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Abstract 

This study investigates the dynamic behavior of a quasi-zero stiffness (QZS) vibration isolator integrated with shape memory 

alloy (SMA) springs to achieve enhanced vibration isolation performance. QZS isolators are designed to mitigate vibrations 

effectively in low-frequency environments by combining linear and nonlinear stiffness elements to achieve a near-zero effective 

stiffness around the equilibrium position. The inclusion of SMA springs introduces unique properties such as shape memory 

effect and pseudoelasticity, enabling tunable stiffness and damping characteristics.. A comprehensive mathematical model of the 

isolator is developed, incorporating the nonlinear force-displacement behavior of the SMA spring based on thermomechanical 

coupling and constitutive relations. The dynamics of the system are analyzed under harmonic and random excitation, and key 

parameters influencing isolation performance, such as temperature, pre-compression of the SMA spring, and system damping, 

are systematically explored. Numerical simulations reveal that the SMA-based QZS isolator exhibits superior vibration 

attenuation compared to traditional isolators, with the added benefit of adaptability to changing operational conditions. It is 

demonstrated that the resonant frequency of the proposed isolation system is near zero. Numerical simulations are carried out, 

and the influence of the excitation amplitude and frequency on vibration isolation are studied. It is shown that a quasi-zero 

dynamic stiffness is achieved; hence the feasibility of the proposed system for low-frequency excitation isolation is validated. 
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1. Introduction 

With the advancement of modern industry, the requirement 

for vibration isolation of precise instruments and important 

apparatus has been more and more rigid and demanding [1]. 

The natural frequency of the vibration isolation is made lower 

than the vibration excitation frequency to enhance the vibra-

tion isolation performance. Hence the stiffness of the isolation 

system should be small. Meanwhile, the isolation system need 

also be capable of supporting the system weight to be isolated 

in a static state. This means the spring stiffness has to be 

strong enough to support the mass. This contradiction thus 

makes the design of frequency vibration very challenging. 

Particularly when the excitation frequency is low, The stiff-

ness dynamic of the spring should be as low as possible to 

reduce its natural frequency in the ultra-low region. This fact 

http://www.sciencepg.com/journal/ajmme
http://www.sciencepg.com/journal/525/archive/5250803
http://www.sciencepg.com/
https://orcid.org/0000-0001-8001-9788


American Journal of Mechanical and Materials Engineering http://www.sciencepg.com/journal/ajmme 

 

48 

makes the use of linear springs completely unfeasible for 

ultra-low frequency vibration isolation. Since the ultra-low 

stiffness of the spring demanded by low natural frequency 

will cause unacceptably large static deflection [2]. To fit this 

need, the spring used in the vibration isolation must have a 

high-static stiffness while the low dynamic stiffness (HSLDS) 

has low stiffness to support a large load [3]. HSLDS is a 

nonlinear spring. Quasi-stiffness (QZS) means to have zero or 

near-zero dynamic stiffness. Many investigations on the 

concept of composite and nonlinear viscoelastic isolators 

have been published. Some researchers have designed a series 

of innovative units with quasi-zero stiffness. 

An isolation system is introduced by Thanh Danh Le [4]. It 

has two symmetric negative stiffness structures in parallel 

with a positive stiffness structure. The system is applied in a 

vehicle seat. N. Zhou and K. Liu [5] designed a system which 

is connected to a mechanical spring in parallel to a magnetic 

spring. It consists of electromagnets and a permanent magnet. 

This isolator has a high-static-low-dynamic characteristic. 

Garoi et al. [6] used Roberts linkage [7] and built an ul-

tra-low-frequency passive vibration isolation system. It is 

used as a pre-isolation stage for the Australian International 

Gravitational Observatory. These designs can achieve qua-

si-zero or quasi-negative stiffness by combining several 

springs in a specific way, but the related structure is quite 

complex. 

The concept of the QZS isolator may be realised by com-

bining a positive and negative stiffness mechanism together, 

such as common elastic elements. Alabuzhev [8] gives a 

detailed review of relevant design features, theory, and design 

methods. Anyone interested can refer to the book. 

Many researchers are dedicated to the inclined spring to 

offer the negative stiffness in order to counteract the positive 

stiffness. Carrella [9] studied force-displacement characteris-

tics and forced transmissibility of a system with two oblique 

springs and gave an optimisation evaluation between geome-

try parameters and the dynamic stiffness of such a system. 

Some researchers are making some improvements to this kind 

of QZS structure. Krishna [10] adds a semi-active damper to 

achieve better damping force than a skyhook configuration. 

Sun [11] adds a time-delayed active control to the system to 

reinforce the structural stability. Zhou [12] also design a QSZ. 

Isolator using for horizontal spring, just doing a little change 

in the contact type. He considers a roller-cam-spring structure 

which is also an alternative to the existing device with better 

performance than the linear counterpart. Latter, Zhou [13] 

employed the same mechanism to attenuate the transmissi-

bility of torsional vibration and achieved the QZS property. 

Others are pursuing other structures to offset the system's 

negative stiffness. A design by Carrella has a 

high-static-low-dynamic isolator comprised of two vertical 

mechanical springs between which an isolated mass is 

mounted while a magnet attaches to the outer edge of each 

mechanical spring. A negative magnetic spring developed by 

Zheng [14] comprises a pair of a permanent magnetic spring 

to counteract a mechanical spring with positive stiffness. Sun 

and Jing [15] add symmetrically scissor-like structures (SLS) 

acting as a mechanism with negative stiffness to work in 

parallel with a vertical ordinary spring-mass damper system 

placed in a vertical position to get a positive stiffness; thus, 

the whole device possesses the characteristic of a qua-

si-zero-stiffness. Another magnetic spring system designed by 

Zhou [13] consists of two permanent magnet and electro-

magnets to get a passive negative stiffness, while the me-

chanical spring is made up of a structural beam leaving out the 

hardening effect. The device designed by him also enlight-

ened the semi-active vibration isolation. 

Although the system demonstrated desirable QSZ charac-

teristics and better performance than the traditional linear 

isolator, there are still some disadvantages to the current QZS 

system. First, some delicate structures are somehow complex 

and sophisticated. On the other hand, parameters of the QZS 

systems should be deliberately selected to drive the system 

away from its static instability caused by the negative stiffness 

mechanism. 

Due to their internal nonlinearity and variable material 

property, nonlinear natural rubber and some smart materials 

are promising alternatives for constructing quasi-zero stiff-

ness springs, and they are very good candidates for ultra-low 

frequency vibration isolation. Among well-investigated smart 

materials, shape memory alloy might be the best choice for 

vibration isolation and damping due to its shape memory 

effects and pseudoelasticity [16]. Yiu [17] applied shape 

memory alloy isolator in space devices and has proved the 

feasibility of reducing the on-orbit disturbance for the mo-

ment wheel assembly. S. Saadat [18] used shape memory 

alloy material to develop a new fastener mechanism that can 

greatly mitigate the damage of hurricanes caused on coastal 

structures. K. Williams [19] designed a new type of adap-

tively tuned vibration absorber that incorporated SMA as its 

spring element, and test results show the potential of SMA as 

the tuning element for vibration control strategies. C. 

Lagoudas [20] has conducted a series of researches to study 

pseudoelastic SMA spring elements for vibration isolation. 

An isolation device with an SMA tube as its spring element is 

constructed, and a modified Preisach model and a physical-

ly-based simplified SMA model are presented. Simulation 

and experiment results have shown its probability as an iso-

lation element. Araki [21] integrated a super-elastic 

Cu-Al-Mn shape memory alloy bar into the tailored material 

design of a QZS isolator which converts the horizontal axial 

force of the SMA bar into the vertical recovery force. 

Attracted by its unique pseudoelasticity and internal 

damping characteristics and the excellent recovery strain upon 

unloading displayed hysteresis and a near-flat stress plateau, a 

QZS isolator with high-static-low-dynamic property applying 

SMA spring as its loads-borne element can be easily obtained 

without any intricate mechanical design. Since vibration iso-

lation is an inherently dynamic process, the modeling and 

analysis of the isolator certainly should be dynamic. In the 
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current paper, a differential model is proposed for the SMA 

spring by modeling the torsional motion of an SMA rod based 

on the Landau-Ginzburg free energy function. The dynamics 

of the SMA spring is computed as an ordinary differential 

equation, and the pseudoelastic behaviour and hysteresis 

loops are successfully captured. It is shown that the pseudo-

elastic behaviour can dramatically change in the SMA spring 

stiffness and have a similar effect on vibration isolation of 

spring with a quasi-zero stiffness. Numerical simulations of 

the vibration isolation performance are presented. 

2. Constitution Relationship of Torsional 

SMA Bar 

In order to construct the model of the SMAs caused by 

phase transitions, the Landau-Ginzburg free energy function 

is employed here. The Lagrangian function, which comprises 

the sum of kinetic and potential energy contribution, is in-

troduced to describe the mechanical field dynamics of SMAs 

[22]. 

𝐿 = ∫ (
𝜌

2
(𝑢̇)2 − 𝐹)

𝐿

0
𝑑𝑥,              (1) 

Where ρ is the material density, u stands for displacement, 

F stands for potential energy in form of force, while 
𝜌

2
(𝑢̇)2 is 

the kinetics energy density. Landau-Ginzburg is applied, 

which is a no-convex function of chosen order parameters and 

temperature θ. This function is split into two functions. The 

local energy density F1(θ,ε)) and non-local counterpart 

𝐹𝑔(𝛻𝜀). For this system, the strain is defined as 𝜀(𝑥, 𝑡) =
𝜕𝑢

𝜕𝑥
    

and is chosen as local free energy density and is constructed 

based on Landau free energy density 𝐹1(𝜃, 𝜀) [23]: 

𝐹(𝜃, 𝜀) =
𝐾1(𝜃−𝜃𝑐)

2
𝜀2 −

𝐾2

4
𝜀4-

𝐾3

6
𝜀6,           (2) 

Where θ is current temperature, k1, k2 and k3 are the con-

stants and θc is the critical transforming temperature. In this 

case, the non-local free density is constructed as 
𝜕𝜀

𝜕𝑥
 [24]. 

𝐹𝑔(𝛻𝜀) =
1

2
𝑘𝑔(

𝜕𝜀

𝜕𝑥
)2                (3) 

Where 𝑘𝑔 stand for material constant. Eqt. 3 is responsible 

for the inhomogeneous strain field. It is responsible for energy 

distribution from domain walls of different phases. For dis-

sipation effects that go with phase transformation, a Rayleigh 

dissipation function is used as [24]: 

𝐹𝑅 =
1

2
𝑣(

𝜕𝑢

𝜕𝑡
)2                  (4) 

Where v is the constant of the material, Eqt. 4 is responsible 

for internal friction between interfaces of different phases. It 

turns into the viscous effects of the phase transformation at 

macro-scale [24, 25]. 

Upon substituting the potential term into the Lagrangian 

function above, by applying Hamilton's principle [24], The 

mechanical field equation is obtained as: 

𝜌𝑢̈ =
𝜕

𝜕𝑥
(𝑘1(𝜃 − 𝜃𝑐)𝜀 + 𝑘2𝜀3 + 𝑘3𝜀5) + 𝑣

𝜕𝜕2𝑢

𝜕𝑡𝜕𝑥
− 𝑘𝑔

𝜕4𝑢

𝜕𝑥4
 (5) 

It is recast as: 

𝜌𝑢̈ =
𝜕𝜎

𝜕𝑥
+ 𝑣

𝜕𝜕2𝑢

𝜕𝑡𝜕𝑥
− 𝑘𝑔

𝜕4𝑢

𝜕𝑥4,   

𝜎 = (𝑘1(𝜃 − 𝜃𝑐)𝜀 + 𝑘2𝜀3 + 𝑘3𝜀5),         (6) 

Eqt. 6 is the mechanical field for SMA rod [26]. 

In this paper, torsional stress is considered; therefore, the 

order parameter is substituted by the angular displacement ux 

leading to the following equation: 

𝜏 = (𝑘1(𝜃 − 𝜃1)𝛾 + 𝑘2𝛾3 + 𝑘3𝛾5)          (7) 

Where τ is shear stress, k1, k2, and k3 are material constants, 

γ is the torsional strain. 

3. Modeling of Quasi-Zero-Stiffness SMA 

Spring 

SMA spring modeling is derived in ref. [27]. With shape 

memory alloy spring as the elastic element of the isolation 

system, we are going to prove it can have a near-zero resonant 

frequency and be the perfect solution to the low-frequency 

vibration isolation. 

For a simple one-layer vibration isolation system, as illus-

trated in Figure 1. It is a simple Mass-Spring-Damper (M-S-D) 

system, with the input of Asin(wt) acting the system as exci-

tation. The effectiveness of the SMA spring as the vibration 

isolation component is examined later. The governing equa-

tion is: 

𝑚𝑥̈ + 𝐶𝑥̇ + 𝑓 = 𝐴𝑠𝑖𝑛(𝜔𝑡), 

𝑓 = 𝐴𝑠𝑖𝑛(𝜔𝑡) − 𝑚𝑥̈ − 𝐶𝑥̇,             (8) 

Where f is the SMA spring restoring force, and it is sinus-

oidal. 

Numerical simulation is done in two parts. The first part 

gives a changing external excitation frequency and examines 

its dynamic response to different frequency inputs. Here we 

set m = 1 kg, c = 61N/(m/s), input frequency ω = 0-50 HZ. 

Figure 2 shows the result of the dynamic response corre-

sponding to different frequencies. The simulation results 

show that a near-zero resonant frequency is obtained. 
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Figure 1. Vibration system with SMA spring as isolation element. 

 
Figure 2. Vibration system with SMA spring as isolation element. 

4. Estimation of Dynamic Stiffness 

As to establish the feasibility of the SMA spring dynamic 

differential model, the concept of equivalent stiffness of SMA 

spring is introduced here 26, and is gotten as difference 

squared: 

∫ (𝐹𝑠𝑥 − 𝐹𝑎𝑥)2𝑑𝑥
𝑥𝑡

𝑥𝑏
                 (9) 

where Fs(x) is SMA spring restoring force computed using Eq. 

8, and Fa (x) = ke(x) is the linear force approximation and is 

calculated using the equivalent stiffness. The xb and xt are the 

minimal and maximum values for x. The estimated ke also 

depends on the choice of xb and xt. 

In order to ensure the vibration reduction effect to utilize 

SMA's pseudoelasticity, the ambient temperature of the SMA 

spring is to be set above the Af, so the dependence of equiv-

alent stiffness on the temperature is neglected. The equivalent 

stiffness ke is estimated in such a way that an ideal approxi-

mation to the nonlinear restoring force is Fa(x) = ke(x) in 

view of the least square error. Therefore, the approximation 

error function should be orthogonal to x, which gives the 

following relation: 

𝐹𝑠𝑥 − 𝑘𝑒𝑥, 𝑥 ≥ 0                 (10) 

Where < , > is the inner product of two functions on the 

specific domain. Given that the SMA spring displacement is 

not zero, which derives the following estimation of equivalent 

stiffness as stated: 

𝑘𝑒 =
<𝐹𝑠𝑥,𝑥>

‖‖𝑥‖
                     (11) 

Equation 11 is a theoretical way to give a rough approxi-

mation of equivalent stiffness. As is known from the square 

error strategy, a sign of dependence of equivalent stiffness on 

a vibration amplitude is shown from the limit of integration. 

Several simulation estimations are given under different ex-

citation magnitudes, which causes different vibration ampli-

tudes. From the recovering force vs displacement diagram, a 

better approximation of equivalent stiffness is given by esti-

mating the slope of the curve. 

5. Simulation 

Matlab software is used for the simulation. In the first, 

second and third simulations, the amplitude A =10, A =20, A 

=25 are used respectively, with applied force f = 2, f = 10, f = 

20, and f = 30, as to examine the dynamic response under the 

different magnitudes of excitation force, and the impact of 

input frequency on SMA spring stiffness as is shown in Fig-

ures 3-5, with the increasing level of excitation force, an 

overall increase of equivalent stiffness ke is checked, which 

means a positive correlation between input amplitude and 

equivalent stiffness ke. 

  
                                    (a)                                                   (b) 

http://www.sciencepg.com/journal/ajmme


American Journal of Mechanical and Materials Engineering http://www.sciencepg.com/journal/ajmme 

 

51 

  
                                   (c)                                                       (d) 

Figure 3. Equivalent stiffness under different excitation frequencies (a) f=2 (b) f=10 (c) f=20 (d) f=30 given the same excitation amplitude 

A=10. 

  
                                    (a)                                                     (b) 

  
                                     (c)                                                    (d) 

Figure 4. Equivalent stiffness under different excitation frequency (a) f=2 (b) f=10 (c) f=20 (d) f=30 given the same excitation amplitude 

A=20. 
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                                      (a)                                                 (b) 

 
                                     (c)                                               (d) 

Figure 5. Equivalent stiffness under different excitation frequency (a) f=2 (b) f=10 (c) f=20 (d) f=30 given the same excitation amplitude 

A=25. 

6. Discussion of Simulation Results 

In the conducted simulations, the system’s dynamic re-

sponse was investigated under varying magnitudes of excita-

tion force while maintaining different amplitude values. Here, 

the applied forces f =2, 10, 20, and 30 were considered for 

amplitudes A = 10, 20, and 25 to explore the behavior of the 

system. The findings are summarized and interpreted as fol-

lows: 

Simulation with Amplitude A=10A = 10: 

At this lower amplitude, the system displayed a relatively 

modest response, indicating that the smaller initial energy 

input resulted in limited excitation of the system's natural 

frequencies. As the applied force increased from f =2, f = 2 to f 

= 30, a progressive escalation in dynamic response was ob-

served. Notably, nonlinear behaviors, if present, were less 

pronounced due to the smaller amplitude. 

Simulation with Amplitude A=20A = 20: 

For A = 20, A = 20, the increased amplitude introduced 

higher energy levels into the system, which amplified its 

sensitivity to the applied forces. At lower forces (f =2 and 10), 

the system maintained a quasi-linear response, with moderate 

oscillation magnitudes. However, as f = 20 and 30, the system 

exhibited significant dynamic effects, possibly indicating the 

onset of nonlinear phenomena such as resonance, depending 

on the frequency of the excitation force relative to the sys-

tem's natural frequency. 

Simulation with Amplitude A=25A = 25: 

With A = 25, A = 25, the system was subjected to the 

highest amplitude, resulting in a strongly energized state. For f 

=2, f = 10, the responses were pronounced but remained 

within expected dynamic limits. As the force reached f = 20, f 

= 20 and f =30, the system’s response demonstrated substan-

tial oscillations, potentially approaching instability or chaotic 

behavior if the forcing frequency aligned with critical modes. 

This high amplitude setting likely highlighted any intrinsic 

nonlinearities in the system’s dynamics, as observed in abrupt 

changes or bifurcations in the response pattern. 

Observations: 

Force-Amplitude Interaction: Across all amplitudes, the 

response intensified with increasing excitation force. This 

trend underscores the proportional relationship between ap-

plied force and system energy under linear conditions but also 

hints at nonlinear escalation in higher ranges. 

Threshold Effects: For higher amplitudes and forces, there 
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may be thresholds beyond which the system shifts from stable 

oscillations to complex, potentially chaotic dynamics. Iden-

tifying these thresholds is critical for understanding system 

stability. 

System Sensitivity: The dynamic response was significantly 

influenced by both amplitude and applied force, demonstrat-

ing the necessity of analyzing the system under combined 

variations for comprehensive characterization. 

Another noticeable point is that the rate-dependent phe-

nomenon can be seen within each level of input magnitude. 

The effect of input frequency on the hysteresis loop is shown 

and further affects the equivalent stiffness. 

From the above simulation results, each one shows an 

equivalent stiffness of less than one. From the resonant fre-

quency equation 𝜔𝑛 = √
𝑘𝑐

𝑚
, a near-zero resonant frequency is 

obtained, which corresponds to the first part of the simulation. 

Thus the validity of our SMA spring model is proved. The 

trade-off between the capability of supporting objectives and 

the need to narrow down the vibration isolation natural fre-

quency for the SMA spring isolator with a near-zero stiffness. 

7. Conclusion 

In this paper, one-dimensional shape memory effect mod-

eling of SMA is carried out based on Ginzburg–Landau's 

theory. A constitutive model for shape memory alloy spring as 

obtained by combining the theory of mechanical spring is 

used in expressing the vibration isolation system. At last, 

simulation is performed to prove the isolation system based 

on the SMA spring and is capable of narrowing down the 

resonant frequency. A theoretical method for estimating the 

equivalent stiffness of the SMA spring is given. Several nu-

merical results are shown in the second part of the simulation, 

and the influence of frequency and amplitude on equivalent 

stiffness is also studied. 

Future Considerations: 

Investigating the influence of forcing frequency alongside 

amplitude and applied force could provide deeper insights 

into resonance and mode coupling phenomena. 

Detailed phase-space analysis and bifurcation studies could 

help delineate stable and unstable response regimes, particu-

larly at high energy levels. 

Incorporating damping and nonlinear restoring forces into 

the model would enhance the realism and applicability of the 

simulation to practical systems. 

Abbreviations 

SMA Shape Memory Alloy 

QZS Quasi-Zero Stiffness 
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