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Abstract 

The dynamic mechanism comprising an enzymatic reaction and the diffusion of reactants and products inside a glucose-sensitive 

composite membrane is described using a mathematical model created by Abdekhodaie and Wu. A set of non-linear steady-state 

reaction-diffusion equations is presented in this theoretical model. These equations have been meticulously and accurately solved 

analytically, considering the concentrations of glucose, oxygen, and gluconic acid, using a novel approach of Akbari Ganji and 

differential transform methods. The high level of agreement between these analytical results and the numerical results for 

steady-state conditions is a testament to the model's precision. A numerical simulation was produced via the precise and widely 

used MATLAB software. A comprehensive graphic representation of the model's various kinetic parameters' effects has also 

been provided. Additionally, a theoretical analysis of the kinetic parameters, such as the maximal reaction velocity (Vmax) and the 

Michaelis-Menten constants (Kg and Kox) for oxygen and glucose, pH profiles with membranes is presented. This expressed 

model is incredibly helpful when creating glucose-responsive composite membranes for closed-loop insulin delivery. 
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1. Introduction 

Worldwide, a large number of people have diabetes. Dia-

betes is a long-term glucose metabolic problem and a leading 

cause of kidney and heart disease. Insulin must be adminis-

tered intravenously or via a pump multiple times a day to treat 

insulin-dependent diabetes and regulate blood sugar levels. 

As a result, numerous types of glucose membrane-containing 

insulin-delivering devices have been researched (Ab-

dekhodaie & Wu). Immobilized glucose oxidase and catalase 

are found in specific systems (Abdekhodaie & Wu; Albin et 

al.,; Traitel et al.,; Podual et al.,; Hassan et al., ; Zhang & Wu, ; 
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Zhang et al.,; Wu et al.). These systems are comprised of 

pH-responsive polymeric hydrogels [1-5]. 

There are two categories of pH-sensitive hydrogels: cati-

onic and anionic. High glucose levels cause cationic hydro-

gels, made of amino groups, to swell in reaction to pH reduc-

tions. The protonation of acidic groups causes anionic hy-

drogels to contract. More theoretical modelling investigations 

of cationic glucose-sensitive membranes have been conducted 

(Abdekhodaie and Wu) [5]. Abdekhodaie and Wu created a 

mathematical model explaining the dynamic process of reac-

tant diffusion and an enzymatic reaction within a glucose 

composite membrane made of hydrophobic poly-

mer-embedded anionic nanoparticles, glucose oxidase, and 

catalase. No analytical solutions for this particular model have 

been documented. However, because they may be subjected to 

multiple manipulations and data analysis types, analytical 

solutions to nonlinear differential equations are generally 

more exciting and valuable than solely numerical solutions. 

Hariharan and Kannan used the Adomian decomposition 

method to address the one-dimensional reaction-diffusion 

problem [6]. According to Rajendran et al., the nonlinear 

second-order reaction-diffusion equations relevant to mem-

brane science can be solved using the Adomian decomposi-

tion approach [7]. Megala et al. generated analytical results 

for the homotopy perturbation method, allowing the con-

struction of glucose-sensitive membranes for closed-loop 

insulin delivery [8]. The glucose-sensitive membranes for 

closed-loop insulin delivery can be developed in this paper 

study that produced analytical results by discussing the in-

fluence of several kinetic factors included in this model by 

Akbari-Ganji and differential transform methods. 

2. Mathematical Formulation of the 

Problem 

Abdekhodaie and Wu state that the reaction scheme for a 

glucose-sensitive membrane made up of immobilized en-

zymes like glucose oxidase and catalase and a pH-sensitive 

anionic hydrogel may be expressed as follows [5]: 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 0.5 𝑂2
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝑜𝑥𝑖𝑑𝑎𝑠𝑒,𝑐𝑎𝑡𝑎𝑙𝑎𝑠𝑒
→                    𝐺𝑙𝑢𝑐𝑜𝑛𝑖𝑐 𝑎𝑐𝑖𝑑 + 𝐻2𝑂                    (1) 

 
Figure 1. Diagrammatic representation of the pore space within the composite membrane, the glucose-responsive volume change of the ani-

onic hydrogel, and the solute permeation paths across the membrane as a function of molecule size. 

Figure 1 shows the suggested mechanism of the composite 

membrane's pH and glucose-responsive permeability to tiny 

and large solutes. Diffusion of glucose and oxygen from the 

medium into the membrane converts glucose to gluconic acid, 

lowering the pH and altering the membrane's permeability to 

solutes. This process indicates that when catalase is in excess, 

just half of an oxygen molecule is utilized for every glucose 

molecule. For non-steady state conditions, the appropriate 

governing non-linear differential equation inside the cationic 

glucose-sensitive membrane can be expressed as 

𝐷𝑖
𝑑2𝑎𝑖(𝑥)

𝑑𝑥2
−

𝑣𝑖 𝑉𝑚𝑎𝑥 𝑎𝑔𝑎𝑜𝑥

𝑎𝑜𝑥(𝐾𝑔+𝑎𝑔)+𝐾𝑜𝑥 𝑎𝑔 
= 0, 𝑎𝑖 = 𝑎𝑔 , 𝑎𝑜𝑥 , 𝑎𝑔𝑎 (2) 

Where 𝑎𝑔, 𝑎𝑜𝑥  𝑎𝑛𝑑 𝑎𝑔𝑎  are concentration of glucose, 

oxidase, and gluconic acid. 𝐷𝑖  is the diffusion coefficient, 

𝐾𝑔, 𝐾𝑜𝑥 are Michaelis–Menton constants for glucose, oxidase 

𝑉𝑚𝑎𝑥  is the maximal reaction velocity and 𝑣𝑖 are 𝑣𝑔 =

−1, 𝑣𝑜𝑥 =
1

2
, 𝑣𝑔𝑎= 1. 

The boundary conditions are, 

𝑥 = 0 
𝜕𝑎𝑔 

𝜕𝑥
= 0,

𝜕𝑎𝑜𝑥 

𝜕𝑥
= 0,

𝜕𝑎𝑔𝑎 

𝜕𝑥
= 0.     (3) 

𝑥 = 𝑙, 𝑎𝑔 = 𝑎𝑔
∗, 𝑎𝑜𝑥 = 𝑎𝑜𝑥

∗, 𝑎𝑔𝑎 = 𝑎𝑔𝑎
∗. 0 < 𝑥 < 𝑙,  (4) 

The following non-dimension parameters are introduce as, 
 

http://www.sciencepg.com/journal/ajam


American Journal of Applied Mathematics http://www.sciencepg.com/journal/ajam 

 

196 

𝑈 =  
 𝑎𝑔

𝑎𝑔
∗ , 𝑉 =  

𝑎𝑜𝑥 

𝑎𝑜𝑥
∗ ,𝑊 =  

 𝑎𝑔𝑎

𝑎𝑜𝑥
∗  𝜒 =

𝑥

𝑙
, 𝛾𝐸1 =

𝑉𝑚𝑎𝑥 𝑙
2

𝐷𝑔 𝑎𝑔
∗ , 𝛾𝑆1 =

𝑉𝑚𝑎𝑥 𝑙
2

𝐷𝑜𝑥 𝑎𝑜𝑥
∗ , 𝛾𝐸 =

𝑉𝑚𝑎𝑥 𝑙
2

𝐷𝑔𝑎 𝑎𝑜𝑥
∗ , 𝛼 =

 𝑎𝑔

𝐾𝑔
, 𝛽 =

 𝑎𝑜𝑥

𝐾𝑜𝑥
         (5) 

Where 𝑈, 𝑉 𝑎𝑛𝑑 𝑊 are the dimensionless concentration 

of the glucose, oxidase, and gluconic acid respectively, 𝜒 is 

the dimensionless distance, l is the relative thickness and 

𝛾𝐸1, 𝛾𝑆1 𝑎𝑛𝑑 𝛾𝐸  are corresponding Thiele modulus, 𝛼 , 𝛽 

be the rate of constant. 

The steady-state dimensionless form of equations (2) to (4) 

using the dimensionless parameters equation (5) are given as 

follows, 

𝜕2𝑈(𝜒)

𝜕𝜒2
− 𝛾𝐸1 𝑈 𝑉[𝑈 𝑉 +

𝑉

𝛼
+
𝑈

𝛽
]−1 = 0       (6) 

𝜕2𝑉(𝜒)

𝜕𝜒2
−
𝛾𝑆1

2
 𝑈 𝑉[𝑈 𝑉 +

𝑉

𝛼
+
𝑈

𝛽
]−1 = 0       (7) 

𝜕2𝑊(𝜒)

𝜕𝜒2
+ 𝛾𝐸  𝑈 𝑉[𝑈 𝑉 +

𝑉

𝛼
+
𝑈

𝛽
]−1 = 0       (8) 

Corresponding boundary conditions are, 

𝜒 = 0 
𝜕𝑈(𝜒) 

𝜕𝜒
= 0, 

𝜕𝑉(𝜒) 

𝜕𝜒
= 0,

𝜕𝑊(𝜒) 

𝜕𝜒
= 0 

𝜒 = 1 𝑈 = 1, 𝑉 = 1,𝑊 = 0.           (9) 

3. Expression of the Concentrations 

Analytically 

3.1. Analytical Expression for the Concentration 

of Glucose, Oxidase, and Gluconic Acid 

Under the Steady State Condition Using 

Akbari-Ganji Method 

The semi-analytical algebraic method known as the Akba-

ri-Ganji Method (AGM) is used to solve nonlinear differential 

equations. It is regarded as a potent technique for resolving these 

equations, which can be more challenging than linear differential 

equations. To solve non-linear boundary value problems, Akbari 

and Ganji initially presented the Akbari-Ganji Method (AGM), 

which combines the conventional algebraic approach. Recently, 

Akbari and Ganji used the Akbari-Ganji approach with two 

expanding parameters to solve a few non-linear problems. The 

ability of the Akbari-Ganji to offer precise analytical suggestions 

for various non-linear chemical issues is a significant advantage. 

Akbari-Ganji's ability to tackle a wide range of non-linear prob-

lems with fewer iterations is fantastic. This approach's most 

important benefit is its adaptability to various chemical physics 

challenges. Various analytical methods for dealing with nonlin-

ear boundary value problems [10-24]. 

Using this method (details in Appendix I), we get the ap-

proximate expressions (6) to (9) as follows. 

𝑈(𝜒) =  
𝑐𝑜𝑠 ℎ𝑙𝜒

cos ℎ 𝑙 
              (10) 

𝑉(𝜒) =  
cosℎ 𝑚𝜒 

cos ℎ 𝑚 
             (11) 

𝑊(𝜒) =  1 −
cosℎ 𝑛𝜒 

cosℎ 𝑛 
           (12) 

Where 𝑙 = √
𝛾𝐸1 𝛼 𝛽

𝛼 𝛽+𝛼+𝛽
, 𝑚 = √

𝛾𝑆1 𝛼 𝛽

2(𝛼 𝛽+𝛼+𝛽)
, 𝑛 = √

𝛾𝐸 𝛼 𝛽

𝛼 𝛽+𝛼+𝛽
 

(13) 

3.2. Use the Differential Transform Method 

(DTM) to Approximate the Analytical 

Expression for the Concentration Species 

The differential transform method (DTM) is a 

semi-analytical approach to solving differential equations. 

Zhou was the first to propose the differential transform notion 

in electric circuit analysis, which addresses linear and non-

linear boundary value issues. DTM can be used to accurately 

calculate the nth derivative of an analytical function at a given 

place, even if the boundary conditions are unknown. The 

differential transform method (DTM) is an alternative itera-

tive approach for determining analytical solutions to differ-

ential equations [25-33]. 

Using this method (details in Appendix II), we get the ap-

proximate expressions (6) to (9) as follows. 

𝑈(𝜒) = 𝑙1 −
𝛾𝐸1 𝛼 𝛽 𝑙1𝑚1

2(𝑙1𝑚1𝛼 𝛽+𝑙1𝛼+𝑚1𝛽)
𝜒2         (14) 

𝑉(𝜒) = 𝑚1 −
𝛾𝑆1 𝛼 𝛽 

4(𝑙1𝑚1𝛼 𝛽+𝑙1𝛼+𝑚1𝛽)
𝜒2        (15) 

𝑊(𝜒) = 𝑛1 −
𝛾𝐸 𝛼 𝛽 𝑙1𝑚1

2(𝑙1𝑚1𝛼 𝛽+𝑙1𝛼+𝑚1𝛽)
𝜒2        (16) 

Where 

𝑙1 =  
𝛽𝑚1(2𝛼− 𝛾𝐸1𝛼−2)

4𝛼(𝑚1 𝛽+1)
±

√𝛼2𝛽2𝑚1
2(𝛾𝐸1

2 − 4𝛾𝐸1 + 4) + 𝛼𝛽
2𝑚1

2(4𝛾𝐸1 + 8) + 𝛽𝛼
2𝑚1(−4𝛾𝐸1 + 8) + 4𝛽

2𝑚1
2 + 8𝛽𝛼𝑚1 + 4𝛼

2 − 2𝛼  
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𝑚1 =
±(−𝛼 𝑙1+√−𝛾𝑆1𝛼

2𝛽2𝑙1−𝛾𝑆1𝛼𝛽
2+𝑙1

2𝛼2)

2𝛽(𝑙1𝛼+1)

  

𝑛1 =
𝛾𝐸 𝛼 𝛽 𝑙1𝑚1

2(𝑙1𝑚1𝛼 𝛽+𝑙1𝛼+𝑚1𝛽)
           (17) 

4. Findings and Discussions 

The analytical techniques for the glucose 𝑈(𝜒), oxygen 

𝑉(𝜒), and gluconic acid 𝑊(𝜒), dimensionless concentrations 

are valid for all values of parameters 𝛾𝐸1, 𝛾𝑆1, 𝛾𝐸  a, and b 

taken into account in this investigation. The Thiele modulus 

𝛾𝐸1, 𝛾𝑆1, 𝛾𝐸  can be changed by altering the membrane's 

thickness or the amount of glucose and oxygen in the external 

environment. This parameter describes the relative relevance 

of reaction and diffusion inside the layer of enzymes. When 

the enzyme matrix is small, its overall absorption of glucose, 

oxygen, and gluconic acid is kinetically controlled, making 

kinetics the major resistance. Under these circumstances, the 

profile of glucose concentration throughout the membrane is 

nearly constant. The maximal reaction rate dictates the total 

kinetics. On the other hand, diffusion restrictions are the main 

deciding factor when the Thiele modulus is high. Numerical 

simulations are used to compare the analytical results, which 

are presented in the following Figures. The Numerical 

simulations are presented in (Refer Appendix III) using pdex4 

function in MATLAB. 

Table 1. The parameter values utilized in this study and Abdekhodaie 

and Wu). 

Parameter Unit Value 

𝐷𝑔  𝑐𝑚2𝑠−1  6.75× 10−6 

𝐷𝑜𝑥  𝑐𝑚2𝑠−1  6.75× 10−6 

𝐾𝑜𝑥  mol 𝑐𝑚−3 6.992× 10−5 

𝐾𝑔  mol 𝑐𝑚−3 6.187× 10−7 

𝑉𝑚𝑎𝑥  mol 𝑠−1 𝑐𝑚−3 860 × 3  

𝑎𝑜𝑥
∗  mol 𝑐𝑚−3 0.274  

𝑎𝑔
∗  mol 𝑐𝑚−3 5.5 𝑎𝑛𝑑 22  

 

 
Figure 2. The concentration 𝑈(𝜒) is compare to Dimensionless distance 𝜒 using in eqn. (10) & (14) for a) several values of non dimensional 

parameter 𝛾𝐸1 and fixed values of the parameter 𝛼 and 𝛽 b) several values of non dimensional parameter 𝛼 and fixed values of the 

parameter 𝛾𝐸1 and 𝛽. 

From this Figure 2, it is evident that the concentration of 

glucose increases when 𝛾𝐸1 or the thickness of the membrane 

decreases. Also, the value of 𝑈(𝜒) is largest at 𝜒 = 1. Dif-

fusion reaction parameter 𝛼 increases, the concentration of 

glucose decreases. From this figure 3, it is inferred that the 

concentration of oxygen increases when  𝛾𝑆1  decreases. 

Furthermore, the concentration of oxygen reaches the 

steady-state value when 𝛾𝑆1 ≥ 1. Diffusion reaction param-

eter 𝛼 increases, the concentration of oxygen decreases sim-

ultaneously. 
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Figure 3. The concentration 𝑉(𝜒) is compare to Dimensionless distance 𝜒 using in eqn. (11) & (15) for a) several values of non dimensional 

parameter 𝛼  and fixed values of the parameter 𝛽, 𝛾𝑆1  b) several values of non dimensional parameter 𝛾𝑆1 and fixed values of the 

parameter 𝛼 and 𝛽. 

From Figure 4, it is stated that the concentration of gluconic 

acid increases when 𝛾𝐸 increases. Furthermore, the concen-

tration of gluconic acid reaches the steady-state value when 

𝛾𝐸 ≤ 0.1 . Diffusion reaction parameter 𝛼  increases, the 

concentration of gluconic acid increases simultaneously. 

 
Figure 4. The concentration 𝑊(𝜒) is compare to Dimensionless distance 𝜒 using in eqn. (12) & (16) for a) several values of non dimensional 

parameter 𝛾𝐸  and fixed values of the parameter 𝛼 and 𝛽  b) several values of non dimensional parameter 𝛼 and fixed values of the 

parameter 𝛾𝐸 and 𝛽. 

5. Calculating the pH Profile Within the 

Membrane 

The pH profile inside the membrane must be ascertained as 

Diffusion coefficient in Eq. (2.2), depending on the extent of 

polymer swelling, which is a function of pH. The Henderson–

Hassel equation can determine a buffer's pH when gluconic 

acid is absent [9]. 

p𝐻1= pK + log 
[𝑏𝑎𝑠𝑒]1

[𝑎𝑐𝑖𝑑]1
            (18) 

The quantities of buffer ions and gluconic acid within the 

membrane dictate pH in the presence of gluconic acid (p𝐻2). 

p𝐻2= pK + log{
10p𝐻1−pK−

𝑤(𝜒)

[𝑏𝑢𝑓𝑓𝑒𝑟]
(1+10p𝐻1−pK)

1+
𝑤(𝜒)

[𝑏𝑢𝑓𝑓𝑒𝑟]
(1+10p𝐻1−pK)

}  (19) 
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Applying equation (12) yields the pH in a gluconic acid concentration as follows: 

exp(p𝐻2-pK) = 

{

10p𝐻1−pK−

(

  
 
1−

cosh(√
𝛾𝐸 𝛼 𝛽
𝛼𝛽+𝛼+𝛽

 )𝜒

cosh (√
𝛾𝐸 𝛼 𝛽
𝛼𝛽+𝛼+𝛽

)

 
𝑤(𝜒)

[𝑏𝑢𝑓𝑓𝑒𝑟]

)

  
 
(1+10p𝐻1−pK)

1+
𝑤(𝜒)

[𝑏𝑢𝑓𝑓𝑒𝑟]
(1+10p𝐻1−pK)

}

                   (20) 

Figure 5 plots exp(p𝐻2-pK) versus p𝐻1 − pK for various parameter values. It observed that exp(p𝐻2-pK) increases when the 

values of the parameter 
𝑤(𝜒)

[𝑏𝑢𝑓𝑓𝑒𝑟]
, 𝛾𝐸 and 𝛼 values change and decreases simultaneously. 

 

Figure 5. The exp(p𝐻2-pK) versus 𝑝𝐻1 − 𝑝𝐾 for various values of the parameter 𝑎) 𝛾𝐸 , 𝑏) 𝛼, 𝑐)
𝑤(𝜒)

[𝑏𝑢𝑓𝑓𝑒𝑟]
 by using eqn. (20). 

6. Conclusions 

A mathematical model has described the glucose sensitivity 

of a composite membrane with nanoparticles of an anionic 

polymer, glucose oxidase, and catalase embedded in a hy-

drophobic polymer. The model can forecast pH in the mem-

brane at different glucose levels in the medium, time- and 

position-dependent concentrations and diffusivity of the as-

sociated solutes, water and polymer volume percentage, and 

more. The model may be used to examine how the type of 

buffer in the external solution and enzyme loading, among 

other aspects of membrane formulation, affect the mem-

brane's sensitivity to glucose. According to the numerical 

simulation, improving the enzyme loading can increase the 

membrane's reaction to the step change in glucose concentra-

tion. Other design parameters in the model, such as particle 

content and charge density, can be examined using numerical 
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simulation in addition to the formulation parameter and ex-

ternal condition discussed in this research. Thus, the model 

helps design composite membranes sensitive to glucose for 

closed-loop insulin delivery. This theoretical model is also 

helpful for maximising the functionality of glucose-sensitive 

membranes and determining the parameters needed to en-

hance membrane design. This model has been analytically 

resolved using the Akbari-Ganji method and the differential 

transform method. The acquired analytical data were helpful 

in accurately predicting the diffusion and concentration values 

of glucose, oxidase and gluconic acid. The given methodol-

ogy's comparison of the analytical results with those gener-

ated by the MATLAB program convincingly demonstrated 

correctness. In contrast, the analytical results from AGM are 

superior to those from DTM. Furthermore, pH profile with 

membrane is derived. Future studies can use this approach to 

solve non-steady state circumstances. Additionally, this the-

oretical model can be used to determine the parameters re-

quired to improve the design of gluconic acid delivery sys-

tems and to optimize their performance. 

Nomenclature 

𝑎𝑔  concentration of Glucose (mol 𝑐𝑚−3) 

𝑎𝑜𝑥  concentration of Glucose Oxidase (mol 𝑐𝑚−3) 

𝑎𝑔𝑎  concentration of Gluconic Acid (mol 𝑐𝑚−3) 

𝑈  Dimensionless Concentration of Glucose (none) 

𝑉  Dimensionless Concentration of Glucose Oxidase (none) 

𝑊  Dimensionless Concentration of Gluconic Acid (none) 

𝑎𝑔
∗𝑎𝑜𝑥

∗𝑎𝑔𝑎
∗  Initial Concentration of Species (mol 𝑐𝑚−3) 

l Thickness of the Membrane (μm) 

𝐾𝑔  Michaelis–Menten Constant for Glucose (mol 𝑐𝑚−3) 

𝐾𝑜𝑥  Kox Michaelis–Menten Constant for Oxygen (mol 𝑐𝑚−3) 

𝑉𝑚𝑎𝑥   Maximal Reaction Rate (mol 𝑠−1 𝑐𝑚−3) 

𝛾𝐸1, 𝛾𝑆1, 𝛾𝐸  Thiele Modulus (none) 

𝐷𝑖   Diffusion Coefficient of Substrate (𝑐𝑚2𝑠−1) 

𝛼  Dimensionless Diffusion Reaction Parameter (none) 

𝛽  Dimensionless Diffusion Reaction Parameter (none) 

𝜒  Normalized Electrode Distance (none) 

x Distance from Electrode (cm) 
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AGM Akbari Ganji Method 
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Appendix 

Appendix I: Akbari-Ganji Method 

In section 3, From Equations (6) to (8) 

𝜕2𝑈(𝜒)

𝜕𝜒2
− 𝛾𝐸1 𝑈 𝑉[𝑈 𝑉 +

𝑉

𝛼
+
𝑈

𝛽
]−1 = 0                               (A-1) 
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𝜕2𝑉(𝜒)

𝜕𝜒2
−
𝛾𝑆1

2
 𝑈 𝑉[𝑈 𝑉 +

𝑉

𝛼
+
𝑈

𝛽
]−1 = 0                               (A-2) 

𝜕2𝑊(𝜒)

𝜕𝜒2
+ 𝛾𝐸  𝑈 𝑉[𝑈 𝑉 +

𝑉

𝛼
+
𝑈

𝛽
]−1 = 0                               (A-3) 

Corresponding boundary conditions are, 

𝜒 = 0 
𝜕𝑈(𝜒) 

𝜕𝜒
= 0, 

𝜕𝑉(𝜒) 

𝜕𝜒
= 0,

𝜕𝑊(𝜒) 

𝜕𝜒
= 0 

𝜒 = 1 𝑈 = 1, 𝑉 = 1,𝑊 = 0. 0 < 𝑥 < 1                              (A-4) 

Assume that solution of the equations (A-1) to (A-3) 

𝑈(𝜒) = 𝐴 cos ℎ 𝑙𝜒 + 𝐵 sinh 𝑙 𝜒                                 (A-5) 

𝑉(𝜒) = 𝐴1 cos ℎ 𝑚𝜒 + 𝐵1 sinh𝑚 𝜒                               (A-6) 

𝑊(𝜒) = 1 + 𝐴2 cos ℎ 𝑛𝜒 + 𝐵2 sinh 𝑛 𝜒                             (A-7) 

Here 𝐴, 𝐵 𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝑙, 𝑚 and 𝑛 are constants has to be obtained. 

To solve equation (A-5), (A-6) using equation (A-4) to get 

𝐴 =
1 

cos ℎ𝑙 
, 𝐵 = 0 and 𝐴1 = 

1 

cosℎ𝑚 
, 𝐵1 = 0, are substitute in (A-5) and (A-6) 

𝑈(𝜒) =  
𝑐𝑜𝑠 ℎ𝑙𝜒

cosℎ 𝑙 
                                       (A-8) 

𝑉(𝜒) =  
cos ℎ 𝑚𝜒 

cosℎ 𝑚 
                                      (A-9) 

To solve equation (A-7) using equation (A-4) to get 𝐴2 = − 
1 

cos ℎ𝑛 
, 𝐵2 = 0, substitute in equation (A-7) 

𝑊(𝜒) =  1 −
cos ℎ 𝑛𝜒 

cosℎ 𝑛 
                                   (A-10) 

Substitute equation (A-8) to (A-10) in to (A-1) to (A-3) and 𝜒 = 0 we get, 

𝑙 = √
𝛾𝐸1 𝛼 𝛽

𝛼 𝛽+𝛼+𝛽
, 𝑚 = √

𝛾𝑆1 𝛼 𝛽

2(𝛼 𝛽+𝛼+𝛽)
, 𝑛 = √

𝛾𝐸 𝛼 𝛽

𝛼 𝛽+𝛼+𝛽
                         (A-11) 

Appendix II: Differential Transform Method 

From Equations in section 3 from (A-6) to (A-8) 

𝜕2𝑈(𝜒)

𝜕𝜒2
− 𝛾𝐸1 𝑈 𝑉[𝑈 𝑉 +

𝑉

𝛼
+
𝑈

𝛽
]−1 = 0                              (A-12) 

𝜕2𝑉(𝜒)

𝜕𝜒2
−
𝛾𝑆1

2
 𝑈 𝑉[𝑈 𝑉 +

𝑉

𝛼
+
𝑈

𝛽
]−1 = 0                              (A-13) 

𝜕2𝑊(𝜒)

𝜕𝜒2
+ 𝛾𝐸  𝑈 𝑉[𝑈 𝑉 +

𝑉

𝛼
+
𝑈

𝛽
]−1 = 0                             (A-14) 

Corresponding boundary conditions are, 

𝜒 = 0 
𝜕𝑈(𝜒) 

𝜕𝜒
= 0, 

𝜕𝑉(𝜒) 

𝜕𝜒
= 0,

𝜕𝑊(𝜒) 

𝜕𝜒
= 0 

𝜒 = 1 𝑈 = 1, 𝑉 = 1,𝑊 = 0. 0 < 𝑥 < 1                               (A-15) 
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The transformed equations (A-12) and (A-15) are follows 

(𝑛 + 2)(𝑛 + 1)𝑈(𝑛 + 2) − 𝛼∑ 𝑈(𝑛)𝑉(𝑛 − 𝑟) + 𝛽𝑛
𝑟=0 ∑ 𝑊(𝑟) = 0𝑛

𝑟=0                 (A-16) 

𝑈(1) = 0, 𝑉(1) = 0,𝑊(1) = 0                                (A-17) 

Assume that 𝑈(0) = 𝑙1                                   (A-18) 

Let 𝑛 = 0 and substituting equation (A-17), (A-18) in equation (A-16), 

2𝑈(2) + 𝛽 = 0                                       (A-19) 

Therefore 𝑈(2) = − 
𝛽

2
                                    (A-20) 

The differential inverse transform 𝑈(𝑛) is defined as, 

𝑈(𝑥) = ∑ 𝑈(𝑛)(𝜒 − 𝜒0)
𝑛2

𝑛=0                                 (A-21) 

Let 𝜒0 = 0, we get the following equation 

𝑈(𝜒) = ∑ 𝑈(𝑛)(𝜒)𝑛 =2
𝑛=0 𝑙1 −

𝛾𝐸1 𝛼 𝛽 𝑙1𝑚1

2(𝑙1𝑚1𝛼 𝛽+𝑙1𝛼+𝑚1𝛽)
𝜒2                        (A-22) 

By using boundary condition 𝑈(𝜒) = 1 when 𝜒 = 1 as follows 

𝑙1 = 
𝛽𝑚1(2𝛼− 𝛾𝐸1𝛼−2) 

4𝛼(𝑚1 𝛽+1)
±

√𝛼2𝛽2𝑚1
2(𝛾𝐸1

2 − 4𝛾𝐸1 + 4) + 𝛼𝛽
2𝑚1

2(4𝛾𝐸1 + 8) + 𝛽𝛼
2𝑚1(−4𝛾𝐸1 + 8) + 4𝛽

2𝑚1
2 + 8𝛽𝛼𝑚1 + 4𝛼

2 − 2𝛼   (A-23) 

Similarly, the same procedure of (A-13) to (A-17) we get the solution of 𝑉(𝜒) and 𝑊(𝜒). 

Appendix III: MATLAB (pdex4) Numerical solution  

function pdex4 

m = 0; 

x = linspace(0,1); 

t = linspace(0,1000); 

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 

u1 = sol(:,:,1); 

u2 = sol(:,:,2); 

u3 = sol(:,:,3); 

%------------------------------------------------------------------ 

%figure 

%plot(x,u1(end,:)) 

%title('u1(x)') 

%xlabel('Dimensionless Distance x') 

%ylabel('Dimensionless concentration u') 

%------------------------------------------------------------------ 

%figure 

%plot(x,u2(end,:)) 

%title('u2(x)') 

%xlabel('Dimensionless Distance x') 

%ylabel('Dimensionless concentration v') 

% ----------------------------------------------------------------- 

figure 
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plot(x,u3(end,:)) 

title('u3(x)') 

xlabel('Dimensionless Distance x') 

ylabel('Dimensionless concentration w') 

%------------------------------------------------------------------- 

function [c,f,s] = pdex4pde(x,t,u,DuDx) 

c = [1; 1; 1]; 

f = [1; 1; 1].*DuDx; 

alpha=0.5; 

beta=0.1; 

y = (u(1)* u(2))/(u(1) * u(2)+(u(2)/alpha)+(u(1)/beta)); 

gamma=8; 

gamma1=1.1; 

gamma2=1; 

F =(-gamma*y); 

F1 =(-(1/2)*gamma1*y); 

F2 =(gamma2*y); 

s=[F;F1;F2]; 

function u0 = pdex4ic(x) %create a initial conditions 

u0 = [1; 0; 1]; 

% ----------------------------------------------------------------- 

function [pl,ql,pr,qr]= pdex4bc(xl,ul,xr,ur,t) %create a boundary conditions 

pl = [0; 0; 0]; 

ql = [1; 1; 1]; 

pr = [ur(1)-1; ur(2)-1; ur(3)]; 

qr = [0; 0; 0]; 
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