random Forest. The number of stars and
satellites for both RME02 and RME03 used in training1 and
validation are specified in Table 2.

Table 2. Synthetic Dataset Size Details.

Stars Satellites

Type Method Train Validation Train Validation

Stray Light
RME02 452,451 113,073 9,241 2,351

RME03 239,352 59,897 4,794 1,140

No Stray Light
RME02 64,604 16,175 1,782 422

RME03 7,714 1,922 317 86

Our findings show that the Random Forest learned approach
has notably low error rates, as seen in Table 3. Error metrics
are calculated for a prespecified holdout dataset. Notably,
Random Forest achieves error metrics four to five times lower
than traditional Aperture Photometry. Interestingly, Random
Forest, XGBoost, and KNN all surpass the performance of
traditional aperture photometry. In addition to this, we observe

lower error metrics for satellites compared to stars in Random
Forest, especially with the RME03 sensor. In Figure 7, we
see that error metrics for both stars and satellites have less
variability about zero in both training and validation sets with
Random Forest compared to Aperture Photometry. However,
both methods struggle with dimmer objects, especially stars
with a true visual magnitude exceeding 12.

Stars Satellites

Figure 7. Error Metric Plots for RME02 No Stray Light Case. The plots in Row 1 and Row 2 correspond to Aperture Photometry and Random Forest, respectively. Error metrics for
stars and satellites exhibit less dispersion around zero in the Random Forest method compared to traditional Aperture Photometry

For our more challenging stray light case, we observe a similar superiority of Random Forest to traditional Aperture
Photometry (see Table 4). We observe a similar phenomenon where satellite error metrics are less than that of stars amidst the
data imbalance between the classes of stars and satellites.

1 We use the “training” dataset to estimate zeropoint for Aperture Photometry.
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Table 3. No Stray Light Photometry Results of Stars and Satellites for RME02 and RME03. Error metrics for visual magnitude estimation are four to five times lower with the Random
Forest model compared to traditional Aperture Photometry.

Stars Satellites

Sensor Method MAE % Error MAE % Error

RME02

MLP 25.8505 208.4858 19.2444 178.6538

Conv1D 0.9315 7.4103 2.3246 18.0245

Aperture Photometry 0.8575 6.2494 0.8230 6.1725

KNN 0.4108 3.0931 0.9021 5.9698

XGBoost 0.2453 1.8227 0.2504 1.7426

Random Forest 0.2157 1.5973 0.1689 1.1127

RME03

MLP 117.0065 117.0065 116.8431 941.7750

Conv1D 0.9199 7.2971 2.3291 17.8293

Aperture Photometry 1.2411 9.1705 1.3324 10.1006

KNN 0.3627 2.7017 0.8370 5.5195

XGBoost 0.2127 1.5808 0.2101 1.4817

Random Forest 0.1949 1.4365 0.0986 0.6463

Table 4. Stray Light Photometry Results of Stars and Satellites for RME02 and RME03. The Random Forest model exhibits significantly lower mean absolute error and percent error
metrics compared to traditional Aperture Photometry.

Stars Satellites

Sensor Method MAE % Error MAE % Error

RME02
Aperture Photometry 0.8940 6.6567 0.9242 6.8881

Random Forest 0.3317 2.4987 0.2986 2.0733

RME03
Aperture Photometry 1.2025 9.2048 1.2187 9.5568

Random Forest 0.3766 2.9189 0.2236 1.5277

4.2. Ablation Studies

We utilized our largest synthetic dataset subset, denoted as
RME02 with stray light, for conducting our ablation studies. It
is noteworthy that throughout variations in the training dataset,
encompassing changes in parameters such as composition and
size, we maintained a consistent count of stars and satellites
in our validation dataset, specifically comprising 113,073 stars
and 2,351 satellites.

4.2.1. Equal Star-to-Satellite Classes
In our original dataset, the train and validation datasets

consist of approximately 98% stars and 2% satellites.

Consequently, the zero point estimation in Aperture
Photometry and the Random Forest model may exhibit signs
of overfitting toward the star class. To address this issue, we
equalize the number of stars and satellites in the dataset while
maintaining the original validation dataset. As shown in Table
5, balancing the number of stars and satellites consistently
leads to lower error metrics for both classes in Aperture
Photometry, nearly halving the Mean Absolute Error and
Percent Error for the satellite class. However, for our Random
Forest model, we observe only marginal improvements in
satellite error metrics while experiencing a substantial increase
in star error metrics.

Table 5. Maintaining an equal number of stars and satellites in the training dataset is crucial for Aperture Photometry. In contrast, Random Forest demonstrates greater robustness to
the significant class imbalance between stars and satellites. Note: all error metrics are for validation.

Stars Satellites

Method # Train Stars # Train Satellites MAE % Error MAE % Error

Aperture Photometry
452,451 9,241 0.8575 6.2494 0.8230 6.1725

9,241 9,241 0.7868 5.5918 0.4214 3.1233

Random Forest
452,451 9,241 0.2157 1.5973 0.1689 1.1127

9,241 9,241 0.2850 2.1482 0.1464 0.9786
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4.2.2. Star-Only Training
We initiate our analysis with a star-only training dataset

containing 452,451 stars. As illustrated in Figure 8, the
Random Forest model demonstrates a need for a minimum
of 50 satellites in its training dataset to outperform the error

metrics of Aperture Photometry. Furthermore, we observe that
the error metrics for stars and satellites in the Random Forest
model become comparable after incorporating approximately
4,000 satellites into the training dataset.

Figure 8. Aperture Photometry maintains consistent performance in the absence of satellite training data. Random Forest, however, requires 50 satellites in training to surpass Aperture
Photometry.

4.3. Real Data

Across 97 Fits files, we recover approximately 130,000 annotated stars. It is noteworthy that the visual magnitude dataset
exhibits a negatively skewed distribution, with a central tendency around 17, as illustrated in Figure 9.

Figure 9. Negative skew distribution of visual magnitudes in the Rate Sidereal dataset.

Table 6. Validation error metrics for Random Forest are approximately three times lower than those for Aperture Photometry. While the error metrics for Aperture Photometry remain
comparable between train and validation sets, they double for Random Forest.

Train Validation

Method MAE % Error MAE % Error

Aperture Photometry 0.7477 4.6353 0.7488 4.6463

Random Forest 0.1000 0.6231 0.2603 1.6219
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Consistent with our synthetic results, the Random Forest Method exhibits error metrics nearly three times lower than those
of Aperture Photometry (see Table 6). Figure 10 demonstrates that our methods excel particularly with brighter stars, as the
magnitude of error increases with visual magnitude.

Aperture Photometry

Random Forest

Figure 10. Error tends to be higher around the central tendency of the dataset. Additionally, we notice that the error is lowest for the brightest stars in the dataset.

We further examined the performance of our methods
across dynamic IQR thresholds. As illustrated in Figure
11, the Random Forest method consistently maintains high
performance across various IQR thresholds, whereas Aperture
Photometry demonstrates variable performance, particularly
at the extremes of our IQR thresholds. Subsequently, we
investigated the impact of training dataset size, with our

holdout set comprising a constant size of 24,990 stars. Figure
12 reveals that Aperture Photometry’s zero point estimations
require only a few samples, while Random Forest achieves
superior performance after a mere 50-star sample. Notably,
Random Forest exhibits a percent error of less than two and
maintains relatively stable performance after only 10,000 star
samples.

Figure 11. Constant and Variable Performance of Random Forest and Aperture Photometry across Dynamic IQR Thresholds, respectively.
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Figure 12. Random Forest surpasses Aperture Photometry after only 50 training samples, with marked improvements observed as the dataset size increases. In contrast, Aperture
Photometry’s performance plateaus early on.

5. Conclusion
Detecting and measuring on-orbit assets is crucial even

in degraded weather conditions. Automated photometry is
imperative in such conditions, as objects may fall below the
system’s zero point and be erroneously flagged as missing due
to dimness under actual conditions. This situation leads to
unnecessary search and recovery efforts and can generate false
alerts for operators and decision-makers.

We present a novel approach to traditional aperture and
annulus segmentation methods, defining pixel-specific regions
and leveraging them in both traditional aperture photometry
and a learned approach to visual magnitude estimation for stars
and satellites.

We contribute synthetic datasets, including both no stray
light and stray light cases, annotated for two different sensors
with over 500,000 stars and 10,000 satellites, as well as a
real dataset with annotations for over 125,000 stars and visual
magnitudes. For synthetic data, we achieve an impressive
visual magnitude percent error of 2.50% and 2.07% for stars
and satellites, respectively, in challenging stray light scenarios.
When tested on real on-sky rate sidereal data, our method
demonstrates a percent error of 1.62%.

Our methods adeptly address data imbalances between stars
and satellites, achieving outstanding performance in visual
magnitude estimation even with a modest training dataset of
only 100 stars. We present our research as a foundational
framework for future endeavors in learned photometry and
anticipate the growing significance of our approach in meeting
the escalating demand for automated photometry.
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