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Abstract 

One of the most significant environmental hazards threatening ecosystems is gully erosion. In this study, we applied two 

bivariate statistical models—frequency ratio (FR) and index of entropy (IoE)—as well as a machine learning algorithm (RF) to 

generate gully erosion susceptibility maps (GESM). The study was conducted in the Dodota Alem watershed of the Awash River 

basin, covering 135 km². Our modeling utilized input data from field surveys, Google Earth, and secondary sources. 

Geo-environmental factors such as land use and land cover, soil characteristics, altitude, slope, aspect, profile curvature, plan 

curvature, drainage density, distance from roads, distance from streams, stream power index (SPI), and topographic wetness 

index (TWI) were considered after a multi-collinearity test. Among these factors, distance from roads had the most substantial 

impact on gully erosion susceptibility according to the RF model, while SPI played a crucial role in the FR and IoE models. 

Approximately 60% of the watershed falls into the moderate or high susceptibility category for gully erosion using the FR and 

IoE models, whereas the RF model projected the largest area in the very high susceptibility class. Validation results, based on the 

Area Under Curve (AUC), demonstrated prediction efficiencies of 0.912 (FR), 0.880 (IoE), and 0.932 (RF). These findings can 

guide decision-makers and planners in implementing effective soil and water conservation measures to mitigate the damage 

caused by gully erosion. Additionally, this approach serves as a valuable reference for future research on gully erosion 

susceptibility. 
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1. Introduction 

Runoff-induced soil erosion is a major contributor to global 

land degradation. For instance, it affects agricultural lands, 

leads to soil fertility decline, and results in sediment deposi-

tion in reservoirs [36]. Despite occupying a small percentage 

of a watershed, gully erosion generates significant environ-

mental and socioeconomic problems by impairing soil and 

land functionality [28, 54]. Gully erosion also exacerbates 

floods, lowers water tables, contributes to desertification, and 

transports large amounts of sediment from watersheds to 

coastal and lowland areas, causing severe damage to infra-
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structure [5, 9, 35]. Due to its ability to rapidly erode and 

transfer substantial soil volumes, gully erosion is highly de-

structive [2]. 

Ethiopia faces rapid soil erosion rates [51]. Previous re-

search indicates that annual soil erosion varies from 16 to 220 

tons per hectare, depending on land use and agro-ecology [27, 

51]. Factors contributing to this erosion include high popula-

tion pressure, intense tropical rains with erosive potential, 

rugged topography, extensive deforestation for fuelwood, 

cultivation expansion into steep and erosion-prone areas, and 

inadequate integrated catchment management [61]. In the 

northern Ethiopian highlands, gully erosion accounts for up to 

28% of soil loss [43]. Addressing substantial gully erosion is 

crucial for ongoing and future environmental and water 

management projects in Ethiopia, ranging from small-scale 

irrigation to large hydropower dams [22, 25, 52]. 

To mitigate these challenges, it is essential to identify gully 

erosion-prone areas accurately. Several gully erosion models 

aid in susceptibility mapping (GESM), utilizing relationships 

between gully occurrence and geo-environmental factors [49]. 

Data-driven knowledge-based, statistical, and machine 

learning models have successfully predicted GESM world-

wide [2, 14, 21, 23, 29, 49]. Machine learning algorithms offer 

excellent accuracy for susceptibility assessment [2]. 

While some studies have explored gully erosion suscepti-

bility mapping in Ethiopia [1, 11], none have focused on the 

Awash River Basin—a critical, intensively utilized, and en-

vironmentally vulnerable region [7]. This study employs 

bivariate statistical models and machine learning algorithms 

to analyze geo-environmental characteristics, producing a 

gully susceptibility map. By evaluating three models and 

comparing results, we aim to enhance mapping efficiency in a 

region heavily impacted by gully erosion. Ultimately, our 

research informs strategies for preventing gully erosion and 

environmental degradation. 

2. Materials and Methods 

2.1. Description of the Study Area 

 
Figure 1. Location and gullies map of Dodota Alem watershed in the Awash Basin. 

The study was conducted at the Dodota Alem watershed 

(geographically located 8°09' to 8°23' N and 38°12' to 38°20' 

E) situated in the central rift valley of Ethiopia, 125 km 

southeast of Addis Ababa. The catchment area of the Dodota 

Alem watershed is 135 km
2
 and is found in the Awash River 

basin. The elevation of the watershed varies from 1527 to 

2293 meters above sea level (Figure 1). The slope gradient 

varies from flatlands on the valley bottom to very steep slopes 

in the surrounding mountain ranges. The location has a bi-

modal rainfall distribution with a mean annual rainfall of 804 

American%20Journal%20of%20Environmental%20Science%20and%20Engineering


American Journal of Environmental Science and Engineering  http://www.sciencepg.com/journal/ajese 

 

51 

mm. The annual mean minimum and maximum temperatures 

are 13°C and 28°C, respectively [55]. According to [20], the 

dominant soils in the upper part of the watershed are vertic 

cambisols and mollic andosols. The lower part is dominated 

by eutric fluvisols and eutric regosols, the middle is domi-

nated by eutric regosols. The watershed consists of cultivable 

land (88.9%), settlement (0.3%), shrub land (0.1%), and de-

graded land (10.7%) (Figure 2a). 

2.2. Methods 

Gully inventory datasets 

In this study, a gully erosion inventory map of the study 

region was generated using field surveys, Google Earth, and 

available reports obtained from secondary data (Figure 1). 

The geographical location of gullies was recorded using GPS. 

A total of 108 gullies were identified and mapped using the 

ArcGIS environment. About 76 (70%) gullies were chosen for 

training of the model, and 32 (30%) were used for validation 

[15]. 

Gully erosion factors 

Gully erosion occurrence and behavior depend on several 

factors, including environmental, geological, geomorpholog-

ical, and hydrological factors. Selecting gully erosion factors 

is an important component in preparing the gully erosion 

susceptible maps (GESMs) using various methods [48]. In 

this study, twelve gully erosion factors, namely land use and 

land cover (LULC), soil, altitude, slope, aspect profile cur-

vature, plan curvature, drainage density, distance from road, 

distance from stream, stream power index (SPI), and topo-

graphic wetness index (TWI) were used for gully erosion 

modeling. The selection of parameters was made based on 

geomorphological knowledge of gully erosion phenomena in 

the study area and multi-collinearity analysis. Due to the small 

size of the study area, climatic conditions have been consid-

ered homogeneous and, therefore, no climatic attributes were 

used to build the model. 

Land use and land cover (LULC) is one of the important 

factors that set the threshold for gully initiation [6]. In this 

study, generally, the LULC map of the watershed was gener-

ated based on Landsat 8 satellite data (30 m spatial resolution) 

sensed on February 24, 2022. Pixel-based supervised image 

classification using the maximum likelihood algorithm was 

used to create the map. Four land cover types were extracted, 

such as cultivated land, degraded land, settlements and shrub 

land (Figure 2a). The produced LULC was validated using 

275 randomly selected samples from ground truth collected 

from the field and Google Earth. The accuracy (Kappa coef-

ficient) of the generated map is 83.5% [18]. Thus, in this study, 

soil type was used as a controlling factor (Figure 2b). The soil 

type was extracted from the FAO soil map [20]. 

Topographic factors are very important geomorphological 

factors that affect gully erosion [5, 23]. The ten topographic 

attributes (slope, stream power index, topographic wetness 

index, plan curvature, profile curvature, drainage density, dis-

tance from road, distance from stream, altitude, and aspect) 

were extracted from the Advanced Land Observing Satellite 

(ALOS PALSAR) Digital Elevation Model (DEM) with 12.5m 

resolution (https://search.asf.alaska.edu/) using ArcGIS. 

The altitude of the area determines vegetation distribution 

and rainfall patterns, which indirectly affect gully distribution 

[31, 60]. The study area's altitude varies from 1527 to 2293 

meters above sea level (Figure 2c). Slope directly affects gully 

erosion by influencing the velocity of runoff and the oppor-

tunities for infiltration [48], which was subsequently classi-

fied into four classes (Figure 2d). An aspect map of the wa-

tershed is classified as flat, north, south, east, west, northeast, 

southeast, southwest, and northwest (Figure 2e). Aspect con-

trols the duration of sunlight, moisture, evaporation, and 

transpiration, and the distribution of vegetation that indirectly 

affects the gully erosion process [29, 56]. 

The change in slope inclination or aspect is plan curvature 

[46]. Plan curvature can have positive, negative, or zero val-

ues to represent convexity, concavity, or flatness, respectively 

[14] (Figure 2f). The surface curvature in the direction of the 

steepest slope is called the profile curvature. It changes the 

velocity of water flow that drains the surface and affects ero-

sion and sediment deposition [48]. Positive and negative 

values indicate the concavity and convexity of slope curvature, 

respectively, and zero values are flat surfaces. The value 

ranges in the study area between – 5.8 and 3.8 (Figure 2g). 

Drainage density is a measure of stream length per unit of 

area and depends on lithology, permeability, vegetation cover, 

and soil type [37]. The values of drainage density in the study 

area vary from 0 to 5 (km/km
2
) (Figure 2h). Distance from the 

road is an important factor for the occurrence of gully erosion 

[15, 47]. Roads will aggravate the gully erosion process 

through their interruption and concentrate of overland flow 

[15]. Roads were extracted from 1:50,000-scale topographical 

maps [18]. It was divided into four different zones (Figure 2i). 

Gullies are associated with a stream network [15]. Using the 

natural break classification technique, four buffer zones are 

created to determine the effect of streams on gullies (Figure 

2j). 

The Stream Power Index (SPI) measures the erosion power 

of the stream. Areas with high stream power have high ero-

sion potential [23] (Figure 2k). The SPI can be defined using 

equation 1, [40]. 

𝑆𝑃𝐼 = 𝐴𝑠 × 𝑡𝑎𝑛 𝛽               (1) 

Where, AS is the specific catchment's area and β is the local 

slope gradient measured in degrees. 

Topographic Wetness Index (TWI) indicates the effect of 

topography on the location and size of saturated source areas 

of runoff generation [23] (Figure 2l). It is based on the as-

sumption of steady state conditions and uniform soil proper-

ties. TWI is defined using equation 2 [8]. 

TWI=ln
S

tan α
                (2) 
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Where, S is the cumulative upslope area draining through 

point (per unit contour length) and α is the slope gradient (in 

degrees). 

   
                       a                                b                               c 

   
                        d                               e                               f 

   
                        g                               h                                i 

American%20Journal%20of%20Environmental%20Science%20and%20Engineering


American Journal of Environmental Science and Engineering  http://www.sciencepg.com/journal/ajese 

 

53 

   
                    j                                   k                                    l 

Figure 2. Spatial thematic maps of gully conditioning factors at Dodota Alem watershed: a) land use and land cover (LULC), b) soil type, c) 

altitude, d) slope, e) aspect f) profile curvature, g) plan curvature, h) drainage density, i) distance from road, j) distance from stream, k) 

stream power index (SPI) and l) topographic wetness index (TWI). 

Multi-collinearity analysis 

In this study, multi-collinearity was tested by combining 

results from the variance inflation factor (VIF) and tolerance 

(TOL), which are commonly used in different fields, includ-

ing gully erosion [5, 50]. Since, multi-collinearity was eval-

uated using VIF, which represents the multiplicative inverse 

of TOL, calculated as 1 – r
2
, where r

2
 is obtained by the re-

gression of each variable for the remaining variables. When 

values of TOL and VIF are ≤ 0.1 and ≥ 5 this indicates mul-

ti-collinearity among independent variables, respectively 

[18]. 

Models for gully erosion susceptibility mapping 

The frequency ratio (FR), Index of entropy (IoE), and 

random forest (RF) models were used to build the GESM. It 

was finally classified as ―low‖, ―moderate‖, ―high‖, and ―very 

high‖ using the natural break method using ArcGIS [30]. This 

classification method was selected as it reduces variance 

within a class. The RF model was also utilized to rank the 

most valuable gully erosion predictor factor. 

Frequency ratio model (FR) 

The Frequency ratio is a bivariate statistical method and a 

simple geospatial assessment tool for identifying the proba-

bilistic relationship between dependent and independent fac-

tors [49]. FR is the ratio of gully erosion probability of oc-

currence to non-occurrence within a gully predictor factor 

class. The FR can be described as in equation 3 [5]: 

𝐹𝑅 = (𝐴 𝐵⁄ ) (𝐶 𝐷⁄ )⁄                (3) 

Where, A is the number of gully erosion pixels for each 

class of predictor factors, B is the total number of gully ero-

sion pixels in the study area, C is the number of pixels in 

each class of gully predictor factor, and D is the number of 

total pixels in the study area.  

Index of entropy (IoE) 

The second bivariate approach which was used for as-

sessing gully susceptibility is an index of entropy model. The 

theory of entropy expresses the extent of the disorder, insta-

bility, uncertainty, and imbalance of a system [17, 58]. In 

this method, the value of each factor is considered as ―En-

tropy Index‖. As a result, the entropy value can be used to 

calculate the objective weights of the index system following 

Equations 4-9 have been used [17]: 

Pij =
b

a
                 (4) 

(Pij) =
Pij

∑ Pij
Sj
j=1

                (5) 

Hj = − ∑ (Pij)
Sj
i=1 log2(Pij), J = 1, … , n     (6) 

Hj max = log2 Sj              (7) 

Ij =
Hj max−Hj

HJ max
, I = (0,1), J = 1, … , n        (8) 

Wj = Ij + Pij                 (9) 

where a and b are the domain and gully erosion percentages, 

respectively, (Pij) is the probability density, Hj and Hj max 

indicate the entropy values and maximum entropy, respec-

tively, Ij is the information value, Sj is the number of classes 

and Wj indicates the resulting weight of factor. Wj‘s values 

range from 0 to 1. One advantage of index of entropy model 

is that it determines weights for each factor based on its in-
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fluence on the model performance after its removal; the more 

it affects the performance, it would gain a higher weight. 

Random Forest (RF) 

Random Forest (RF) is a multivariate nonparametric 

machine learning technique developed by [10]. The model is 

often used to solve multiple problems related to classifica-

tion and prediction [53]. The RF algorithm uses binary trees, 

which use a set of observations via bootstrapping techniques. 

Every tree was trained using two thirds of the randomly 

selected training samples, while the remaining one third of 

the training samples, called out-of-bag (OOB) samples, were 

used to test the model result [1]. The RF is a powerful deci-

sion tree classifier that predicts well when there is missing 

data, avoids over-fitting problems, produces more stable 

results, and is less sensitive to multi-collinearity than other 

machine learning algorithms [13, 19, 32, 38]. It is also 

known for predicting gully erosion very well compared to 

other machine learning algorithms [21]. 

The RF utilizes two types of errors, mean decrease accu-

racy (MDA) and mean decrease Gini (MDG) index in the 

ranking of factors. The MDA plot illustrates how much 

accuracy the model loses by excluding each variable. The 

more the accuracy suffers, the more important the variable is 

for the successful classification. The MDG is a measure of 

how each factor contributes to the uniformity of the nodes 

and leaves in the resulting random forest. The higher the 

value of the MDA or MDG score, the greater the importance 

of the variable in the model [38]. In this study, the ‗random 

forest‘ package in R 4.2.0 [34] was utilized to implement the 

RF algorithm. 

2.3. Accuracy Assessment 

In this study, model performance was assessed using the 

area under the ROC curve (AUC). The ROC (receiver oper-

ating characteristic) curve and the AUC (area under the 

curve) were used to validate and the assess accuracy of the 

models [15]. ROC is used for evaluating the predictive accu-

racy of a chosen model. The AUC identifies the model per-

formance by predicting the occurrence or nonoccurrence of 

gullies. The most accurate model has a curve with the high-

est AUC [15]. This method has been successfully used in 

gully erosion prediction research [2, 26, 49]. 

3. Results and Discussion 

3.1. Multi-Collinearity Test 

The result of the multi-collinearity test showed that VIF 

ranges from 1.26 to 2.96, while the TOL varies from 0.34 to 

0.80 (Table 1). VIF values greater than 5 or 10, with corre-

sponding TOL values less than 0.1, indicate serious mul-

ti-collinearity among factors [44]. This analysis showed that 

the TOL and VIF of the 12 factors were greater than 0.1 and 

less than 5, respectively. which indicates there is no mul-

ti-collinearity among these factors. 

Table 1. Multi-collinearity test statistics of gully predictor variables. 

Conditional factor 

Multi-collinearity 

Tolerance VIF 

Altitude 0.527 1.897 

Aspect 0.360 2.779 

Profile curvature 0.353 2.834 

Plan curvature 0.638 1.568 

Drainage density 0.337 2.963 

Distance from road 0.458 2.185 

Distance from stream 0.375 2.669 

LULC 0.605 1.652 

Slope 0.380 2.633 

Soil 0.565 1.770 

SPI 0.796 1.257 

TWI 0.356 2.808 

Results of frequency ratio model (FR) 

The FR values were estimated based on the spatial rela-

tionship of gully erosion locations and the twelve condition-

ing factors. As shown in Table 2, when a class of a factor has 

the FR value higher than 1, it is assumed that the class is 

susceptible to gully erosion [5]. A frequency ratio model 

revealed that most gully erosion occurs at elevations of 1846 

to 2047 m (5.05). The elevation range of 2048 to 2293 m has 

a FR value of 1.06. Elevations between 1527 and 1677 m 

had the lowest frequency ratio (0.00). Based on FR values, 

the southwest and south aspects had the highest susceptibility 

to gully erosion, with a value of 2.89 and 1.95, respectively. 

The lowest values were found in the flat (0.35) and southeast 

(0.54) part of the watershed. which is primarily due to denser 

vegetation cover compared to southwest and south aspect [57, 

60]. The correlation between profile and plan curvatures and 

gully erosion showed that the concave plan and convex 

slopes had the highest FR values, 1.87 and 1.03, respectively. 

However, less influence is found when the curvature is zero 

or plain. Runoff accumulation and subsequent flow could 

exacerbate gully erosion [1, 21]. 

There is an increasing trend in FR values with increasing 

drainage density factor values. The highest FR value for the 

drainage density factor classes is 2.04 (3.1–5.0 km/km
2
) and 

the smallest FR value is 0.85 (0-1 km/km
2
). In general, this 

can be explained by the relationship between high drainage 

density and increased runoff, which eventually increases the 

likelihood of gully erosion [49]. The highest FR value for the 
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distance of the road factor is 1.61 for the class of 631 to 1443 

m, followed by the next class (1.16). In the case of distance 

from the stream, the highest FR value is 1.52 for class of 0 to 

100 m, followed by the second class (0.55). The lower FR 

values is explained by other studies that indicated the associ-

ation between the development of gullies and their proximity 

to rivers and roads has an inverse trend [15]. 

Among the different LULC, the degraded and cultivated 

land categories had the highest FR values (2.45 and 1.01), 

indicating maximum gully susceptibility. This demonstrates 

how vegetation has a detrimental impact on gully formation 

since it can limit surface runoff and, consequently, gully ero-

sion. This result is consistent with [62], which found that 

compared to bare and agricultural regions, forested areas 

experience less erosion in the form of gullies. In the case of 

slope, the 16 to 30% classes have a FR value of 3.38, while 

the classes with slopes of between 0 to 5 % have the lowest 

FR values, 0.52. In some regions, gullies are also common 

features in hilly areas with steep slopes because of high run-

off velocities [24, 54, 59]. 

The relationship between soil type and gully occurrence 

showed that areas with Vertic cambisols have high sensitivi-

ty to gully erosion, with the highest FR value of 2.88, fol-

lowed by Mollic andosols with the FR value of 0.80. Ac-

cording to [42], Vertisols are more susceptible to gully ero-

sion because of their high propensity for swelling and 

shrinkage. The fourth class of the SPI had the highest FR 

value (2.11), while the first class (0 to 384) had the lowest 

FR value (0.99). According to [41], SPI represents the 

catchment area of concentrated runoff; hence, the higher the 

SPI, the greater the chance of a gully occurring. In the pre-

sent scenario, the first class of TWI had a greater FR value 

(FR = 1.29), followed by the fourth (FR = 0.94). According 

to [45], non-uniform topography within small catchments is 

a major factor controlling the spatial variability of soil water, 

and the location and development of gullies. 

Table 2. Spatial relationship between class of each conditioning factor and gully erosion using FR. 

Factor Class 

Total Pixels Gully Pixel FR 

Number % Number % 

 

Altitude 

1527 - 1677 304,286 35.2 - 0.0 0.000 

1678 - 1845 334,109 38.7 1,998 16.7 0.432 

1846 - 2047 120,226 13.9 8,416 70.3 5.054 

2048 - 2293 105,529 12.2 1,554 13.0 1.063 

Aspect 

Flat (-1) 62,051 7.8 331 2.8 0.354 

North (0°to 22.5°) 112,050 14.1 1,523 12.7 0.902 

Northeast (22.5° to 67.5°) 164,951 20.8 2,660 22.2 1.071 

East (67.5° to 112.5°) 96,244 12.1 1,574 13.2 1.086 

Southeast (112.5° to 157.5°) 59,193 7.5 482 4.0 0.541 

South (157.5° to 202.5°) 7,604 1.0 223 1.9 1.947 

Southwest (202.5° to 247.5°) 10,149 1.3 442 3.7 2.891 

West (247.5° to 292.5°) 81,763 10.3 1,147 9.6 0.931 

Northwest (292.5° to 337.5°) 158,914 20.0 2,700 22.6 1.128 

North (337.5° to 360°) 41,325 5.2 881 7.4 1.415 

Profile curvature 

-5.8 - -0.6 139,907 16.2 1,974 16.7 1.034 

-0.5 - 0 162,262 18.8 2,206 18.7 0.997 

0.1 - 0.6 256,892 29.7 3,438 29.2 0.981 

0.7 - 3.8 305,089 35.3 4,169 35.4 1.002 

Plan curvature 

Concave 10,042 1.2 260 2.2 1.870 

Plan 844,334 97.7 11,538 96.4 0.987 

Convex 9,774 1.1 165 1.4 1.219 
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Factor Class 

Total Pixels Gully Pixel FR 

Number % Number % 

 

Drainage density 

0-1 263,820 30.5 3,094 25.9 0.847 

1.1-2 289,211 33.5 3,469 29.0 0.866 

2.1-3 239,404 27.7 3,381 28.3 1.020 

3.1-5 71,629 8.3 2,020 16.9 2.037 

Distance from Road 

0 - 630 361,326 41.8 3,643 30.9 0.739 

631 - 1443 259,563 30.0 5,714 48.5 1.614 

1444 - 2471 149,655 17.3 2,362 20.0 1.157 

2472 - 4228 93,606 10.8 68 0.6 0.053 

Distance from stream 

0 - 100 398,074 46.0 8,363 69.8 1.517 

100 - 200 258,492 29.9 1,965 16.4 0.549 

200 - 300 125,907 14.6 945 7.9 0.542 

300 - 900 82,059 9.5 701 5.9 0.617 

LULC 

Settlement 46,360 5.4 38 0.3 0.060 

Shrubs 19,956 2.3 9 0.1 0.033 

Degraded 37,910 4.4 1,266 10.7 2.445 

Cultivable 757,951 87.9 10,465 88.9 1.011 

Slope 

0 - 5% 446,883 51.8 3,109 26.8 0.517 

6 - 10% 325,212 37.7 5,179 44.6 1.183 

11 - 15% 65,468 7.6 2,192 18.9 2.488 

16 - 30% 24,615 2.9 1,122 9.7 3.387 

Soil 

Eutric fluvisols 30,857 3.6 - 0.0 0.000 

Eutric regosols 649,208 75.2 4,733 40.6 0.541 

Mollic andosols 7,796 0.9 84 0.7 0.799 

Vertic cambisols 175,985 20.4 6,833 58.7 2.879 

SPI 

0 - 384 859,444 99.5 11,440 98.3 0.988 

385 - 2072 4,312 0.5 164 1.4 2.823 

2073 - 6907 365 0.0 36 0.3 7.321 

6908 - 19571 29 0.0 2 0.0 5.119 

TWI 

3 - 6 301,814 34.9 5,263 45.2 1.294 

7 - 8 369,035 42.7 4,264 36.6 0.858 

9 - 10 131,715 15.2 1,336 11.5 0.753 

11 - 19 61,586 7.1 779 6.7 0.939 

 

Results of index of entropy (IoE) 

Table 3 shows the relationship between parameters and 

gully erosion locations by the index of entropy model. Alti-

tude, SPI, LULC, soil, and TWI variables, with correspond-

ing weights of 0.84, 0.55, 0.42, and 0.42, have a major effect 

on gully erosion. With scores of 0.001, 0.07, and 0.07, re-

spectively, profile curvature, drainage density, and distance 

from stream had the least effect on gully erosion. In Table 3, 
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the Pij values of all factors (land use and land cover (LULC), 

soil, altitude, slope, aspect profile curvature, plan curvature, 

drainage density, distance from road, distance from stream, 

stream power index (SPI), and topographic wetness index 

(TWI)) show comparable results with the FR model. Previ-

ous studies have also evaluated the effectiveness of applying 

an index of entropy model for gully erosion susceptibility 

mapping [4, 3, 60]. Finally, GESM was calculated by sum-

ming each weighted factor to generate a gully erosion sus-

ceptibility map. 

Table 3. Spatial relationship between each conditioning factor and gully erosion using IoE model. 

Factor Class 

Total Pixels Gully Pixel 

Pij (Pij) Hj Hjmax Ij Wj 

Number % Number % 

Altitude 

1527 – 1677 304,286 35.2 - 0.0 0.000 0.000 0.973 2.000 0.513 0.841 

1678 – 1845 334,109 38.7 1,998 16.7 0.432 0.066 
    

1846 – 2047 120,226 13.9 8,416 70.3 5.054 0.772 
    

2048 – 2293 105,529 12.2 1,554 13.0 1.063 0.162 
    

Aspect 

Flat (-1) 62,051 7.8 331 2.8 0.354 0.029 3.111 3.322 0.063 0.078 

North (0°to 22.5°) 112,050 14.1 1,523 12.7 0.902 0.074 
    

Northeast (22.5° to 67.5°) 164,951 20.8 2,660 22.2 1.071 0.087 
    

East (67.5° to 112.5°) 96,244 12.1 1,574 13.2 1.086 0.089 
    

Southeast (112.5° to 157.5°) 59,193 7.5 482 4.0 0.541 0.044 
    

South (157.5° to 202.5°) 7,604 1.0 223 1.9 1.947 0.159 
    

Southwest (202.5° to 247.5°) 10,149 1.3 442 3.7 2.891 0.236 
    

West (247.5° to 292.5°) 81,763 10.3 1,147 9.6 0.931 0.076 
    

Northwest (292.5° to 337.5°) 158,914 20.0 2,700 22.6 1.128 0.092 
    

North (337.5° to 360°) 41,325 5.2 881 7.4 1.415 0.115 
    

Profile Cur-

vature 

-5.8 - -0.6 139,907 16.2 1,974 16.7 1.034 0.258 1.9997 2.000 0.0001 0.0001 

-0.5 – 0 162,262 18.8 2,206 18.7 0.997 0.248 
    

0.1 - 0.6 256,892 29.7 3,438 29.2 0.981 0.244 
    

0.7 - 3.8 305,089 35.3 4,169 35.4 1.002 0.250 
    

Plan curva-

ture 

Concave 10,042 1.2 260 2.2 1.870 0.286 1.379 1.585 0.130 0.176 

Plan 844,334 97.7 11,538 96.4 0.987 0.151 
    

Convex 9,774 1.1 165 1.4 1.219 0.186 
    

Drainage 

Density 

0-1 263,820 30.5 3,094 25.9 0.847 0.178 1.890 2.000 0.055 0.066 

1.1-2 289,211 33.5 3,469 29.0 0.866 0.182 
    

2.1-3 239,404 27.7 3,381 28.3 1.020 0.214 
    

3.1-5 71,629 8.3 2,020 16.9 2.037 0.427 
    

Distance 

from Road 

0 – 630 361,326 41.8 3,643 30.9 0.739 0.207 1.606 2.000 0.197 0.176 

613 – 1443 259,563 30.0 5,714 48.5 1.614 0.453 
    

1444 – 2471 149,655 17.3 2,362 20.0 1.157 0.325 
    

2472 – 4228 93,606 10.8 68 0.6 0.053 0.015 
    

Distance 

from stream 

0 – 100 398,074 46.0 8,363 69.8 1.517 0.470 1.835 2.000 0.082 0.066 

100 – 200 258,492 29.9 1,965 16.4 0.549 0.170 
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Factor Class 

Total Pixels Gully Pixel 

Pij (Pij) Hj Hjmax Ij Wj 

Number % Number % 

200 – 300 125,907 14.6 945 7.9 0.542 0.168 
    

300 – 900 82,059 9.5 701 5.9 0.617 0.191 
    

LULC 

Settlement 46,360 5.4 38 0.3 0.060 0.017 1.049 2.000 0.476 0.422 

Shrubs 19,956 2.3 9 0.1 0.033 0.009 
    

Degraded 37,910 4.4 1,266 10.7 2.445 0.689 
    

Cultivated 757,951 87.9 10,465 88.9 1.011 0.285 
    

Slope 

0 - 5% 446,883 51.8 3,109 26.8 0.517 0.068 1.730 2.000 0.135 0.256 

6 - 10% 325,212 37.7 5,179 44.6 1.183 0.156 
    

11 - 15% 65,468 7.6 2,192 18.9 2.488 0.328 
    

16 - 30% 24,615 2.9 1,122 9.7 3.387 0.447 
    

Soil 

Eutric fluvisols 30,857 3.6 - 0.0 0.000 0.000 1.212 2.000 0.394 0.416 

Eutric regosols 649,208 75.2 4,733 40.6 0.541 0.128 
    

Mollic andosols 7,796 0.9 84 0.7 0.799 0.189 
    

Vertic cambisols 175,985 20.4 6,833 58.7 2.879 0.682 
    

SPI 

0 – 384 859,444 99.5 11,440 98.3 0.988 0.061 1.728 2.000 0.136 0.554 

385 – 2072 4,312 0.5 164 1.4 2.823 0.174 
    

2073 – 6907 365 0.0 36 0.3 7.321 0.450 
    

6908 – 19571 29 0.0 2 0.0 5.119 0.315 
    

TWI 

3 – 6 301,814 34.9 5,263 45.2 1.294 1.000 1.184 2.000 0.408 0.392 

7 – 8 369,035 42.7 4,264 36.6 0.858 0.663 
    

9 – 10 131,715 15.2 1,336 11.5 0.753 0.582 
    

11 – 19 61,586 7.1 779 6.7 0.939 0.725 

    
 

Results of random forest (RF) 

To prioritize the conditioning factors of gully erosion sus-

ceptibility, MDA and MDG errors were calculated (Figure 3, 

Table 4). Results showed that drainage density (4.97), alti-

tude (4.94) and distance from road (4.84) are the greatest 

impact on gully erosion whereas SPI (0.49) and plan curva-

ture (-1.00) are least contributing factors based on MDA. 

According to MDG distance from road (0.42), LULC (0.39), 

and soil type (0.38) hold the greatest importance on gully 

erosion occurrence whereas plan curvature (0.05) and SPI 

(0.03 had the lowest important. MDA and MDG errors in 

random forest algorithm have been commonly utilize in many 

fields and showing a good performance for factor importance 

[12, 16, 19, 33, 49]. Consequently, using ArcGIS, gully ero-

sion susceptibility map (GESM) was created and classified 

into four classes including low, moderate, high, and very 

high susceptibility according to natural break method. 
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Figure 3. Two measures of variable importance (MDA and MDG) calculated by the random forest algorithm. 

Table 4. Conditioning factors of importance based on the random 

forest model. 

Factors 0 1 MDA MDG 

Altitude 4.70 4.71 4.94 0.33 

Aspect 4.35 4.33 4.40 0.30 

Profile curvature 4.28 4.21 4.29 0.30 

Plan curvature -1.00 -1.00 -1.00 0.05 

Drainage density 4.87 4.79 4.97 0.35 

Distance from road 4.76 4.66 4.84 0.42 

Distance from stream 3.34 3.32 3.44 0.29 

LULC 4.40 4.39 4.56 0.39 

Slope 4.35 4.40 4.42 0.33 

Soil 2.54 2.58 2.61 0.38 

SPI 0.73 0.00 0.49 0.03 

TWI 4.00 3.88 4.10 0.37 

MDA= Mean decrease accuracy; MDG=Mean decrease Gini; 1= 

Gully presence and 0=Gully absence 

3.2. Gully Erosion Susceptibility Maps (GESMs) 

Through the use of bivariate statistical models (FR and 

index of entropy) and machine learning with random forest, 

the susceptibility to gully erosion was compared. According 

to the FR approach, gully erosion was classified with low, 

moderate, high, and very high classes of susceptibility with 

an area coverage of 34.9%, 32.4%, 25.1%, and 7.6% of the 

total area of the Dodota Alem watershed, respectively (Table 

5) (Figure 4). Most of the watershed area falls into low 

(37.5%) and moderate (37.3%) gully erosion susceptibility 

classes according to the IoE model. High and very high sus-

ceptible classes accounted for only 20.9% and 4.2%, respec-

tively. Based on gully erosion susceptibility derived by RF, 

more or less equal area of the watershed was devoted to low 

(27.8%), moderate (28.2%) and high (25.7%) susceptibility 

classes, while very high classes of susceptibility covered 18% 

of the total area. 

Although only a small portion of the entire area was desig-

nated as having a high sensitivity to gully erosion, it can 

nonetheless have a considerable impact on sediment yield 

when compared to other classes which is may be attributed to 

the spatial distribution in the Dodota Alem watershed. Con-

sidering all models predicting the spatial distribution of gully 

erosion susceptibility, the RF models estimated relatively 

larger areas that fall under very high susceptibility class 

(18.3%) than the areas that fall under very high susceptibility 

class (17-30%). However, FR and IoE estimated less area of 
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proportion under very high gully erosion susceptibility class 

(nearly 4-8%). Overall, the IoE method appeared to underes-

timate severe gully erosion features compared to other models. 

   
                      a                                  b                                 c 

Figure 4. Spatial variability of gully erosion susceptibility using three models at Dodota Alem watershed: a) Frequency ratio, b) Index of 

entropy, c) Random Forest. 

Table 5. Classification for gully erosion susceptibility for FR, IoE, and RF models. 

Class 

FR IoE RF 

Area (ha) Percent Area (ha) Percent Area (ha) Percent 

Low 4562.0 34.9 4909.2 37.5 3636.8 27.8 

Moderate 4237.8 32.4 4882.0 37.3 3686.2 28.2 

High 3284.3 25.1 2731.5 20.9 3353.5 25.7 

Very high 991.3 7.6 552.6 4.2 2395.4 18.3 

Total 13075.3 100 13075.3 100 13072.0 100 

 

3.3. Gully Susceptibility Model Validation 

The susceptibility map obtained has been further vali-

dated. The area under the curve (AUC) approach was used 

to evaluate the model accuracy [39]. This curve indicates 

the accuracy and reliability of a predicting system. [49] 

classified the AUC values: 0.5–0.6= poor; 0.6–0.7=average; 

0.7–0.8=good; 0.8–0.9=very good; and 0.9–1= excellent. 

For this study, the FR, IoE, and RF models gave AUC val-

ues of 0.91, 0.88, and 0.93, respectively (Figure 5). The 

outcome indicates that FR and RF models have excellent 

prediction accuracy. 

 
Figure 5. The area under the curve (AUC) of FR, IoE, and RF 

models. 
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4. Conclusions 

The formation of gullies in the study area is not caused 

by a single factor; rather, all twelve of the 

geo-environmental factors we looked at were found to be 

significant for the gully development in the Dodota Alem 

watershed. VIF and TOL indicate that there is no mul-

ti-collinearity among them. The gully erosion susceptibility 

maps were successfully produced for the study area based 

on the results of validation using AUC models, which 

demonstrated their excellent prediction efficiency for all 

models. However, machine learning (RF) demonstrated the 

highest accuracy, followed by FR and IoE. Among the fac-

tors, distance from roads had the strongest effect on gully 

erosion susceptibility based on machine learning algorithms 

of MDG, whereas SPI was the most important factor ac-

cording to FR and IoE models. The spatial distribution of 

gully erosion susceptibility classes, when considering all 

the models, indicates that the majority of the watershed is 

moderately to highly susceptible to gully erosion. 

Therefore, the results of this study can help decision mak-

ers and planners to take suitable soil and water conservation 

measures to reduce the severe problems of land degradation 

based on the gully erosion susceptibility map. At the same 

time cost-effective, fast, and well-informed decisions to di-

minish and evade the damage and losses caused by gully 

erosion should be planned at the area. Moreover, this ap-

proach could be used as a guideline for future research to 

examine the susceptibility of gully erosion. 
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