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Abstract 

In the end-to-end Text-to-speech synthesis, the ability of acoustic model has important effects on the quality of the speech 

generated. In the acoustic model, the encoder and decoder are critical components, and usually Transformer is used. The 

previous works have a lack of ability to model the essential features of speech signal, as they model fixed length of features. 

There is also limitation of slow inference speed of the acoustic model due to the characteristics of the transformer including the 

high-computational multi-head self-attention layer. This limits the application of TTS in the low performance of devices such 

as embedded devices or mobile phones. In this paper, we propose a novel acoustic model to model the different length of 

features and improve the speed of generating synthetic speech and naturalness as compared to the conventional Transformer 

structure. Through the experiment, we confirmed that the proposed method improves the naturalness of synthetic speech and 

operation speed in the low performance of devices. 
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1. Introduction 

The Text-to-speech (TTS) synthesis technology has been 

used to synthesis the natural speech for the human to under-

stand from the given text [15, 10]. 

The neural network based TTS models have made much 

improvement in the speech quality and naturalness compared 

to traditional ones, and recently produced a speech which is 

very similar to the human speech. The non-autoregressive 

TTS models are accelerating their application in low perfor-

mance devices such as mobile phones and embedded devices, 

while making inference faster than autoregressive models. 

Much of the progress in TTS has led to improved synthetic 

quality, but there are still many problems that require im-

provement compared to human speech [2, 6]. 

Typical TTS systems consist of 3 main components: text 

analysis, acoustic model, and vocoder. First, the input text is 

normalized and converted to phoneme level, syllable level, 

and word level through the various levels of linguistic fea-

tures, i.e., the text analysis module. Then, the linguistic fea-

tures are converted by acoustic models into the intermediate 

acoustic representations such as mel-spectrograms. Finally, 

the acoustic representation is converted to speech by a vo-

coder. Concated speech synthesis and statistical parametric 

speech synthesis, together with HMM/DNN/LSTM-based 

models, have been the most popular methods in the past [16, 

20]. In recent years, there has been a wide study of 

end-to-end TTS. Tacotron 2 [14] improved the speech quality 
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using attention-based encoder-decoder acoustic model and 

vocoder based on the WaveNet [11] model structure. How-

ever, the robustness problems of utterance errors such as 

errors, omissions, and repetitions, and the slow speed in 

training and inferencing are problematic. A method to im-

prove training speed and speech quality by applying Trans-

former [17] was proposed, which attempts to improve the 

robustness of speech synthesis by using linguistic features 

and phoneme duration. However, there is still a drawback of 

slow inference time due to the autoregressive structure. 

FastSpeech [13] is a non-autoregressive TTS model that 

uses a duration predictor in addition to a parallel operable 

feed-forward converter-based encoder and decoder, which is 

much faster and more stable to utterance errors than auto-

regressive models such as Tacotron 2. 

In DelightfulTTS [7], an improved Conformer [3] module 

was applied to the acoustic model for better modeling the 

global and local dependencies in the mel-spectrogram. Con-

former is a model that combines convolutional neural net-

works (CNN) and Transformer. It was used in the initial 

end-to-end automatic speech recognition (ASR), which 

achieved better accuracy with fewer parameters than previ-

ous works on several public ASR datasets. Conformer sug-

gests a new combination of self-attention and convolution, 

where self-attention learns global interactions and the con-

volution structure effectively captures local correlations. 

The existing TTS models have large memory consumption 

and slow inference speed due to large model size and ineffi-

cient structure. For example, acoustic models of 

non-autoregressive structures, including FastSpeech, 

FastSpeech 2 [12], LightSpeech [9], DelightfulTTS, are 

mostly based on transformer or variants such as Transformer 

or Conformer [1, 4, 5, 7, 8, 12, 18]. The transformers all 

contain a multi-head self-attention (MHSA) layer, although 

their structure is slightly different. MHSA was first used in 

machine translation, which showed good performance in 

seq2seq modeling, and is capable of parallel operations in 

structure. However, MHSA incurs a higher computational 

cost as the sequence length increases. This limits the applica-

tion of TTS in embedded devices or mobile phones. 

In this paper, we propose an acoustic model to better mod-

el the characteristics of speech signals while reducing the 

computational cost in transformer variants including MHSA. 

2. Proposed Method 

First, we briefly review the previous acoustic models rel-

evant to the proposed model and present the structure of our 

acoustic model. 

2.1. FastSpeech 2 

 
Figure 1. The overall architechture for FastSpeech 2 and sub blocks. 

The FastSpeech 2 acoustic model consists of a graph-

eme/phoneme embedding layer, encoder, variance adapter, 

and decoder. Encoder and decoder have the same structure, 

which consists of feedforward transformer (FFT) blocks. 

Figure 1 shows FastSpeech 2 acoustic model, encoder and 

FFT structure. 

In the encoder and decoder of FastSpeech 2, the FFTs are 

cascade connected, which consists of MHSA, layer normali-
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zation, and convolutional layer. 

2.2. DelightfulTTS 

DelightfulTTS is structurally similar to FastSpeech 2, but 

instead of FFT block, it uses Conformer block to model the 

global and local dependences of the speech signal (Figure 

2a). And instead of existing Conformer block, an improved 

Conformer block that swapped the order of self-attention and 

convolution module and replaced the linear layer with the 

convolution layer in the feedforward layer was used. (Figure 

2c). 

DelightfulTTS model and structure of the improved Con-

former are shown in Figure 2. The basic structure is the same 

as FastSpeech 2, and only the difference is to use an im-

proved Conformer instead of FFT block in encoder. 

 
Figure 2. The architecture for DelightfulTTS and sub blocks. 

2.3. Proposed Model 

In the previous acoustic models which is 

non-autoregressive structures including FastSpeech 2 or De-

lightfulTTS, a variance adapter to model the variance infor-

mation such as duration, pitch and energy was applied to 

solve the problem of one-to-many mapping of TTS. Here, we 

will modify only the encoder and decoder structures, while 

retaining the variance adapter used in the previous models. 

2.3.1. An improved Encoder-Decoder 

FastSpeech 2 contains 4 FFT blocks in the encoder and 

decoder, and DelightfulTTS used a Conformer block instead 

of the FFT block. However, such structure can only deal with 

fixed feature sequences for the input. 

In the tasks with large length differences between input 

and output sequences, such as TTS and ASR, it would be 

effective to analyze the different length of input features, 

select the essential features and then generate the output se-

quence. This is because in the fixed length of feature, it is 

only available to model features in the fixed regions, but at 

different length of features, it is also available to model 

global and local contexts in the different regions. Hence, we 

propose an improved structure to process the different length 

of features (Figure 3). Transformer and Conformer can be 

used as a basic block in Figure 3. 
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Figure 3. Proposed encoder. 

The encoder and decoder are structurally similar but only 

differ in hyperparameters. The detailed description of the 

hyperparameters is given in the experimental section. 

Downsampling and upsampling in the dashed square play 

a role in decreasing or increasing the sequence length, and its 

implementation is done in a very simple way. For example, 

when the sequence length is reduced by half, 2 subsequent 

features are averaged. When the sequence length is increased 

by double, each frame is repeated twice and linked. Note that 

the amount of operation is very small because the upsam-

pling and downsampling is performed by simple method. 

Through the downsampling module, the basic blocks re-

ceive as input features that is reduced in length by 

downsampling rate. As the length of input feature sequence 

decreases, the amount of operation in the basic block will be 

decreased. By applying different downsampling rates on the 

dashed square, the basic blocks can process the different 

length of features. We use the improved Conformer as a 

basic block. 

2.3.2. The Overall Architecture of Proposed TTS 

The overall architecture of the proposed TTS system fol-

lows as Figure 4. Given a grapheme or phoneme sequence, it 

is entered into the encoder through the embedding layer. Po-

sitional encoding is used to consider the order of sequences. 

The encoder receives a Positional encoding input so that the 

order can be considered. 
 

Figure 4. Proposed TTS system. 
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The output feature through the variance adapter that has a 

function to model the variance information including energy, 

pitch, and duration is entered to the decoder. The decoder 

generates mel-spectrogram. The decoder has the same struc-

ture as encoder, but the hyper parameter is different. The last 

layer of the decoder is the feedforward layer, whose output 

dimension is equal to the mel-spectrogram dimension. And 

the mel-spectrogram is converted to speech via a vocoder. 

3. Experiment 

3.1. Experiment Condition 

Training dataset 

We train and evaluate proposed method in the dataset for 

Korean TTS. The dataset consists of approximately 20,010 

audio clips (about 25 hours) and corresponding text tran-

scripts. The sampling frequency is 22.05 kHz, the quantiza-

tion bit rate is 16, and the single-channel speech. The dataset 

is divided into 3 parts: training subset (12,900 data), test 

subset (100 data), and validation subset (100 data). 

Text sequence is converted into phonetic sequence. 

The speech data are converted into 80-dimensional 

mel-spectrograms using short-time fourier transform (STFT). 

When performing STFT, we used a Hanning window, and set 

frame size and hop size to 1024 and 256 respectively. 

Training and inference environment 

The proposed model is trained on a single NVIDIA Tesla 

P100 GPU computer. Adam optimizer is used. 

The inference is performed in mobile phone with AArch64 

(1.8GHz) processor, and for the vocoder, MB-MelGAN [19] 

model is used. The MB-MelGAN model is trained with the 

speech dataset used to train the acoustic model. The model 

structure is taken the same as in the MB-MelGAN model. 

3.2. Model Structure 

Table 1. Hyperparameters of our model. 

Hyperparameter Value 

Phoneme embedding size 256 

Number of layers in encoder 5 

Number of attention heads in encoder 2, 2, 2, 2, 2 

Attention dimension 96, 96, 96, 96, 96 

Encoder dimension 128, 128, 128, 128 128 

Downsampling rates in encoder 1, 2, 4, 2, 1 

Filter sizes 31, 31, 31, 31, 31 

Nummber of layers in decoder 4 

Number of attention heads in decoder 2, 2, 2, 2 

Hyperparameter Value 

Downsampling rates in decoder 1, 2, 4, 2 

Dropout rate 0.1 

Proposed model consists of 5 basic blocks as shown in Figure 3. 

Table 1 shows the hyperparameters of our model. 

Downsampling rates in the encoder are 1, 2, 4, 2, 1 which 

means that downsampling and upsampling are not applied in 

the first and last blocks. Likewise downsampling rates of 1 in 

decoder means that downsampling and upsampling are not 

applied. 

The hyperparameters of the variance adapter such as dura-

tion, pitch and energe are same as the values used in 

FastSpeech 2. 

3.3. Result 

3.3.1. The Evaluation of the Speech Quality 

Table 2 gives the MOS for the speech generated by the 

previous methods, FastSpeech 2 and DelightfulTTS, and the 

proposed method. “GT” means ground-truth audio. 

Table 2. MOS evaluation between the previous methods and pro-

posed method. 

Method MOS 

GT 4.46 

FastSpeech 2 Mel+MB-MelGAN 4.18±0.08 

DelightfulTTS Mel+MB-MelGAN 4.31±0.05 

Proposed model Mel+MB-MelGAN 4.36±0.06 

Compared with the MOS 4.46 of the recorded speech, it is 

shown that the speech generated by the proposed model is 

almost similar to human speech. 

The results of the table show that the proposed method has 

a higher performance compared to the previous method. 

3.3.2. The Evaluation of the Model Size and 

Inference Speed 

Table 3. Inference speed of the previous and proposed methods. 

Method RTF Model size (M) 

FastSpeech 2 1.62 27.4 

DelightfulTTS 1.89 29.5 
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Method RTF Model size (M) 

Proposed method 0.85 18.2 

The real-time factor (RTF) is the ratio of the time taken to 

generate and the duration of the generated speech. 

=
gen

len

T
RTF

T
              (1) 

You can see that the model size is much smaller than the 

previous two methods by 18.2 M. Here 1M means 10^6 pa-

rameters. 

The experiment results in the Table 2 and Table 3 show 

that model size is smaller and operation speed is faster of the 

proposed method than previous methods. 

3.4. Experimental Analysis 

The proposed encoder structure has a downsampling and 

upsampling module to process the different length of features, 

which differs from previous encoders. 

In this experiment, we evaluate the performance of the 

CMOS and RTF when downsampling and upsampling are 

eliminated. 

Table 4. CMOS evaluation of the proposed methods with and with-

out downsampling and upsampling rates. 

Method CMOS RTF 

Proposed method (Applied downsampling 

and upsampling) 
4.36±0.06 0.85 

Proposed method (Eliminated downsampling 

and upsampliing) 
4.26±0.09 1.21 

The absence of downsampling and upsampling means that 

downsampling rate in encoder and downsampling rate in decoder 

are all 1. 

Experimental results show the advantages of method to 

process the different length of features. When downsampling 

and upsampling are applied, the MOS is higher than when 

downsampling is not applied, while the real-time factor is 

reduced by 0.7 times. This is due to the reduced sequence 

length of input entering the basic block when downsampling 

is performed. 

The experimental results show that applying downsam-

pling and upsampling gives good results. 

If you use an improved Conformer block as a basic block, 

and downsampling or upsampling module is not used, the 

model is similar to DelightfulTTS. But if you compare the 

MOSs in the Table 2 and Table 4, there is a little differences 

which is related to the implementation of the programming. 

4. Conclusion 

In this paper, we propose an encoder that can process the 

different length of features instead of fixed length of feature 

to improve the performance of acoustic model in TTS. 

Through experiments, we confirmed that the proposed 

method gives an improvement in both audio quality and op-

eration speed compared to previous acoustic models using 

the traditional encoder. 

The proposed acoustic model is not unique for Korean, so 

it can be easily applied to other languages, including English 

and Chinese. In the future, we will investigate the TTS with 

lighter model and human-like level of speech quality. 
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