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Abstract: The accurate detection and extraction of building information from aerial imagery is of paramount importance in
urban planning, land use analysis, and disaster management. This study presents a comprehensive investigation into the
development of a robust and efficient methodology for building detection in satellite imagery utilizing state-of-the-art deep
learning techniques. We conducted a comparative analysis of three distinct semantic segmentation models based on the U-Net
architecture: a baseline U-Net trained from scratch, a U-Net incorporating a pre-trained ResNet34 encoder, and a U-Net with
custom architectural enhancements. Our methodological approach encompassed data augmentation strategies, transfer learning
techniques, and ensemble methods to optimize model performance. The Inria Aerial Image Labelling Dataset served as the
primary source for model training and validation. We explored the efficacy of various loss functions, including dice loss, focal
loss, and weighted cross-entropy, to address class imbalance and enhance segmentation accuracy. Model performance was
rigorously evaluated using a comprehensive set of metrics, including pixel-wise accuracy, Intersection over Union (IoU), and
Fl-score. Our highest-performing individual model achieved a dice score of 92 percent on the validation set, while the
implementation of ensemble techniques further improved detection accuracy to 93 percent on the heldout test set.
Post-processing algorithms, incorporating traditional computer vision methods, were applied to refine building polygon
delineation. This research demonstrates the efficacy of deep learning-based segmentation approaches for building detection in
aerial imagery and offers valuable insights into potential applications across various domains, including urban planning,
construction monitoring, and disaster response. Future research directions may explore building classification, change detection
analysis, and model optimization for real-time applications in dynamic urban environments.

Keywords: Building Detection, Aerial Imagery, Semantic Segmentation, U-Net, Deep Learning, Ensemble Methods,
Satellite Image Analysis, Urban Planning

1. Introduction 2. Methodology

We plan on reproducing semantic segmentation CNN We have decided to work on three different models

models based on U-Net [2] and Res-U-net [3] algorithms,
trained by transfer learning using the ImageNet dataset.
In addition, we will optimize these different models with
focal loss, dice loss, cross entropy loss, hierarchical loss
and differently weighted intersection-over-union [IoU] loss to
overcome issues of scale difference [3] in building detection.
To clearly delineate each individual member’s contribution, we
will be organizing our paper by each member’s contribution.

in parallel, which are inherently different on following
parameters:

1. Architecture of models: We have decided to use
different variations of UNet architectures, which might
help us focus of different patterns easily.

2. Pre-training usage of the models: We have employed
training from scratch as well using pre-trained weight
for the encoder layers across out 3 of the models.
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3. Loss functions being employed by models: We have
used different loss functions in all the different models.
4. Image sampling and augmentations employed: We
have used totally different techniques to samples the
images from the data sets available to introduce the
component of randomness in data distribution across
models. While model 1 and 2 have used random resized
crops of size 224x224 from big 5000x5000 images
and masks; model 3 has resorted to fixed size split of
big 5000x5000 images in 512x512 tiles. Both these
sampling techniques have again used totally different set
of transforms with different quantifiers.
While we have details of all the models provided in the
sections 3, 4 and 5, here is a quick overview of the ensemble
technique exploited by us:

(a) model 1 output

(b) model 2 output

1. Get prediction from all 3 models. All predictions must
of same size as input image. We output thresholded
mask as tensor of softmax probabilities.

2. Chose the most confident pixel from each of these
masks from 3 models for every pixel location’s softmax
probability. This is will be single merged mask of same
size as input.

3. From merged mask predicted, drop anything that is not
at least 0.75 confident. Rational behind doing this is that
we have already chose most confident pixel locations
from 3 models masks, So, all the softmax value at this
stage must be pretty confident ones at least in one of the
models.

As seen in the figure 1. We have final mask, which is without
any less confident pixel.

(c) model 3 output

(d) Ensemble model’s output

Figure 1. Ensemble method being employed. Output softmax probabilities are compared and chosen to select most confident pixels of 2 models and thresholded to be at least 75%

confident to be considered for final mask.

3. Standard U-Net Architecture

As all three models are derived from U-net, we will begin
with a discussion of the canonical U-net architecture. U-net
is a modular model largely consisted of encoder blocks and
decoder blocks. A graphical depiction of a u-net model can be
found in Figure 5.

3.1. Encoder Blocks

The encoder layer is primarily responsible for detecting the
’what’ elements of the images. The goal is to be able to extract
features in the image at different scales and different levels
of abstraction. As such, at every steps of the encoder, two
2D convolutional blocks are used to extract information from
the image and double the size of the feature space. At each
encoder layer, we used a maxpool layers of 2x2 kernel size
and a stride of 2 for down sampling spatially. This allowed
us to increase the number of filters at each of our encoder
layers without being extremely computationally expensive and
increase the receptive field of our filters with deeper layers
allowing for segment detection at multiple scales.

3.2. Decoder Blocks

The decoder layers are the up sampling layers in the model.
The primary purpose of these layers is to localize the features
extracted in the encoder block. This information is essential
in our semantic segmentation in order to be able to output an
image with the buildings detected localized in the right spaces
in our output mask. For up sampling, we used Transposed
Convolution layers. This allows us to ultimately assign class
labels to each pixel in our image as part of our semantic
segmentation.

At each of our decoder layers, we also make use of skipped
connection given to us by the respective encoder layer for
our decoder layer. The skipped connections cross from same
sized part in the encoders to the decoders. The skipped
connections allow us to overcome problem of vanishing
gradient, increasing dimensionality and help regain the initial
spatial information that we lost during the encoding path.

3.3. Integration

A full u-net model is composed of N encoder blocks, and N-
1 decoder blocks. The feature space of the first encoder block
is a hyperparameter but seems to be often set to 64 or 128. Save
for the last encoder block, the output of the final convolutional
layer in each encoder block is cropped and concatenated with
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the output of the transposed convolutional layer of the decoder
block. At the end of the model, a 1x1 convolutional layer is
used to create a classifier head with the same features space as
the number of classes. This can be passed to a softmax layer
to produce class probabilities.

4. Model 1 Approach [Christian]

4.1. Data Pipeline and Exploration

For this project, we used the Inria Aerial Image Labelling
Dataset for training [4]. The dataset consists of 360 [180
train and 180 test] 5000x5000 pixel full-color images with
corresponding masks indicating the presence of building or
non-building pixels. Only the training set had ground-truth
segmentation masks available. Images were taken from a
variety of settings, including rural and urban cities from
different continents. A few problems had to be solved to enable
training with this dataset: data augmentation and quick random
access.

4.1.1. Data Pre-processing and Augmentation

To generate more data for training, data augmentation was
undertaken. Pytorch’s standard transformation library does not
make allowances for maintaining consistent transformations
between an image and a segmentation mask, so the functional
transforms library was used, which allows for the randomness
to be provided by external variables, which can be held static
between the ground truth and full-color images. For each of
the 180 input training images, 350 224x224x3 image patches
were created. This was intended to allow transfer learning for
networks trained on ImageNet. A patch was taken from the
image with random width [between 100 and 500 px], height
[within +/- 10% of the random width], and image origin.
This image was then randomly flipped horizontally and/or
vertically and normalized by ImageNet standard deviation and
mean. The intention of this was to teach the model scale and
orientation invariant features. Once the incoming data was
processed, it was split 80/20 into train and validation sets. Data
from all 5 cities in the dataset was randomly selected for both
validation and training set, as the test set consists of different
cities and would be usable for testing how well the model can
generalize. A manual seed was set such that this split was
repeatable if restarting training from a checkpoint.

4.1.2. Caching

It was found that performing the loading of the full-color
images and performing transformations on the fly was too
computationally intensive. To alleviate this problem, after the
first time the transformations were done, the resulting input
and target tensors were saved to disk. This reduced the time to
train significantly, as a 70 MB image did not have to be loaded
and manipulated thousands of times per epoch, but instead a
600 KB tensor could be used.

4.1.3. Other Considerations

It was also deemed important to add support for
visualization of training-related metrics. Tensorboard support
was added to the project to track training and validation set loss
and accuracy, precision-recall curves for the validation set, and
visualization of the forward pass of the model on the validation
set. One last consideration made was the use of a seed when
splitting the training and validation set. It was noticed that
when resuming training from a checkpoint that the validation
set was not the same as before the checkpoint. By maintaining
the constant seed, a barrier was maintained between the two
sets.

4.1.4. Dataset Statistics

As is often the case with segmentation tasks, the dataset was
not balanced between building pixels and non-building pixels.
The training dataset was analyzed to determine the prevelance
of each class. The findings are below.

4.2. U-net from Scratch in Pytorch

To test the hypothesis that building detection was a
sufficiently specific domain to merit training from scratch, a
u-net was created with random Xavier-initialized weights. 4
encoder and 3 decoder blocks were used, with the first encoder
block having a hidden dimension of 64 features. Both the
original U-net paper [2] and Johannes Schmidt’s blog posts
[5] were consulted in the creation of the model.

Two major deviations were attempted from the models
mentioned above. Both u-nets resulted in a cropped image
with every convolution due to the use of valid padding.
By using same padding, on convolutions and transposed
convolutions, we can return an image that is of equal size to
the input. This may result in slightly worse accuracy in the
extremities of the image due to the extrapolation employed by
same padding, but does simplify some aspects of the analysis,
as every mask pixel has a corresponding prediction.

Secondly as the output of a 2-class softmax classifier
only has 1 degree of freedom, it was attempted to perform
classification as a single-class regression, with the output of the
regression put through a sigmoid function. This one-channel
output can then be interpreted as p [building]. This approach
was eventually discarded, as it had a very small impact on
model size due to only affecting the final 1x1 convolutional
layer, and adding a second classifier dimension increased
model performance by a few percentage points.

Finally, batch normalization was added between the
convolutional and activation layers in encoder and decoder
blocks. These recenter the distribution of the output of the
convolutional layers and add to stability in training as seen in
[6].

To discourage overfitting, dropout was added between the
output of the final decoder layer and the 1x1 convolution.

4.2.1. Loss Function
3 different loss funcitons were attempted with this model.
With the regression-based approach, weighted mean square
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error was used due to the class imbalance. On a per-batch
basis, the effective number of building and non-building pixels
was calculated on a per-batch basis, similar to the methodology
in [7]. This weighting was weigh the loss on the minority class
[buildings] more heavily.

Once the model had progressed to a two-class method,
two losses were pursued: weighted cross-entropy loss and
dice loss. Dice loss was pursued due to its background
in segmentation tasks and invariance with respect to class
imbalance [as dice loss is related to the size of the true positive
region]. Binary cross-entropy weighted by the inverse of
effective number was also explored. This provides a more
convex loss function that should be easier and more stable to
train.

4.2.2. Training

Training was performed over 20 epochs with the Adam
optimizer. [8] No learning rate scheduler was used to govern
learning rate as epochs progressed, as Adam should manage
its own learning rates on a per-parameter basis [9]. A batch
size of 20 was used to fit in GPU memory. The model state
was saved to disk whenever validation accuracy exceeded the
previous maximum to allow for training to be resumed later.

4.2.3. Results

Figure 2. Training accuracy over 20 epochs for model 1. Weighted CE in orange, Dice
Loss in red.

Figure 3. Validation accuracy over 20 epochs for model 1. Weighted CE in orange, Dice
Loss in red.

Table 1. Model 1 Validation Set results after 20 Epochs.

Loss Fn Accuracy IOU Score F1-Score
Dice 94.9% 0.717 0.836
BCE 95.0% 0.726 0.841

Weighted cross-entropy resulted in marginally better
training efficiency and overall metrics, but by an almost
negligible amount. For both approaches, overfitting does not
appear to be a concern, as the validation and training accuracy
are almost identical.

Though this model performed worse than Model 2, it is hard
to say whether it is due to differences in pre-training or the
squeeze-and-attention layers. It is likely, however, that due to
learning features from scratch, it may provide diversity in the
ensemble that can help in overall accuracy.

5. Model 2 Approach [Ahmed]

5.1. Model Specifications

5.1.1. Double Convolution Blocks

The Unet build consisted of a double convolution layer,
where each convolution layer consisted of a kernel size of 3,
stride and padding of 1. We set the bias to false in order to
add a BatchNorm layer, which is then followed by a ReLU
activation layer. [4] We settled on a small 3X3 kernel receptive
field in our convolution layers in order to be able to detect
very small edges and shapes in our aerial images. Doing so
is especially relevant for our aerial images as there is a lot
of noise in the images and our model needs to be able to use
small edges and shapes to detect buildings as buildings appear
in many different sizes in our input images.

5.1.2. Encoder Layers

The authors in U-Net:  Convolutional Networks for
Biomedical Image Segmentation [2] recommend encoding
layers with output channels 64,128,256, 512 and 1024.
However, we found more success with output channel layers
16,32,64,128 and 256. We believe this is because lower output
channels of 16 and 32 in the start allow us to detect really small
building segments with a small receptive field. In addition,
the 512 and 1024 channel layers were not leading to any
significant performance gains in our testing.

5.1.3. Decoder Layers

At each of our decoder layers, we also make use of skipped
connection given to us by the respective encoder layer for
our decoder layer. The skipped connections cross from same
sized part in the encoders to the decoders. The skipped
connections allow us to overcome problem of vanishing
gradient, increasing dimensionality and help regain the initial
spatial information that we lost during the encoding path [10].
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5.2. Pre-trained ResNet34 Encoder Specifications

We now add ResNet 34 Encoder layers to the model. As
such, we are now performing the Double Convolution blocks
3,4,6, and 3 times at each encoder layer level, using skipped
connections between encoder layers, and using a higher stride
to down sample instead of max pooling. These encoder layers
are also pre-trained on image-net dataset.

5.2.1. Encoder Modifications

After finding success in our U-Net built with 16,32 and 64
output channel initial encoder layers, we replace the initial
ResNet convolution, ReLU and Max Pool layers with our U-
Net 16,32 and 64 output channel encoder layers with skipped
connections in order to preserve a lot of the small shapes and
edges information in our images.

5.2.2. Attention Mechanism

For the loss function, we will be using the Dice Loss to
create cleaner mask segments to represent the buildings. In
order to supplement our model in reducing the Dice Loss,
we also include an attention mechanism using spatial and
channel ’squeeze & excitation” Blocks. [11] This is done to
aid our encoder layers in spatial encoding for more accurate
mask prediction and better network flow. The authors in
Recalibrating Fully Convolutional Networks with Spatial and
Channel ’Squeeze & Excitation’ Blocks [12] found a reduction
of 4-9% in the Dice Loss. We see similar results in our testing.

5.2.3. Results

In our testing, we saw the pre-trained image-net backbone
significantly increase the model performance. After 15 epochs,
we saw the following results.

Table 2. Validation Set results after 15 Epochs.

Set Acc Loss I0U Score F1-Score
Train 0.965 0.116 0.749 0.856
Val 0.961 0.129 0.702 0.824

Detailed Model 2 results and mask outputs available in
appendix Section F

6. Model 3 Distinctive Approach
[Sandeep]

6.1. Data Sampling Strategy

For this model, we have used “Progressive Resizing.” This
is a training technique where we purposefully change the
contents of image by resizing the images to contain more
area. Instead of randomized crops of size 224x224, we created
512x512 non-overlapping and contiguous tiles, only then
resizing them to 224x224 input images. [13] On average, each
tile has almost 4 times more buildings in each tile compared to
model 1 and 2. Hence, the model more easily learns smaller

buildings in more crowded areas [14].

6.2. Architectural Considerations

For model 3, we have evaluated 3 types of encoders
[Resnet18/34/50] and choose ResNet34 as ResNetl8 has
shown to be struggling to encode features of smaller buildings
successfully. ResNet34 and 50 have shown very similar,
but resnet 50 slow performance in detected buildings without
any marginal increase in performance. One more significant
improvement in model 3 was the use of we used Pixel Shuffie
up-sampling in the decoder blocks, as provided by shuffleblock
implementation [15].

6.3. Training and Validation Split

For model 3, we have done the data split on the basis of
geography, instead of random ratio split. Out of training data
from 5 cities as: Austin, Chicago, Kitsap, Tyrol, Vienna.
Different cities are included in each of the subsets. e.g., images
over Chicago are included in the training set, but not on the
test set. Also, images over San Francisco are included on the
test set but not on the training set. At the same time, we
have tried to include the training data all type of structures
of building. e.g. low rise vs high rise vs community living
buildings apartment complexes. [16]

6.4. Custom Loss Function Design

Model 3 did not used CrossEntropy loss. Instead, we have
written our own custom loss function, which has helped us
predict foreground pixel with higher softmax confidence. [17]
We implemented Combined Loss of Dice Loss and Focal Loss
with equal weights. Focal loss penalizing more confident
wrong predictions more heavily. We have used gamma value
of focal loss as 2. Also, Dice score has provided feed back to
strive to keep precision and recall both highest possible. Also,
for model 3, we have used the Dice Score metric.

6.5. Training Convergence

For model 3, we used a LR finder scheduler before starting
to fine tune the pretrained weights of ResNet34 encoder.
This has helped of find the most appropriate maximum LR
value. The second innovative technique employed by us was
“Fit-one-cycle” [18] to achieve super convergence. In this
technique, we increase LR to maximum value in initial batches
before start to anneal the learning rates. Please refer to figure
for LR finder and fit one cycle both [8]. This technique is taken
from Leslie Smith iconic Super Convergence paper. Also, We
trained with total 40 epochs without over-fitting and saved the
model only when better score on validation was seen without
over-fitting, while Dice score was approaching 92%. [1]

Table 3. Model 3 Losses and Metrics Values.

Train_Loss Valid_Loss Dice_Score

0.102414 0.115400 0.920870
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our dice score still getting better on unseen test
data. This was investigated and found to be
because of bad labelled data. So, model is still
learning and can be trained for few more epochs.

Figure 4. Model 3 Training Curves.

6.6. Post Processing Enhancements

As can be seen in some our validation images, the masks
created by this model are not always crisp and polygonal.
Please refer to appendix figure for Model 3’s traditional
computer vision techniques of segmentation and attempt to
fuse the results with Unet predicted mask. We have tried to
experiment with Otsu’s threshold, Watershed segmentation,
SLIC Super pixel algorithm for segmentation. [15] We have
selected all the coincidental mask segments from super pixel
algorithms’ output with Unet’s mask and tried to shape correct
polygon for buildings with sharp edges [see figure 10].

7. Experiences and Challenges

7.1. Challenges

Satellite images are very noisy and affected by many factors
such as weather, zoom level, resolution, trees, and cost to
obtain [19]. After evaluating, we used Google Static maps API
for pulling additional data because of quality and ease of use.

7.2. Project Success Criterion

We were able to build model with Dice score more than
90 percent on test set and model 2 achieving detection of
more 96 percent ground truth pixels in valid set. With help
of Softmax based adaptive selection and ensemble, we have
achieved detection of more 93 percent ground truth pixels in
test set.

7.3. Conclusion and Future Aspirations

We have explored and confirmed that deep learning
based segmentation is very effective in segmenting buildings.

We could extend these models for clustering similar
buildings, classifying residential vs commercial, predicting
future constructions or detecting illegal construction or
activities. Potential technical improvements include learned
polygonization, elastic transformations during training, and
model compression for cheaper inference.
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CNN Convolutional Neural Network
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Appendix

A. Code Repository
We have work on total of 4 repositories during our project life cycle. 3 repositories where used by each of us individually
and 1 final repository was created as a place to perform ensemble and integration of all models together and do all the needed
post-processing. Here the repositories as below:
1. Integrated Final repo:
https://github.com/sandeepsign/building _footprint_ensemble
2. Sandeep’s repo:
https://github.com/sandeepsign/building_footprints_cs7643
3. Ahmed’s repo:
https://github.com/abilal19/DL _FinalProject_Draft
4. Christian’s repo:
https://github.com/cswksu/aerialDetection
B. Individual Contributions

Table 4. Individual team member contributions.

Contributor Contribution

Ahmed Full Model 2 [best performing], Project Report

Christian Full Model 1, data preprocessing and visualization for models 1 and 2, Project Report

Sandeep Full Model 3, ensembling, post processing, Geo Coding, VM Setup, Clustering of polygons, Project Report

C. Data Source

We have used INRIA’s spacenet challenge data from:
https://project.inria.fr/aerialimagelabeling/

D. Train Infrastructure

We have used combination of techniques to execute this project.
Each had used individual hardware for setup and eventually to run long time training on google cloud VM instance.
GPUs Used are:

nVIDIA QUADRO RTX 5000 16GB

nVIDIA T4 16GB

nVIDIA GTX 1080ti 11GB

E. Enlarged Figures

Table 5. Class distribution of pixels in training set images.

Class Number of Pixels Percentage Effective Number [3 =1 - 10E-9]
Building 7.1E8 1.58% 5.08E8
Not building 44E10 98.4% 1.00E9

Total 4.5E10 100% 1.00E9
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Figure 5. Example of overall organization of u-net model from [2].

F. Model 2 Results
Model 2 Validation Set Mask Samples

Figure 6. Validation Set Target.
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Figure 7. Validation Set Output.
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G. Model 3 Figures

Image Sobel+Watershed SLIC superpixels

Figure 10. Post processing and merging of traditional segmentation techniques with Unet’s mask and shape correcting polygons for buildings.
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