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Abstract 

Wind energy is acknowledged for its status as a renewable energy source that offers several advantages, including its low cost of 

electricity generation, abundant availability, high efficiency, and minimal environmental impact. The prediction of wind speed 

using machine learning algorithms is crucial for various applications, such as wind energy planning and urban development. This 

paper presents a case study on wind speed prediction in Palestine Jerusalem city using the Adaptive Neuro-Fuzzy Inference 

System (ANFIS) and K-Nearest Neighbors Regression (KNNR) algorithms. The study evaluates their performance using 

multiple metrics, including root mean square (RMSE), bias, and coefficient of determination R
2
. ANFIS demonstrates good 

accuracy with lower RMSE (0.196) and minimal bias (0.0003). However, there is room for improvement in capturing overall 

variability (R
2
 = 0.15). In contrast, KNNR exhibits a higher R

2
 (0.4093), indicating a better fit, but with a higher RMSE (1.4209). 

These results demonstrated the potential of machine learning algorithms in wind speed prediction, which can lead to optimize the 

wind energy generation at specific site, and reducing the cost of energy production. This study provides insights into the 

applicability of ANFIS and KNNR in wind speed prediction for Jerusalem and suggests future research directions. The outcomes 

have practical implications for wind energy planning, urban development, and environmental assessments in similar regions. 
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1. Introduction 

Accurately predicting wind speed plays a crucial role in 

many sectors, including renewable energy, maritime, aviation, 

urban development, agriculture, and environmental assess-

ments. Accurate and reliable predictions of wind speed enable 

these industries to plan and adjust their activities based on the 

prevailing wind conditions, ensuring safety and optimal per-

formance [1]. In recent years, machine learning algorithms 

have emerged as powerful tools for enhancing the accuracy 

and reliability of wind speed predictions [2]. This work pre-

sents a case study that focuses on predicting wind speed in 

Jerusalem, utilizing the Adaptive Neuro-Fuzzy Inference 

System (ANFIS) and K-Nearest Neighbors Regression 

(KNNR) machine learning algorithms. 

The city of Jerusalem, situated in a complex geographical 

region, experiences diverse wind patterns influenced by fac-

tors such as topography, local weather conditions, and sea-
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sonal variations. The accurate prediction of wind speed in 

Jerusalem holds significant importance for the planning and 

development of wind energy projects, urban infrastructure, 

and environmental impact assessments. 

The implementation of machine learning algorithms in 

wind speed prediction offers many advantages [3]. Firstly, 

these algorithms can effectively extract the hidden patterns by 

analyzing large datasets. Moreover, through learning from 

historical data, they can improve prediction accuracy over 

time. So, they contribute to more informed decision-making 

processes and more reliable models for wind speed prediction. 

The primary objective of this paper is to improve the pre-

diction of wind speed in Jerusalem using ANFIS and KNNR, 

and to conduct a comparison between ANFIS and KNNR to 

determine which of both outperforms the other. ANFIS is a 

Takagi-Sugeno fuzzy inference system implemented as an 

artificial neural network, making it suitable for handling 

nonlinear problems and uncertainties [4]. On the other hand, 

KNNR is a regression algorithm that predicts values by taking 

the average of the k nearest neighbors of the target instance 

[5]. By implementing these algorithms, we aim to evaluate 

their performance and effectiveness in accurately predicting 

wind speed in Jerusalem. 

To accomplish this, the machine-learning algorithms un-

derwent training utilizing wind data collected over an exten-

sive timeframe spanning 11 years. To address the presence of 

empty cells and ensure data completeness, a preprocessing 

step was executed using the pandas imputing function. The 

accuracy of the algorithms is evaluated using three evaluation 

metrics, namely root mean square error (RMSE), coefficient 

of determination R2 and bias. 

The findings of this case study have practical implications 

for the beforementioned sectors relying on wind speed pre-

dictions in Jerusalem. This study evaluates the performance of 

ANFIS and KNNR, which aids in choosing the most suitable 

model for wind speed prediction in Jerusalem. Moreover, this 

research contributes to the existing literature on wind speed 

prediction In Jerusalem by assessing the performance of 

ANFIS and KNNR. 

In the following sections, we provide some related works, 

present a detailed analysis of the dataset, describe the meth-

odology employed for training both algorithms, present the 

results and discuss them. Ultimately, the aim of this case study 

is to improve wind speed prediction in Jerusalem and inform 

the selection of suitable models for accurate wind speed 

forecasting. 

2. Related Work 

In recent times, the application of machine learning algo-

rithms has witnessed pervasive utilization in the domain of 

predictive modeling, encompassing the realm of wind speed 

prediction. This has culminated in substantial advancements 

surpassing conventional prediction models, thereby mani-

festing in heightened precision and the extraction of salient 

features [6]. 

Numerous studies have been carried out to improve local 

wind speed prediction accuracy and reliability by utilizing 

machine learning algorithms. This section aims to provide an 

overview of the existing research, discuss the advantages and 

limitations of different models, and identify the gaps that this 

case study seeks to address. 

One prevailing machine learning paradigm deployed for the 

purpose of wind speed prediction is artificial neural networks 

(ANNs). The framework of an artificial neural network 

commonly encompasses multiple layers of interconnected 

nodes, reminiscent of biological neurons, featuring a mini-

mum of one hidden layer, as well as input and output layers. 

This architectural arrangement enables the ANN to effectively 

capture intricate non-linear associations between the input 

variables (inclusive of influential factors such as time, tem-

perature, pressure, among others) and the output variable 

(wind speed). Such associations are elucidated through a 

process of training, which has yielded encouraging outcomes. 

Notably, in a study [7], two methods are used for wind pre-

diction: backpropagation neural network and recurrent neural 

network. The results indicate that neural network prediction 

outperforms conventional statistical time series analysis in 

terms of accuracy. Nevertheless, it is worth noting that ANNs 

frequently necessitate meticulous preprocessing of data and 

can exhibit sensitivity towards the selection of input features 

and the design of their architectural structure. 

An additional noteworthy approach encompassing wind 

speed prediction is the employment of the support vector 

machine (SVM). In [8] SVM technique was employed to 

predict wind speed within different time horizons, demon-

strating its superiority the radial basis function (RBF) and the 

persistence model in the very short time horizon. However, it 

is worth highlighting that SVM may face challenges when 

with huge datasets and the determination of suitable kernel 

functions, posing as potential challenges in its application. 

In recent years, hybrid models that combine different ma-

chine learning algorithms have gained attention. The primary 

concept behind hybrid models is to integrate different ap-

proaches to take advantage of each [9]. While the primary 

objective of combining models is typically to enhance pre-

diction accuracy, it is important to note that this approach does 

not guarantee superior performance compared to the best 

individual models in all cases. However, combining models is 

credible because it optimizes information that is limited in the 

individual models [10]. Hybrid models incorporate multiple 

approaches, such as a mixture of physical and statistical 

methods or a mixture of short- and medium-term models [11]. 

Shi et al in [12] present two hybrid models that combine the 

Autoregressive Integrated Moving Average (ARIMA) method 

with different techniques. The first hybrid model integrates 

ARIMA with Artificial Neural Networks (ANN), while the 

second hybrid model combines ARIMA with Support Vector 

Machines (SVM). The research investigates the applicability 

of these hybrid models through two time-horizons. In these 
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models, the ARIMA method is employed to capture linear 

features, while the other methods are utilized to capture non-

linear features. The empirical results suggest that the novel 

hybrid models present viable alternatives for forecasting wind 

speed time series. However, it is crucial to acknowledge that 

these hybrid approaches do not consistently outperform the 

individual methods across all prediction time horizons ex-

amined in the study. 

The fuzzy logic approach employs a nonlinear mapping 

technique that utilizes linguistic variables (such as low, me-

dium, and high) and a truth variable that ranges from zero to 

one. This approach is valuable in situations where accurately 

modeling a system is challenging, but an imprecise model 

exists. However, it is important to note that relying solely on 

fuzzy logic is not entirely satisfactory due to its limited 

learning capability. The ANN-fuzzy technique is a hybrid 

approach that combines the strengths of artificial neural 

networks (ANN) and fuzzy logic, where ANN is particularly 

effective in processing fundamental computations using un-

processed data, while fuzzy logic is better suited for complex 

computations involving advanced reasoning like human 

thinking. 

In [13], a combination of artificial neural networks (ANN) 

and a fuzzy logic approach is employed to optimize the uti-

lization of Numerical Weather Predictions (NWPs). The 

process begins with the ANN model providing an initial wind 

speed forecast utilizing the NWPs. Subsequently, the fuzzy 

model assesses the accuracy of the predictions generated by 

the NWPs. Finally, these evaluations are utilized by an ANN 

model to generate the final predictions. This integration op-

timizes the utilization of NWPs and enables the generation of 

accurate predictions for wind speed by leveraging the 

strengths of both techniques as confirmed by the simulation 

results. Nevertheless, fuzzy logic models may require manual 

rule design and are sensitive to the selection of membership 

functions. 

While the above-mentioned studies have contributed val-

uable insights, there is only one study that has specifically 

focused wind speed prediction in the Jerusalem region using 

machine learning algorithms [14]. Given the unique geo-

graphical characteristics and wind patterns of Jerusalem, there 

is a need for a case study that evaluates the performance of 

machine learning algorithms tailored to this context. 

This study aims to bridge this gap by conducting a com-

parative analysis of two machine learning algorithms, ANFIS 

and K-Nearest Neighbors Regression (KNNR), for wind 

speed prediction in Jerusalem. By specifically examining the 

performance of these algorithms in the Jerusalem region, this 

case study seeks to provide valuable insights into the effec-

tiveness of machine learning models for accurately predicting 

wind speed patterns in this context. 

In summary, previous research has explored various ma-

chine learning techniques for wind speed prediction, includ-

ing ANNs, SVM, and hybrid approaches. However, there is a 

lack of studies focusing on wind speed prediction in Jerusa-

lem using machine learning algorithms. This case study aims 

to contribute to the existing literature by evaluating the per-

formance of ANFIS and KNNR in capturing the unique wind 

patterns observed in Jerusalem and providing valuable in-

sights for wind energy planning, urban development, agri-

culture, and environmental assessments in the region. 

3. Materials and Methods 

3.1. Modeling 

This study adopts a conventional machine learning ap-

proach that comprises the following steps: obtaining data, 

processing data, selecting features, constructing a machine 

learning model, and evaluating the model through testing and 

validation. 

This scientific investigation presents a meticulous exami-

nation into the prediction of wind speed by employing cut-

ting-edge machine learning algorithms. Specifically, this case 

study delves into the utilization of two prominent techniques, 

namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) 

and the k-Nearest Neighbors Regressor (KNNR), to achieve 

enhanced wind speed forecasting accuracy. 

The ANFIS model represents a hybridized framework that 

amalgamates the capabilities of fuzzy logic and neural net-

works. By employing fuzzy logic, the model effectively cap-

tures and models the inherent uncertainties present within the 

system, while the neural network component enables learning 

and optimization processes. ANFIS develops a fuzzy infer-

ence system by adaptively adjusting its parameters through 

the utilization of a hybrid learning algorithm [15]. 

To accomplish wind speed prediction using ANFIS, the 

following procedural steps are undertaken: a) The collection 

of wind speed data, encompassing historical wind speed rec-

ords alongside relevant input parameters (e.g., temperature, 

pressure). b) Preprocessing of the data by means of input 

normalization, and subsequent division into training and 

testing datasets. c) Training of the ANFIS model utilizing the 

designated training dataset. This entails the model's adjust-

ment of its parameters through the employment of forward 

and backward passes, thereby optimizing both the fuzzy 

membership functions and the neural network weights. d) 

Validation of the trained model via the utilization of the test-

ing dataset, thereby evaluating its performance based on 

metrics such as mean absolute error (MAE) or root mean 

square error (RMSE). e) Once the model has been duly vali-

dated, it is primed for wind speed prediction by providing the 

appropriate input variables. 

KNNR is a non-parametric algorithm widely adopted for 

regression tasks. It leverages the concept of proximity, pre-

dicting the output of a novel data point by considering its k 

nearest neighbors within the training dataset. The predicted 

value is derived from either an average or a weighted average 

of the target values associated with these nearest neighbors. 
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To realize wind speed prediction utilizing KNNR, the fol-

lowing sequence of steps is implemented: a) Preparation of 

the wind speed dataset, encompassing historical wind speed 

records alongside the corresponding input parameters. b) 

Normalization of the input variables and partitioning of the 

dataset into training and testing subsets. c) Training of the 

KNNR model via its fitting to the training dataset. The model 

determines the k nearest neighbors by evaluating the distance 

metric (e.g., Euclidean distance) and subsequently calculates 

the predicted wind speed as an average of the values attributed 

to these neighbors. d) Validation of the trained model em-

ploying the testing dataset, accompanied by the assessment of 

its performance utilizing appropriate evaluation metrics. e) 

Upon successful validation, the trained KNNR model is de-

ployed for wind speed prediction by supplying the pertinent 

input variables pertaining to the new data point. 

3.2. Dataset 

The machine-learning algorithms underwent training uti-

lizing wind data sourced from the extensive network of Pal-

estinian meteorological stations. These datasets were metic-

ulously collected over an extensive timeframe spanning 11 

years, specifically commencing from January 1, 2008, and 

concluding on December 31, 2018. To ensure accuracy and 

representativeness, the wind measurements were meticu-

lously recorded in a continuous manner, employing a cup 

generator anemometer positioned at a height of 20 meters. 

Notably, the data acquisition site was Jabal Al-Mukabber, a 

village located in East Jerusalem, Palestine, with precise 

geographic coordinates of Latitude 31.7555 N and Longitude 

35.2410 E. This specific region stands at an elevation of 720 

meters above sea level, guaranteeing a comprehensive and 

diverse dataset for the subsequent analyses and model train-

ing. 

The data set contained four features: Time stamp, wind 

speed, air temperature, and atmospheric pressure. Measure-

ments were taken at 3-hour intervals (8 measurements for 

each day). The dataset itself consisted of an extensive 32,131 

rows of data. Notably, within this dataset, 150 rows were 

identified to have zero values in the wind speed variable, 

while an additional 69 rows lacked data, specifically with 36 

missing values in the wind speed variable and 33 missing 

values in the temperature variable. 

To address the presence of empty cells and ensure data com-

pleteness, a preprocessing step was executed using the pandas 

imputing function. This essential data manipulation task was 

accomplished using a Python script, expertly filling the vacant 

cells with appropriate values. It is worth noting that the existence 

of zero values in the wind speed variable is deemed acceptable 

due to the rounding convention associated with wind speed, 

where values below 0.25 are rounded down to zero. 

Table 1 provides an illustrative subset of the dataset, of-

fering a glimpse into the intricate interplay of the various 

variables. Furthermore, Figure 1 showcases the comprehen-

sive timelines of all variables encapsulated within the dataset, 

providing a visual representation of their temporal evolution 

and patterns. 

 
Figure 1. The entire timelines for every variable present in the dataset. 
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Table 1. A sample of the dataset. 

Date Time Temperature (°C) Wind Speed (m/s) Pressure (mbar) 

25-01-2008 8:00 5.4 3 922.8 

25-01-2008 11:00 7.9 3.5 921.6 

25-01-2008 14:00 10.7 2.5 919.7 

25-01-2008 17:00 9 1 919.2 

25-01-2008 20:00 8.1 0 919.5 

25-01-2008 23:00 7.3 1 919.1 

26-01-2008 2:00 6.5 3 918.7 

 

A rigorous statistical analysis was conducted on the dataset, 

yielding insightful findings as presented in Table 2. It was 

observed that the wind speed variable exhibited a minimum 

value of zero, indicating moments of calm conditions, while 

the maximum value reached 14.5 m/s, denoting instances of 

heightened wind intensity. The calculated mean wind speed 

stood at 3.11 m/s, capturing the central tendency of the dataset, 

while the corresponding standard deviation was determined to 

be 1.54 m/s, reflecting the dispersion of values around the 

mean. 

Further analysis revealed that three quarters of the wind 

speed values were found to be less than or equal to 4 m/s. This 

threshold holds significance, as wind speeds within this range 

are deemed suitable for the operation of small-scale turbines. 

Hence, the dataset offers valuable insights into the prevailing 

wind conditions, suggesting favorable conditions for har-

nessing wind energy using compact turbine systems. 

Regarding the air temperature, it has a mean of 18.22°C and 

its values range from zero to 39.7°C where three quarters of 

values are less than 23.4°C. for the atmospheric pressure, 

values range from 909 to 939.3 mbar while 75% of values are 

less than 925mbar. 

Table 2. The analysis of wind speed data involves calculating various statistical measures such as the minimum, mean, maximum, standard 

deviation, 25th, 50th, and 75th percentiles of the dataset. 

Centralized statistical quantities Temp (oC) Pressure (mbar) Speed (m/s) 

Mean 18.22 922.55 3.11 

SD 6.98 3.67 1.54 

Min 0 909.0 0 

25% 12.6 919.9 2.0 

50% 18.5 922.3 3.0 

75% 23.4 924.9 4.0 

Max 39.7 927.3 14.5 

Table 3. Correlation matrix: depicting the correlation coefficients between dataset variables. 

 Time Temperature Pressure Speed 

Time 1 0.023 0.029 -0.083 

Temperature 0.023 1 -0.415 0.009 

Pressure 0.029 -0.415 1 -0.35 

Speed -0.083 0.009 -0.35 1 

http://www.sciencepg.com/journal/ajme


American Journal of Modern Energy  http://www.sciencepg.com/journal/ajme 

 

30 

To analyze the relationships between the variables, the correlations were calculated using the Pearson coefficient. The 

calculation was done with the Python libraries NumPy and Pandas, the correlation matrix is shown in Table 3, a heatmap 

representing the correlation matrix was created with the libraries Matplotlib and Seaborn, it is shown in Figure 2. In addition, 

pair plots Figure 3 between all variables were created using the latter two libraries. 

 
Figure 2. A heat map representing the correlation matrix. 

 
Figure ‎3. Pair plots displaying pairwise relationships among all variables. 
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3.3. Evaluation Metrics 

The prediction of wind speed inherently encompasses a 

characteristic element of uncertainty, rendering exactness 

unattainable. Consequently, it assumes paramount signifi-

cance to diligently evaluate the accuracy of wind speed 

predictions. Crucially, the evaluation process necessitates 

meticulous scrutiny of error measurements utilizing data 

independent of those employed for model construction or 

parameter tuning. 

By prioritizing comprehensive and unbiased evaluation 

methodologies, the accuracy and credibility of wind speed 

predictions can be appropriately assessed, further enhancing 

the reliability and utility of the predictive models deployed 

in this domain. 

The prediction error is the numerical deviation between 

the actual measurement and the corresponding prediction, 

and is mathematically expressed as follows: 

𝑒𝑡+𝑘|𝑡 =  𝑣𝑡+𝑘 − 𝑣̂𝑡+𝑘|𝑡              (1) 

Where v_(t+k) represents the actual wind speed (meas-

ured value) at a specific moment 't+k', while v ̂_(t+k|t) de-

notes the predicted wind speed calculated at time ‗t‘ for the 

projected future time ‗t+k‘. 

It is crucial to assess the accuracy of a predictive model on 

data that was not utilized in its construction or parameter 

tuning. Various evaluation metrics, such as Bias Eq (2), Root 

Mean Square Error (RMSE) Eq (2), and coefficient of de-

termination (R
2
) Eq (3) are employed to determine the ef-

fectiveness of the model [16, 17]. 

𝐵𝑖𝑎𝑠𝑘 =  𝑎𝑣𝑔(𝑒𝑡+𝑘|𝑡) = 𝑒̅𝑘  =  
1

𝑁
 ∑ 𝑒𝑡+𝑘|𝑡

𝑁
𝑡=1     (2) 

𝑅𝑀𝑆𝐸𝑘 =  √𝑀𝑆𝐸𝑘 =  √
1

𝑁
 ∑  (𝑒𝑡+𝑘|𝑡)

2𝑁
𝑡=1         (3) 

𝑅2 =  1 −
∑  (𝑣𝑡+𝑘− 𝑣̂𝑡+𝑘|𝑡)

2𝑁
𝑡=1

∑  (𝑣𝑡+𝑘− 𝑣̅𝑡+𝑘)2𝑁
𝑡=1

               (4) 

Where 'N' denotes the size of the testing sample set, rep-

resenting the total count of data instances specifically allo-

cated for evaluation and testing purposes within the dataset. 

Bias serves as a metric to assess the disparity between the 

average forecasted wind speed and the actual observed 

values, indicating overestimation (bias > 0) or underestima-

tion (bias < 0) of the method. However, it only shows sys-

tematic errors and lacks information about the forecasting 

method's accuracy alone [18]. 

Mean Squared Error (MSE) quantifies the average 

squared disparity between the observed and predicted values, 

quantifying the model's error. It would be zero in an ideal 

scenario with 100% accuracy. RMSE considers both random 

and systematic errors, where larger values indicate greater 

deviations and smaller values indicate more precise predic-

tions. Significant discrepancies between MAE and RMSE 

values suggest a wider spread of predicted values in com-

parison to the measured data [18]. 

R
2
 is a coefficient of determination indicating the amount 

of variance explained by the prediction model, with values 

close to 1 indicating an optimal model and negative values 

indicating a poor prediction. 

4. Results and Discussion 

Two machine-learning algorithms were applied on the 

dataset to predict wind speed, which are adaptive (ANFIS), 

and k nearest neighbor‘s regression (KNNR). The simulation 

testbed used Intel (R) Core (TM) i7-1265H CPU running @ 

2.3 GHz, with 16 GB memory, 64-bit MS Windows 10 Home 

with x64 processor architecture, The Python environment 

setup consisted of Python (3.8.11) and common ML libraries, 

mainly scikit-learn (0.24.2), SKFuzzy and NumPy, among 

other libraries for data extraction and visualization, such as 

seaborn and matplotlib. The dataset was split into training 

and testing sets, 80% (28,017) and 20% (3214) from 2008 to 

2018, respectively. This section demonstrates and discusses 

the results of each model, then A comparison between the 

two models is conducted. Finally, a comparison between this 

study and other studies is conducted. 

4.1. ANFIS 

Several ANFIS experiments were conducted by varying 

different parameters to search for the optimal model. The 

experiments involved testing different numbers of mem-

bership functions (one, two, and three) for each feature, as 

well as different epochs, number of populations, and mem-

bership functions. Results were analyzed and discussed for 

each variation. 

The evaluation metrics showed that there wasn't a sig-

nificant difference between using one membership function 

and three membership functions (RMSE is 0.198 for both). 

However, using two membership functions resulted in even 

better results than both one and three, so it was selected as 

the optimal number of membership functions. 

When two membership functions are used for each feature, 

it usually involves creating two fuzzy sets, with one corre-

sponding to low values and the other to high values. The 

shapes of these fuzzy sets can vary and may be triangular, 

trapezoidal, or Gaussian, among others, depending on the 

data and the specific problem being analyzed. For this 

problem, the generalized bell function was used for its sim-

plicity and performance. 

Four variations of rules were used in this scenario, where 

the form of the rule is "if [feature1] is low (high) and [fea-

ture2] is low (high), then [output] is equal to [coefficients]". 

For example, one rule might be "if temperature is low and 
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pressure is low, then wind speed is equal to 

𝑝1 ∗ 𝑡𝑒𝑚𝑝 + 𝑞1 ∗ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 𝑟1           (5) 

The dataset, which contains 32,131 samples, was divided 

into two sets: 30% for testing (9,640 samples) and 70% for 

training (22,491 samples). The ANFIS model used four 

premise membership functions, resulting in 24 parameters. 

The root mean square error (RMSE) for the training set was 

0.193, while the RMSE for the testing set was 0.196. 

Figures 4 and 5 show the membership functions for the 

temperature feature before (with mu = -2.9 and std = 3.08) 

and after (with mu = -2.0 and std = 3.09) modeling, respec-

tively. Similarly, Figures 6 and 7 depict the membership 

functions for the pressure feature before (with mu = -4.24 

and std = 3.89) and after (with mu = -4.7 and std = 3.8) 

modeling, respectively, demonstrating changes in the statis-

tical properties of the features due to the modeling process. 

 
Figure ‎4. The membership functions for the temperature feature before modeling. 

 
Figure 5. the membership functions for the temperature feature after modeling. 

The ANFIS algorithm's prediction visualization is de-

picted in Figure 8, where it compares the predicted and 

actual wind speed values. The visualization revealed a dis-

cernible pattern in the ANFIS algorithm's predictions, sup-

porting the recently mentioned accuracy measure (RMSE 

0.193), although a few small outliers were visible. Accord-
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ing to Figure 9, the root mean square error (RMSE) of the 

ANFIS model decreases significantly before 60 epochs, after 

which it approaches a horizontal asymptote of approxi-

mately 0.12. 

 
Figure 6. The membership functions for the pressure feature before modeling. 

 
Figure 7. The membership functions for the pressure feature after modeling. 

 
Figure 8. The ANFIS algorithm's prediction visualization (predicted wind speed vs actual). 
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Figure 9. The RMSE of the ANFIS model per epoch. 

Bias and R
2
 values were computed, yielding a bias value 

of 0.0003 and an R2 value of 0.15. A bias of 0.0003 implies a 

close correspondence between the predicted and observed 

wind speed values on average. A negligible bias suggests the 

absence of systematic overestimation or underestimation of 

wind speed by the model. 

Furthermore, an RMSE value of 0.196 indicates a rela-

tively small average prediction error. RMSE quantifies the 

average disparity between the predicted and actual wind 

speed values, with lower values indicating enhanced pre-

dictive accuracy. When considering these evaluation metrics 

together, a bias close to zero and a low RMSE suggest that 

the model is performing well in terms of predicting wind 

speed. However, the low R
2
 value of 0.15 implies that the 

predicted values account for only a small fraction of the 

observed wind speed data's variability. This suggests the 

potential presence of unaccounted factors or variables in-

fluencing wind speed. 

4.2. KNNR 

Several experiments were performed to find the optimal 

model for KNNR, with different parameters used for each 

experiment. The variations included changing the number of 

neighbors, the type of metric used, and the weight function 

used in prediction. The results for each variation were ana-

lyzed and discussed. 

In Figures 10 and 11, the correlation between the root 

mean square error (RMSE) and the number of neighbors (k) 

is illustrated. Specifically, Figure 10 demonstrates this rela-

tionship when the weight function used is "distance", and the 

metric utilized is the Minkowskian metric with a power of 

two (also known as the Euclidean metric). On the other hand, 

Figure 11 depicts the same relationship but with the "uni-

form" weight function replacing the "distance" function. In 

both figures, the root mean square error (RMSE) initially 

begins at a high value of approximately two, then gradually 

decreases until it approaches a horizontal asymptote. In 

Figure 10, the RMSE approaches an asymptote of approx-

imately 1.66, while in Figure 11, it approaches an asymptote 

of approximately 1.42. 

Figures 12 and 13, illustrates the relationship between the 

root mean square error (RMSE) and the Power parameter for 

the Minkowski metric (p). Figure 12 shows this relationship 

when the weight function used is "distance," and the number 

of neighbors (k) is 5. Figure 13 displays the same relation-

ship but with the "uniform" weight function replacing the 

"distance" function. 

 
Figure 10. The RMSE of the KNNR model vs the number of neigh-

bors (“distance” weight function, p equals 2). 
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Figure 11. The RMSE of the KNNR model vs the number of neigh-

bors (“uniform” weight function, p equals 2). 

In Figure 12, the RMSE oscillates between p=5 to p=38. 

Generally, the RMSE increases with an increase in power. 

Therefore, the best values are at small powers, particularly at 

p=1 and p=2. On the other hand, in Figure 13, the RMSE 

generally decreases as the power increases, except for the 

interval between p=20 to p=40. 

 
Figure 12. The RMSE of the KNNR model vs the power parameter 

for the Minkowski metric (“distance” weight function, k equals 5). 

 
Figure 13. The RMSE of the KNNR model vs the Power parameter 

for the Minkowski metric (“uniform” weight function, k equals 5). 

Overall, there is a small difference between the RMSE val-

ues in both figures, indicating that choosing the Power param-

eter for the Minkowski metric (p) is not a significant issue. 

In Figure 14, the prediction visualization of the KNNR 

algorithm compares the actual and predicted wind speed 

values. The results showed that the algorithm struggled to 

predict high wind speeds since they were infrequent and 

represented only a small percentage of neighbors for each 

data point. This finding supports the high RMSE accuracy 

measure of 1.42 mentioned earlier. 

 
Figure 14. The KNNR algorithm's prediction visualization (pre-

dicted wind speed vs actual). 

The RMSE value of 1.4209 indicates a relatively higher 

average prediction error compared to the ANFIS model. A 

higher RMSE suggests that the KNNR model's predictions 

have larger deviations from the actual observed wind speed 

values. 

The R
2
 value of 0.4093 suggests that approximately 40.93% 

of the variance in the observed wind speed values is explained 

by the predicted values. Although it is an improvement 

compared to the ANFIS model, the R
2
 value still indicates that 

a significant portion of the variability in the wind speed data 

remains unexplained by the KNNR model. 

The bias value of 0.0369 indicates a slight overall ten-

dency of the KNNR model to slightly overestimate the wind 

speed values on average. However, the bias is relatively 

small and close to zero, suggesting that the model's overall 

tendency to overestimate or underestimate the wind speed is 

minimal. 

When comparing these metrics to the ANFIS model, the 

KNNR model exhibits a higher RMSE, indicating larger pre-

diction errors. However, the KNNR model has a higher R
2
 

value, suggesting a better fit to the observed wind speed data 

compared to the ANFIS model. The bias for the KNNR model 

is slightly higher than that of the ANFIS model but remains 
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relatively small. Additionally, the ANFIS model generated a 

denser prediction compared to the KNNR model. 

Compared to the article by [14], which employed six 

machine learning models using the same dataset, the ANFIS 

model showed lower RMSE values (0.193) than all six 

models. The RMSE values for the six models were MLR 

(1.37), Ridge (1.38), Lasso (1.37), Random Forest (1.16), 

SVR (1.38), and LSTM (1.21). 

5. Conclusions 

This study investigated the use of machine learning algo-

rithms for wind speed prediction using a dataset collected from 

a Palestinian meteorological station. The study focused on two 

popular algorithms: Adaptive Neuro-Fuzzy Inference System 

(ANFIS) and K-Nearest Neighbor Regression (KNNR). The 

results obtained from our experiments indicate that both AN-

FIS and KNNR have their strengths and limitations. ANFIS 

demonstrated relatively lower RMSE and bias, indicating good 

accuracy and minimal systematic error in wind speed predic-

tion. However, its R
2
 value was relatively low, suggesting that 

there is still room for improvement in capturing the overall 

variability in the observed wind speed data. On the other hand, 

KNNR exhibited a higher R
2
 value, indicating a better fit to 

the data, although it had a higher RMSE compared to ANFIS. 

The bias for both algorithms was relatively small. 

There are several potential areas for future research in 

wind speed prediction using machine learning algorithms. 

The following directions could enhance the accuracy and 

effectiveness of wind speed models: Exploration of Deep 

Learning Models, incorporation of Wind Speed Direction, 

and Extraction of Seasonal and Diurnal Patterns. 

Abbreviations 

ANFIS Adaptive Neuro-Fuzzy Inference System 

ANN Artificial Neural Network 

ARIMA Auto Regressive Integrated Moving Average 

KNNR K-Nearest Neighbors Regression  

MAE Mean Absolute Error 

NWP Numerical Weather Prediction 

SVM Support Vector Machine 
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