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Abstract 

Symbiotic associations between endophytic fungi and Chenopodium quinoa have been reported to be beneficial for increasing 

tolerance to drought and soil salinity, being this the only crop grown in the Southern Altiplano of Bolivia. The symbiotic 

interaction of endophytic fungi was investigated, considering their detrimental and mutualistic effects. 38 strains of endophytic 

fungi from the fungal collection of the Faculty of Agronomy were used. The percentage of germination and root length were 

measured in vitro (4 days). The percentage of emergence (7 days) and plant height (14 days) in pots were also evaluated. The 

fungi that did not impair germination were strains VP42, VP44, Alternaria sp. VP37, Fusarium sp. VP05 and Fusarium sp. 

VP30. Fungi that stimulated a significant increase in radicle longitudinal growth were Fusarium sp. VP35, Alternaria sp. VP37 

and strain VP18. Fungi that caused a high mortality rate during the emergence phase were strain VP01, Alternaria sp. VP15, 

Fusarium sp. VP02, Fusarium sp. VP07, Fusarium sp. VP08, Fusarium sp. VP12, Fusarium sp. VP23 and Fusarium sp. VP36. 

The endophytic strains Alternaria sp. VP37, Fusarium sp. VP35 and strain VP18 stimulated superior seedling growth. The 

present research work reveals that some endophytic fungi of the Alternaria and Fusarium genera can behave as pathogens during 

the germination stage, while others have the function of promoting quinoa growth. 
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1. Introduction 

Quinoa (Chenopodium quinoa Willd.), is an annual dicot-

yledonous plant belonging to Amaranthaceae family [1]. 

Currently, it is cultivated in more than 125 countries around 

the world, due to its genetic diversity of seeds preserved by 

generations of farmers in the Andes [2]. It is the only crop 

adapted for thousands of years to the adverse conditions of the 

Southern Altiplano of Bolivia [3, 4]. 

Plant-fungus interactions date back 400-500 million years 

[5-7]. Plants do not thrive isolated, as constantly interact 

closely with various microorganisms, mainly bacteria and 
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fungi [8-11]. Their symbiotic relationship with plants attracts 

attention for its benefits in agriculture. 

Fungi benefits to their host, existing a wide variety of 

plant-fungal symbiotic interactions [12-15]. Favorable inter-

actions, for example, allow plants to adapt to various eco-

systems [16-19]. For quinoa, endophytic fungi (EF) perform 

various functions that improve its resistance to adverse con-

ditions, mitigating abiotic stress [20, 21]. 

Associations can be beneficial [8, 22-25], for example, 

promoting the adaptation and growth of plants in extreme 

conditions [26]. Most plants interact with microorganisms 

[27, 28], EF have been reported in plants that inhabit the 

Arctic, Antarctic, desert, ocean, tropical forests and agri-

cultural fields [29-33]. Growth promoting fungi can protect 

against plant pathogens by increasing tolerance to abiotic 

stress, such as drought, salinity and high temperatures 

through the production of secondary metabolites and hy-

drolytic enzymes [34-36]. This study evaluated the influence 

of EF inoculated in roots and its effects on germination, 

emergence, root development and growth promotion in 

quinoa. Understanding the effect of applying EF in agri-

culture can offer innovative solutions to increase quinoa 

crop productivity by mitigating the conditions of the 

Southern Altiplano of Bolivia. 

2. Materials and Methods 

2.1. Study Area 

The trials were carried out at the Plant Science Laboratory 

of the Faculty of Agronomy of the Technical University of 

Oruro. The HE strains used in this study were partially 

identified and are part of the mycological collection of the 

Faculty of Agronomy, whose specific details are presented 

in Table 1. 

2.2. Fungal Cultivation and Biomass Production 

For in vitro evaluation, axenic culture of EF were prepared 

in Potato Dextrose Agar (PDA) medium at 25°C for 14 days. 

Subsequently, mycelia discs (5 mm) of EF were collected [37] 

to evaluate their promoting or pathogenic effect on quinoa 

germination. For pot tests, EF biomass was produced in 250 

mL flasks inoculating 10 mycelia discs in 50 g of sugarcane 

bagasse. 

2.3. In Vitro Germination and Root Length 

Seeds of quinoa (Pandela rosada variety) were disinfested 

according to González-Teuber et al. [21]. In vitro evaluation 

of EF effect on quinoa germination and root length, consisted 

of applying a mycelia disk in a 100 mm Petri dish with Mu-

rashige and Skoog (MS) medium (38 HE with 3 replicates + 

uninoculated Petri dishes) along with 10 desinfested quinoa 

seeds located around the disk. Petri dishes were incubated at 

16°C for 4 days, with daily monitoring. Finally, germination 

(%) and root length (cm) were evaluated after the incubation 

period [38, 39]. 

Table 1. Endophytic fungi in the current study. 

Specimens Strain code Host Place 

Alternaria sp. VP15 Quinoa root 

Southern 

Alti-plano - 

Bolivia 

Alternaria sp. VP24 Quinoa root 
Southern Alti-

plano - Bolivia 

Alternaria sp. VP37 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP12 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP11 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP16 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP02 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP21 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP22 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP23 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP03 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP30 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP35 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP36 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP39 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP40 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP41 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP43 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP05 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP06 Quinoa root 
Southern Alti-

plano - Bolivia 
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Specimens Strain code Host Place 

Fusarium sp. VP07 Quinoa root 
Southern Alti-

plano - Bolivia 

Fusarium sp. VP08 Quinoa root 
Southern Alti-

plano - Bolivia 

Penicillium 

sp. 
VP32 Quinoa root 

Southern Alti-

plano - Bolivia 

Penicillium 

sp. 
VP38 Quinoa root 

Southern Alti-

plano - Bolivia 

Unknown VP01 Quinoa root 
Southern Alti-

plano - Bolivia 

Unknown VP14 Quinoa root 
Southern Alti-

plano - Bolivia 

Unknown VP18 Quinoa root 
Southern Alti-

plano - Bolivia 

Unknown VP19 Quinoa root 
Southern Alti-

plano - Bolivia 

Unknown VP20 Quinoa root 
Southern Alti-

plano - Bolivia 

Unknown VP28 Quinoa root 
Southern Alti-

plano - Bolivia 

Unknown VP29 Quinoa root 
Southern Alti-

plano - Bolivia 

Unknown VP31 Quinoa root 
Southern Alti-

plano - Bolivia 

Unknown VP33 Quinoa root 
Southern Alti-

plano - Bolivia 

Unknown VP34 Quinoa root 
Southern Alti-

plano - Bolivia 

Unknown VP04 Quinoa root 
Southern Alti-

plano - Bolivia 

Unknown VP42 Quinoa root 
Southern Alti-

plano - Bolivia 

Unknown VP44 Quinoa root 
Southern Alti-

plano - Bolivia 

Unknown VP09 Quinoa root 
Southern Alti-

plano - Bolivia 

 

2.4. Pots Assay: Emergence and Plant Length 

Inoculation of EF in pot experiments consisted of: i) 15 g of 

sugarcane bagasse colonized with the fungus was placed at the 

bottom, ii) 600 g of sterile soil (collected from fallow quinoa 

plots in Southern Altiplano, commonly sandy) into 1 L plastic 

pot (38 pots with 3 replicates + uninoculated pots). Then, all 

pots were covered with sterile plastic bags until sowing. 10 

disinfested quinoa seeds were sown at the surface and covered 

again with sterile plastic bags until germination. The pots were 

kept at room temperature (14°C) with relative humidity of 37%. 

The emergence percentage (%) was evaluated at 7 days and the 

plant length (cm) at 14 days after sowing. 

2.5. Statistical Analysis 

A complete randomized design (CRD) was used for the in 

vitro evaluation and a complete randomized block design 

(RBD) for the pots assay. Analysis of variance (ANOVA) was 

determined using R 4.2.3 software (R Development Core 

2023) and Tukey test was used post-hoc. 

3. Results 

In vitro assay. There were significant differences in ger-

mination of quinoa seeds subjected to 38 EF (p<0.05). EF 

such as Alternaria sp. VP37, Alternaria sp. VP24, Fusarium 

sp. VP05, Fusarium sp. VP30, strains VP44 and VP42 applied 

to quinoa seeds promoted 100% of germination. In contrast, 

EF as Alternaria sp. VP15, Fusarium sp. VP12, Fusarium sp. 

VP23, Fusarium sp. VP02, Fusarium sp. VP08, Fusarium sp. 

VP07, strain VP01 and Fusarium sp. VP36 inhibited the 

germination completely, but Fusarium sp. VP21, strain VP14, 

Fusarium sp. VP43, Fusarium sp. VP39, strain VP31, 

Fusarium sp. VP22 and Fusarium sp. VP16 inhibited 93.33% 

of germination. Other strains showed intermediate values 

(Figure 1). On the other hand, there were significant differ-

ences in root length among the 38 EF (p<0.05). Growth 

promoting fungi based on longitudinal development of roots 

were Fusarium sp. VP35, Alternaria sp. VP37 and strain 

VP18 that reached 49.85, 49.73 and 48.85 mm respectively, 

followed by Alternaria sp. VP24, Fusarium sp. VP05, strains 

VP29 and VP42 and VP44 that promote relatively similar 

quinoa roots varying from 46.43 to 46.12 mm. In contrast, the 

strain VP14 and Fusarium sp. VP43 affected root develop-

ment with 23.28 and 21.98 mm, respectively (Figures 2, 3). 
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Figure 1. Quinoa germination can be influenced by inoculation with endophytic fungi. 

 
Figure 2. Root development of quinoa can be influenced by inoculation with endophytic fungi. 
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Figure 3. In vitro test: Endophytic fungi effect on quinoa root length. (A) Fungus observed to be beneficial as it promotes root growth, (B) 

Fungi has a moderately detrimental effect on root development, and (C) certain endophytic fungi are detrimental to root development. 

Emergence and height of potted plants. Fully emerged 

cotyledons were statistically different in the presence of EF 

(p<0.05). The endophytic fungi that did not cause damage 

were strains VP18, VP19, VP29, VP42, VP44, Fusarium sp. 

VP35, Alternaria sp. VP37, Fusarium sp. VP05, Alternaria sp. 

VP24 and Fusarium sp. VP30, which only limited emergence 

by 3.33%. EF that presented less emergence of cotyledons and 

caused high mortality were Alternaria sp. VP15, Fusarium sp. 

VP07, Fusarium sp. VP08, Fusarium sp. VP02, Fusarium sp. 

VP12, Fusarium sp. VP36, strain VP01 and Fusarium sp. 

VP23 with 96.67% (Figure 4).  

Plant height was statistically significant (p<0.05). Endo-

phytic strains Alternaria sp. VP37, Fusarium sp. VP35 and 

strain VP18 promoted higher plant development reaching 

55.98, 54.95 and 53.58 mm respectively, followed by strains 

VP44, VP42, VP19 and Fusarium sp. VP05 with develop-

ments 44.91, 44.86, 41.52 and 41.62 mm, respectively. 
Fusarium sp. VP03, Fusarium sp. VP06, as well as strains 

VP04, VP31 and VP33, showed a development similar to that 

of plants free of infection by endophytic fungi (control). Other 

endophytic strains had negative effects on plant height com-

pared to the control (Figures 5, 6). 

4. Discussion 

Some EF from quinoa roots have positive effects on ger-

mination, root length, emergence and plant height. However, 

the vast majority caused detrimental effects including death. 

Several studies have described the positive effect of the as-

sociation between EF and several crops [32, 40-46]. The HEs 

that were isolated from the quinoa root of the Atacama Desert, 

had their positive effect on the morphological and 

physiological characteristics of quinoa by inoculation of 

Talaromyces minioluteus and Penicillium murcianum under 

drought and salinity conditions [20, 46]. 

 
Figure 4. Effect of inoculation with endophytic fungi in the emergence phase of quinoa. 
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Figure 5. The effect of inoculation with endophytic fungi on the height growth of quinoa plants. 

EF from quinoa root such as Alternaria sp. VP37, 

Fusarium sp. VP05, Fusarium sp. VP30, strains VP44 and 

VP42 promoted 100% of in vitro (MS and PDA medium) 

germination compared to other endophytes. Moreover, under 

controlled conditions in pots assay, strains Fusarium sp. VP35, 

Fusarium sp. VP05, Alternaria sp. VP37, strains VP18, VP19, 

VP42 and VP44 promoted 100% of plant emergence (Figure 

4). The symbiosis between EF and plants can increase or 

reduce certain phytohormones, for example, by secreting 

indole acetic acid (IAA) and gibberellic acid (GA) that affect 

longitudinal growth of roots and phylosphere [47]. 

   
Figure 6. Impact of endophytic fungi inoculation on quinoa growth. In (A), a positive boost in development is evident due to the mutualistic 

strain. On the other hand, in (B), it is observed that the endophytic fungus has a moderate detrimental effect, while in (C), it is shown that this 

strain is highly detrimental due to its pathogenic behavior. 

Three EF that promoted greatest root elongation were 

Fusarium sp. VP35, Alternaria sp. VP37 and strain VP18, 

reaching a plant height of 55.98, 54.95 and 53.58 mm (Figure 

5). These results reveal that fungi of the Fusarium genus may 
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promote plant growth, probably by producing IAA, nitrogen 

fixation, phosphate solubilization and production of sidero-

phores such as F. annulatum and F. proliferatum [48]. Nev-

ertheless, the relationship between plant-fungus can be bene-

ficial and/or pathogenic [49], for example, those symbionts 

that do not cause any disease symptoms can colonize host 

plants tissues and there are benefits for both parties [50]. In 

contrast, harmful aspects are described to interfere in 

transport of nutrients and water [51], abnormal metabolism in 

different stages of plant growth [52]. These negative effects 

can be controlled by other EF [53], for example, A. fumigatus 

that has the ability to control pathogens by producing afla-

toxins [54]. Based upon the above described, the results of the 

initial vegetative development in this study showed that EF 

can be harmful and/or beneficial on the development of qui-

noa (Figure 6). For example, the strains Alternaria sp. VP37, 

Fusarium sp. VP35 and strain VP18 promoted seedling 

growth, but Fusarium sp. VP02 and Fusarium sp. VP07 are 

the strains that affected longitudinal elongation of the seed-

lings. In root development, 25.92% of EF promoted growth 

and the rest restricted elongation. These results are similar to 

those of other authors such as [55] who reported that there are 

pathogenic fungi of the genus Penicillium. In contrast, there 

are studies that highlighted how EF stimulate the root growth 

to promote nutrients absorption [44], in exchange the plants 

synthesize several hydrolytic enzymes such as xylanase, pec-

tinase, cellulase and proteinase that favor the fungi to access 

plant tissues [32]. Understanding the dynamics of interaction 

between endophytic fungi and crop plants is essential to take 

advantage of the positive effects and mitigate the risks of 

potential pathogenic effects. That is essential for the devel-

opment of agricultural management strategies that optimize 

the use of endophytic fungi in the improvement of crops such 

as quinoa, especially under abiotic stress conditions, such as 

drought and salinity. 

5. Conclusion 

Some strains of EF significantly promote key processes 

such as germination, root growth, emergence and height 

development of quinoa plants. However, other strains exert 

inhibitory effects on these processes, which could be 

detrimental. 

EF with growth-promoting capacity represent a resource 

with great potential for implementation as biostimulants in 

sustainable agricultural systems. However, it is imperative to 

carry out a rigorous and precise selection of strains before 

proceeding with their application in field conditions. 
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