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Abstract 

The study of demographics is important not only for policy formulation but also for better understanding of human socio-

economic characteristics, and assessment of effects of human activities on environmental impact. It is interesting to note that 

apart from the common population control strategies, industrialization, economic development and improvement of living 

standards affects population growth parameters. In this paper, an age-structured model was formulated to model population 

dynamics, and make predictions through simulation using 2019 Kenya population data. The age-structured mathematical 

model was developed, using partial differential equations on population densities as functions of age and time. The population 

was structured into 20 clusters each of 5 year interval, and assigned different birth, death rate and transition parameters. Crank-

Nicolson numerical scheme was used to simulate the model using the 2019 parameters and population as initial conditions. It 

was found that; provision of social factors to an efficacy level of δ≥0.75 to a minimum of 70% population leads to a decrease 

of mortality rate form μold=0.0313 to μnew=0.00184 and an increase in birth rate from βold=0.02639 to βnew=0.05104. This 

collectively leads to an increase in population by 50% from 38,589,011 to 57,956,100 after 35 years. The initial economic 

dependency ratio of 1:2, was also improved due to changes in technology and improvement of living standards, to a new ratio 

of 1:1.14. The graphical presentation in form of a pyramid showed a trend of transition from expansive to constrictive 

population pyramid. This population structure is stable and remains relatively constant as long as the social factors are 

maintained. 
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1. Introduction 

Population dynamics studies the changes, rates of change, 

causes and effects of the changes in the number and compo-

sition of organisms in an ecosystem or within confined 

boundaries, together with the factors that influence those 

changes. The pertinent parameters of change include birth 

rate, death rate, net migration and distribution, in terms of 

gender, aging and population structure [1]. Mathematical 

modeling of population dynamics is a central topic in theo-

retical mathematical biology [2], seen as a tool used to keep 

track of the components of population changes and as a 

means to extract important parameters and determine trends 

from complex processes, to permit analysis of the causes of 
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processes acting on the system and to make the prediction 

about the future of a given population. The continued in-

crease in human population has posed a great challenge to 

the whole world, because of a rapid growth rate far outpac-

ing the capacity of resources to support it, and consequential 

advancement of some technologies which impacts negatively 

to the environment [3]. This has led to uncontrolled urbani-

zation, which has produced over-crowding, destitute settle-

ments, crime and pollution, dismal health-care, pressure on 

resources and facilities, exacerbating food and water short-

ages reducing resilience of nature, climate change and mak-

ing it harder for the most vulnerable communities to rise out 

of generational poverty [4]. 

Every government is responsible in putting realistic plans 

and management of its citizens in terms of provision of 

quality services and products. This can only be done with 

accurate information on its demographics which is periodi-

cally obtained through census; a time consuming, inaccurate, 

expensive and discrete methodology, mostly done at intervals 

of 10 years, giving a very long span of time that much unac-

counted for changes happen. In addition, the knowledge of 

future population, which national census cannot project, is 

necessary for the purpose of planning and budgeting of citi-

zen’s requirements and the country’s development. 

In order to bridge this gap, the use of mathematical model-

ing provides information on current and projected population 

dynamics that can reliably be used for planning [5]. Mathe-

matical demographic models help in effective provision of 

services to the citizens, whose success depends on the accu-

rate data about the current and future size of the population, 

and its structural characteristics. Appropriate mathematical 

analytic and simulation methods are hereby used to draw 

describe the current population, and make predictions of fu-

ture population size, distribution, and general structure [6]. 

Modeling of dynamic interactions in nature provides a 

convenient way of understanding how numbers change over 

time or in relation to each other. Apart from human popula-

tion, population models are also used to determine optimal 

harvest rate of livestock, projection in agriculture, to under-

stand the dynamics of biological invasions, and for environ-

mental conservation, climatic and weather forecast, epidemi-

ology, spread of parasites, viruses, and impact of epidemics, 

among others [7]. 

1.1. Population growth Factors 

Factors that directly affect population growth include; 

Immigration and emigration, birth and death rate. Others 

which indirectly influence population growth rate are social 

factors which include; food security, economic status, litera-

cy levels, access to health services, and affordable decent 

housing, occurrence of conflicts, natural calamities, among 

others. These factors have different impacts on the popula-

tion growth rate. Some have direct and immediate effect, so 

that increase in provision or access of some services leads to 

increase in fertility, reduced mortality rate, increase in ex-

pected life span and therefore increased growth rate. Such 

factors include health, food, education, housing improved 

economic status and peaceful coexistence. However, some of 

these factors do not necessarily have to positively influence 

population increase. It is often found that, highly educated 

career spouses generally bring forth few children in a family, 

similarly the rich usually have fewer children than the poor. 

With this in mind, this paper assumes that naturally, once all 

the factors are provided equally, the synergetic effect will be 

uniform to all individuals, so that as much as the people are 

stable and therefore have fewer children, the few brought 

forth are heathy, have good living standards, peacefully co-

exist, well educated, and therefore live long and less likely to 

die. 

As much as high population is discouraged, it has positive 

effects which is not limited to availability of cheap labour, 

increased market of products, innovation and spurred eco-

nomic activities. However, high population brings negative 

effects like; environmental degradation, pollution, pressure 

on available resources, poverty, food crisis, rise of slums, 

increased aging dependency, dilapidated housing and health 

facilities, and increased insecurity. This can be avoided by 

determining the amount of efforts required to support and 

control optimal population. Many strategies of controlling 

population are available and they include family planning, 

use of contraceptives, public health education awareness 

campaign, use of incentives, use of policies just to mention 

but a few. In this research paper, analysis on the effect of 

social factors on population growth is analyzed. 

1.2. Population Mathematical Modelling 

Mathematical modeling of population is based on com-

partmental model, where population is considered to be 

boxed in a compartment (Figure 1), with inlets and outlets 

representing factors which either increase or decrease popu-

lation as time changes. 

 
Figure 1. Compartmental model showing changes in population 

compartment. 

This yields a book-keeping equation to keep track of the 

four components of population dynamics, which yields a 

system of mathematical model equations that’s applied to the 

study of population dynamics [8]. In mathematical symbol-
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ism, a discrete population model equation is expressed as; 

P(t + 1) = P(t) + B(t) − D(t) + I(t) − E(t)       (1) 

where population size 𝑃(𝑡 + 1)  at a future time 𝑡 + 1  is 

equal to the population 𝑃(𝑡) at time 𝑡 plus births 𝐵(𝑡) minus 

deaths 𝐷(𝑡) plus immigrants 𝐼(𝑡) minus emigrants 𝐸(𝑡). 

This is the simplest structured models where both time and 

the structure are discrete. The population is divided into two, 

the current and the future sub-populations, and the rates of 

growth are appended to the current population to give the 

next future populations. If we assume the birth rate, death 

rate and net migration to be denoted by 𝛽, 𝜇 and 𝑀 respec-

tively, then the discrete mathematical equation is given by; 

𝑃(𝑡 + 1) = (𝛽 − 𝜇)𝑃(𝑡) + 𝑀(𝑡)                 (2) 

Recursive substituting for 𝑡 = 0, 1, 2, …𝑛 yields the close 

form solution, 

𝑃𝑛 = (𝛽 − 𝜇)
𝑛𝑃0 + ∑ (𝛽 − 𝜇)𝑛;𝑖𝑀𝑖;1;  𝑖 = 1,2,3, … , 𝑛 − 1

𝑛;1
𝑖<1                                              (3) 

where, 𝛽 is the birth rate and 𝜇 is the death rate and 𝑃0 =

𝑃(0) is the initial population. The population grows if the 

growth rate 𝑟 ≔ 𝛽 − 𝜇 > 0, otherwise declining. 

If we assume constant growth rate and continuous popula-

tion growth, the instantaneous population dynamics is mod-

elled using ordinary differential equations as; 

𝑃′(𝑡) = 𝑟𝑃(𝑡) + 𝑀;  𝑃(0) = 𝑃0                 (4) 

Here, net migration is assumed to be constant and inde-

pendent of time. The solution of equation (4) by integration 

yields, 

𝑃(𝑡) = (𝑃0 +
𝑀

𝑟
) 𝑒𝑟𝑡 −

𝑀

𝑟
                         (5) 

Notice that if by policy or any other means migration is 

banned  (𝑀 = 0) , the population will grow exponentially 

𝑃(𝑡) = 𝑃0𝑒
𝑟𝑡. 

Equation (4) assumes that the population is homogeneous, 

that is; the children, the aged and the middle aged, all have 

the same characteristics in terms of birth rate, death rate, 

migration rate, among others. This is not true, and in order to 

capture the fine differences in characteristics, an age struc-

tured model is more appropriate. 

1.3. Age-structured Model 

Since population is always heterogeneous, it is ideal to di-

vide the large population into homogeneous groups accord-

ing to some significant parameters such as age, sex, size, 

maturity or proliferative state and study interactions within 

the given group’s population. Models of this type are called 

structured and they describe the time evolution of the distri-

bution of the population according to the fixed parameters. A 

continuous age-structured population at a given time reveals 

a set of individuals who were born over a range of past time 

and whose fertility and probability of survival depend on 

their age. For instance, in the human population dynamics, 

the fertility and probability of survival depend on age. This 

area of mathematical biology has been investigated by many 

authors [9]. Considering the population growth model de-

pending on age, and assuming homogeinity of gender in 

terms of survival, birth and death rate, the population can be 

represented mathematically by 𝑃(𝑡, 𝑎), which is a function of 

time and age. Such a model is called age-structured as ex-

plicitly described by Von-Foester and McKendrick [10] and 

[11]. 

The dynamics of a continuous age – structured population 

is given by, 

𝜕𝑃(𝑡,𝑎)

𝜕𝑡
+ 

𝜕𝑃(𝑡,𝑎)

𝜕𝑎
= −𝜇(𝑎)𝑃(𝑡, 𝑎)                 (6) 

Subject to the initial and boundary conditions, 

𝑃(𝑡, 0) =  ∫ 𝛽(𝑎)𝑃(𝑡, 𝑎)𝑑𝑎
∞

0
;                 (7) 

𝑃(0, 𝑎) =  𝑓(𝑎)                            (8) 

where 𝑃(𝑡, 𝑎) is the population at time 𝑡 and age 𝑎, 𝛽(𝑎) 

is the specific birth rate of the population cluster at age 

𝑎, 𝜇(𝑎) is age–specific death rate and 𝑃(0, 𝑎) = 𝑓(𝑎) is the 

initial age distribution while ∫ 𝑃(𝑡, 𝑎)𝑑𝑎
∞

0
 is the total popu-

lation at time 𝑡. 

It is noted that equations (6-8) assumes homogeinity of the 

entire population with respect to death rate and birth rate, 

contrary to the reality where infants and the aged are known 

to be more vulnerable to death and more susceptible to dis-

eases. As for fertility and birth rate, it is a fact that children 

under the age of 10 on average and adult women over 45 

years are unproductive. Other age groups like school going 

ages (12 – 25 years) have very low birth rate, while above 35 

– 45 are known to have lower fertility rate. With this in 

mind, an age-structured model with partitions of population 

into 20 clusters at intervals of 5 years is presented [12]. The 

solution is derived using Crank Nicolson numerical scheme, 

known to be unconditionally stable and fast converging [13]. 

2. Formulation and Analysis of Social 

Factors Model 

This section looks at derivation of mathematical model of 

the factors that influences the human population dynamics. 

Studies shows that economic and social factors are consid-
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ered as the determinants of population growth [14]. It is clear 

that there is a direct relationship between population and 

market forces like demand and supply, and in addition, in-

vestors are attracted to a market where the economy is grow-

ing [15]. In terms of health services, epidemics like 

HIV/AIDS, Covid-19, and other highly contagious and fatal 

diseases are known to have caused significant deaths within 

a short time, affecting population size and structure, as the 

most vulnerable population (the young and the aged) are 

most affected [16]. 

In Kenya, policies have been put in place, and implemen-

tation of the strategic plan is underway to alleviate Kenya 

citizens from 3rd world constraints. Among vision 2030 pil-

lars is the social pillar which includes; Education and train-

ing, Environment, water and sanitation, Gender, youth and 

vulnerable groups; Health; Population, urbanization and 

Housing; and Sports, arts and culture [17]. The following 

flow chart shows the impact point at which social factors 

influence population dynamics. 

 
Figure 2. Flow chart showing how social factors affect population parameters. 

2.1. Modeling Social Factors 

In order to model the effect of the social factors on popula-

tion growth rate, the functional response of the population 

𝜌(𝑡, 𝑎) to change in the social factor 𝛿, a measure of the effi-

cacy of the social factor to change in population. Consider an 

exponential response function 𝛿𝑓(𝛿)  which saturates for 

large 𝛿, defined as; 

𝑓(𝛿) = (
Ω𝛿

𝛿2:Γ2
)                                  (9) 

Here 𝛿 ∈ [0, 1] denotes the proportion in percentage of ef-

ficacy of social factors implementation, Ω, Γ  are positive 

constants. For small social factor satisfaction, the people 

seek alternative satisfaction elsewhere, reducing the effect of 

population, and as the social factors are improved, its effect 

increases to saturation, where no more effect is realized, a 

sigmoid function as used in predator prey defense and preda-

tion model [18]. 

The inverse function that reduces as social factors increase 

is defined by 𝑔(𝛿) as; 

𝑔(𝛿) =
Γ2

𝛿2:Γ2
                            (10) 

Here, 𝑔(𝛿) affects the population inversely, that is, the re-

sponse of mortality to population increase is inverse, so that 

increase in social factors, say for example health standards, 

reduces the mortality rate. The value of 𝛿 = 0, represents the 

absence of social factors and 𝛿 = 1 being excellent provision 

of social factors, Ω > 0  denotes the maximum attainable 

value of the population parameter. In case of birth rate, the 

value 𝛽 ≤ Ω could mean maximum allowable birth rate as 

per the regulation of the region, or with reference to migra-

tion, this value 𝑚 ≤ Ω means the cap or upper limit of mi-

gration rate allowed, while in terms of mortality, 𝜇 ≤ Ω im-

plies the minimum mortality rate allowable due to natural 

attrition. The constant Γ > 0  in equation (9) and equation 

(10) represents the efficacy of the social factor or the re-

sponse rate of the population for every small change of social 

factors. Here, the efficacy or sensitivity of the social factors 

Γ is inversely proportional to the social factors 𝛿. Decrease 

in Γ leads to higher sensitivity of the social factor. For exam-

ple, food is known to change the status of a hungry individu-
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al almost immediately as soon as the food is provided, but 

education takes a long time to realize the results, and thus, 

Γ𝑒 ≥ Γ𝑓 where the subscript denotes education and food re-

spectively. Figure 3 is a graph showing the response of popu-

lation parameters to change in social factors. 

 
Figure 3. Response function, showing the effect of social factors on birth rate and mortality rate. 

From the graph in Figure 3, it is noted that with high pro-

vision of social factors 𝛿 ≈ 1, the birth rate and mortality 

rate saturates to optimal levels. 

2.2. Age-Structured Model Incorporating Social 

Factors 

The general age-structured mathematical model, with 20 

clusters of population at intervals of 5 years from zero age to 

100 years is presented in [19]. Using the same structure, with 

the social factors considered and incorporated to affect the 

birth rate, death rate and migration rate, the following equa-

tions represent the social factors model. 

Let 𝜌(𝑡, 𝑎) be the age-density function at time t with 𝑎 ∈

[0, 𝑎:], where 𝑎: < ∞, is the maximum age of individuals, 

or with 𝑎 ∈ [0,∞). Then, we have the number of individuals 

having ages in the interval [𝑎1, 𝑎2] at time t given by 

∫ 𝜌(𝑡, 𝑎)𝑑𝑎
𝑎𝑘+1
𝑎𝑘

= 𝑃(𝑡, 𝑎𝑘:1) − 𝑃(𝑡, 𝑎𝑘); 𝑘 = 0,1,2, … ,19                                                 (11) 

and the total population is given by; 

∫ 𝜌(𝑡, 𝑎)𝑑𝑎 = 𝑃(𝑡, 𝑎) 
∞

0
                       (12) 

Let 𝛽𝑘(𝑎, 𝛿) be the age- specific birth rate, a function of 

social factors. The number of births produced by individuals 

with ages in [𝑎1, 𝑎2] at any given time t is evaluated as; 

∫ 𝛽𝑘(𝑎, 𝛿)𝜌(𝑡, 𝑎)𝑑𝑎
𝑎𝑘+1
𝑎𝑘

                        (13) 

Let 𝜇𝑘(𝑎, 𝛿) be the age - specific mortality rate for the 

𝑘𝑡ℎ − cluster, then the total number of deaths at time 𝑡, oc-

curring over a whole lifespan period [0,∞], is given by the 

equation: 

∫ 𝜇𝑘(𝑎, 𝛿)𝜌(𝑡, 𝑎)𝑑𝑎
∞

0
                     (14) 

with 𝜌𝑘(𝑡, 𝑎)  having corresponding differential 

𝛽𝑘(𝑎, 𝛿), 𝜇𝑘(𝑎, 𝛿) birth and death rates, together with its as-

sociated net migration rate 𝑚𝑘(𝑎, 𝛿). It is assumed that age 

dependent fertility rate 𝛽𝑘(𝑎, 𝛿) = 0  for immature clusters 

𝜌0(𝑎, 𝑡), 𝜌1(𝑎, 𝑡) of ages [0 – 4] and [5 – 9] and also zero for 

the aged clusters 𝜌9(𝑎, 𝑡) − 𝜌19(𝑎, 𝑡) of ages [45 – 99]. Let 

𝑠𝑘(𝑎, 𝛿) be the survival rate of individuals transiting from 

cluster 𝜌𝑘(𝑎, 𝑡)  to the next cluster 𝜌𝑘:1(𝑎, 𝑡)  with 

𝑠;1(𝑎, 𝛿) = 𝜌(0, 𝑡) being the total new born from productive 

clusters. 

The model equations with social factors equivalent to 

equation (6) is given for 𝑘 = 0,1,2,… ,19 by; 
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𝜕𝜌𝑘(𝑎,𝑡)

𝜕𝑡
+
𝜕𝜌𝑘(𝑎,𝑡)

𝜕𝑎
= −𝜇𝑘(𝑎𝑘, 𝛿)𝜌𝑘(𝑡, 𝑎𝑘) + ∫ 𝑀𝑘(𝑠𝑘, 𝛿)𝑑𝑠

𝑎𝑘+1
𝑎𝑘

− ∫ 𝑆𝑘:1(𝑎𝑘, 𝛿)𝜌𝑘(𝑡, 𝜉𝑘)𝑑𝜉
𝑎𝑘+1
𝑎𝑘

               (15) 

With the corresponding initial and boundary conditions 

given as; 

𝜌0(𝑡, 0) = ∑ ∫ 𝛽𝑘(𝑎)𝜌𝑘(𝑡, 𝑎)𝑑𝑎
𝑎𝑘+1
𝑎𝑘

7
𝑘<2               (16) 

which accounts for the total births from six actively repro-

ductive clusters, and the twenty initial conditions 

𝜌𝑘(0, 𝑎𝑘) =  𝐾𝑘(𝑎𝑘),                           (17) 

describing the initial population of cluster 𝑘 =

0, 1, 2, 3, … , 19 at the start of simulation time 𝑡 = 0. 

Equation (15) can be expressed in compact form as; 

𝜕𝜌𝑘(𝑡,𝑎)

𝜕𝑡
+
𝜕𝜌𝑘(𝑡,𝑎)

𝜕𝑎
= −𝜇𝑘(𝑎𝑘, 𝛿)𝜌𝑘(𝑡, 𝑎𝑘) + 𝑚𝑘(𝑎𝑘, 𝛿) + 𝑆𝑘:1(𝑡, 𝑎𝑘)                                            (18) 

where 𝑆𝑘:1 = ∫ 𝑠𝑘𝜌𝑘(𝑡, 𝑎)𝑑𝑎
𝑎𝑘+1
𝑎𝑘

 is the net transition across 

cluster boundaries. 

3. Numerical Solutions of Age-

Structured Model with Social Factors 

The numerical results of the model in equations (15-17) is 

approximated using Crank-Nicolson scheme, an uncondi-

tionally stable finite difference scheme [20]. Finite difference 

scheme is a class of numerical techniques for solving differ-

ential equations by approximating derivatives using finite 

differences [21]. Both the spatial and temporal domains are 

discretized into a finite number of steps, and the value of the 

solution at these discrete points is approximated by solving 

algebraic equations containing finite differences and values 

from nearby points. The use of the Finite Difference numeri-

cal method, results in the generation of a set of algebraic 

equations that can be solved for dependent variables. The set 

of algebraic equations are solved at the discrete grid points in 

the physical domain under consideration. The difference re-

lates the values of variables at each grid points to its neigh-

bouring points. 

Discretization of equation (15-17) using Crank-Nicolson 

scheme yields the equation 

𝜌𝑎𝑘
𝑛+1;𝜌𝑎𝑘

𝑛

Δ𝑡
+
(𝜌𝑎𝑘+1

𝑛+1;𝜌𝑎𝑘−1
𝑛+1):(𝜌𝑎𝑘+1

𝑛 ;𝜌𝑎𝑘−1
𝑛 )

2Δ𝑎
= −𝜇(𝑘)𝜌𝑎𝑘 +𝑚𝑘 − 𝑆𝑘𝜌𝑎𝑘                                         (19) 

Let 𝛾 =
Δ𝑡

2Δ𝑎
 and let 𝜂 = Δ𝑡, then equation (19) reduces to; 

𝜌𝑎𝑘
𝑛:1 − 𝜌𝑎𝑘

𝑛 + 𝛾(𝜌𝑎𝑘:1
𝑛:1 − 𝜌𝑎𝑘;1

𝑛:1) + 𝛾(𝜌𝑎𝑘:1
𝑛 − 𝜌𝑎𝑘;1

𝑛 ) = −𝜂𝜇(𝑛, 𝑘)𝜌𝑎𝑘 + 𝜂𝑚𝑘 − 𝜂𝑆𝑘𝜌𝑎𝑘   

Rearranging the elements to have the future time elements on the left and current time on the right yields, 

𝜌𝑎𝑘
𝑛:1 + 𝛾(𝜌𝑎𝑘:1

𝑛:1 − 𝜌𝑎𝑘;1
𝑛:1) = 𝜌𝑎𝑘

𝑛 − 𝛾(𝜌𝑎𝑘:1
𝑛 − 𝜌𝑎𝑘;1

𝑛 ) − 𝜂𝜇(𝑛, 𝑘)𝜌𝑎𝑘 + 𝜂𝑚𝑘(𝑘) − 𝜂𝑠(𝑛, 𝑘)𝜌𝑎𝑘 + 𝜂𝑠(𝑛, 𝑘 − 1)𝜌𝑎𝑘;1  (20) 

Equation (20) forms a set of 22 equations with 20 un-

knowns representing the population dynamics for cluster 

𝑘 =  0,1,2, … ,19. The extra two equations describe the ini-

tial and boundary conditions to be obtained from the infor-

mation given in the initial and boundary conditions in equa-

tion (16). 

In matrix form, equation (20) can be expressed in compact 

form as;  

𝐴̂𝜌𝑎𝑘
𝑛:1 = B̂𝜌𝑎𝑘

𝑛 + 𝜂𝑀𝑘                          (21) 

Where the coefficient matrices 𝐴̂, 𝐵̂ in equation (21) are 

defined as;  

𝐴̂ =

(

 
 

−𝛾 1 𝛾 0 0 … 0
0 −𝛾 1 𝛾 0 … 0
0 0 −𝛾 1 𝛾 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 … 𝛾)

 
 
, 𝐵̂ =

(

 
 

𝛾 𝑎11 −𝛾 0 0 … 0
0 𝑏21 𝑎22 −𝛾 0 … 0
0 0 𝑏32 𝑎33 −𝛾 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 … −𝛾)

 
 
 while the vectors 

𝜌𝑎𝑘
𝑛:1 =

(

  
 

𝜌𝑎−1
𝑛:1

𝜌𝑎0
𝑛:1

𝜌𝑎1
𝑛:1

⋮
𝜌20
𝑛:1)

  
 
, 𝜌𝑎𝑘
𝑛 =

(

 
 
 
 

𝜌𝑎−1
𝑛

𝜌𝑎0
𝑛

𝜌𝑎1
𝑛

𝜌𝑎2
𝑛

⋮
𝜌𝑎20
𝑛
)

 
 
 
 

 and 𝑀𝑘 =

(

 
 

𝑚0
𝑚1
𝑚2
⋮
𝑚19)
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Where the elements in matrix 𝐵̂ , are defined by 𝑎11  =

1 − 𝜂(𝜇0
𝑛 + 𝑆0

𝑛), 𝑎22  = 1 − 𝜂(𝜇1
𝑛 + 𝑆1

𝑛) , 𝑎33  = 1 −

𝜂(𝜇2
𝑛 + 𝑆2

𝑛), … , 𝑎𝑘,𝑘  = 1 − 𝜂(𝜇𝑘;1
𝑛 + 𝑆𝑘;1

𝑛 ) and 𝑏21  =  𝛾 +

𝜂𝑆0
𝑛, 𝑏32  =  𝛾 + 𝜂𝑆1

𝑛 , 𝑏43  =  𝛾 + 𝜂𝑆2
𝑛 , … , 𝑏𝑘,𝑘;1 = 𝛾 +

𝜂𝑆𝑘;2
𝑛  for the index 𝑘 = 1,2,3,… ,20. 

Matrix 𝐴̂ and matrix 𝐵̂  are not square matrices, and the 

two extra columns represent the unknown values 𝜌𝑎−1
𝑛 and 

𝜌𝑎20
𝑛  on matrix 𝐴̂, together with 𝜌𝑎−1

𝑛:1 and 𝜌𝑎20
𝑛:1 on matrix 𝐵̂, 

which are obtained from the boundary and initial conditions.  

Following the analysis as provided in [19], system (21) is 

coded and numerically simulated as presented in the next 

section. 

3.1. Model Numerical Simulation 

In this section, the numerical model simulation is run and 

solutions presented by graphical means. The population data 

used in this model are the Kenyan population census results 

of 2019. The base year of 2019 is chosen as the initial time 

𝑡 = 0, and simulation is run for 31 years to create compari-

son with actual data for the first 5 years up to 2024, and 

make predictions of the population in 2050. 

Table 1. gives the value of parameters relating to Kenyan 

demographic report of 2019, together with the following 

initial data for 20 clusters, of age bracket [0 − 4, 5 − 9, 10 −

14,… , 95 − 99]. The initial populations of each cluster is 

denoted by 𝐾𝑘, 𝑘 = 0, 1, 2, … , 19 and are given by; 

𝐾0 = 5,939,306; 𝐾1 = 5,597,716; 𝐾2 = 5,034,855; 

𝐾3 = 4,169,543; 𝐾4 = 3,775,103; 𝐾5 = 3201226; 

𝐾6 =2519506; 𝐾7 =2008632; 𝐾8 =1476169; 𝐾9 =1272745; 

𝐾10 =956206; 𝐾11 =711953; 𝐾12 =593778; 𝐾13 =390763; 

𝐾14 = 339301; 𝐾15 = 218508; 𝐾16 = 157900; 𝐾17 = 95267; 

𝐾18 =75834 and 𝐾19 =54700. 

Other parameters used in the model are presented in Table 

1. 

Model equation (21) is numerically simulated as discussed 

below with the assumption that the ratio of female and male 

is 1:1, and thus the female population structure only will be 

subsequently discussed. 

Table 1. Model Parameters for Kenyan Population data of 2019. 

Item Symbol Description Value 

1 𝛽  Birth rate (assumed constant for all productive clusters) 0.02639 

2 𝜇0  Infant mortality rate 0.02786 

3 𝑀𝑘  Net migration rate at the 𝑘𝑡ℎ cluster -0.00019 

4 𝑆  Transition rate across clusters 0.65 

5 𝜇𝑘  General mortality rate of the 𝑘𝑡ℎ cluster 0.0313 

6 𝛿  Variable proportion of social factors provision [0, 1] 

7 𝛾  Numerical step size 0.5 

8 𝜂  Numerical scheme simulation time interval 1 

 

3.2. Model Simulation Results 

The discretized model represented by equation (21) is 

simulated using data in Table 1. The initial population struc-

ture of Kenya, as per 2019 population census is depicted in 

Figure 4. Notice that the Kenyan population is pyramid like, 

a characteristic of high birth rate, poor transition rate due to 

poor health, and high mortality rate. This graph is obtained in 

absence of social factors; that is 𝛿 = 0. 

In Figure 4, the population of age [0 − 4] is the largest for 

both male and female, and narrows down as age advances. 

The population of the youngest class is 𝐾0 =5,939,306 while 

that of the oldest cluster [95 − 99] is a less than 1% of the 

young, standing at 𝐾19 =54,700. 

Note that the dependent population of age bracket 

[0 − 24] are school and college going, together with the age 

bracket [65 − 99] the group that retired from service, add up 

to 25,848,796 while the working population in the age 

bracket 𝑚𝑖𝑑 = [25 − 64]  are 12,740,215. If it is assumed 

that the middle age are independent and are able to earn a 

living and support the rest of the population, then the de-

pendency ratio of 1: 2  is obtained, that is, every working 

person supports two young or old people. 

Simulated results as the social factors efficacy is varied, 

gives an optimal proportion of 𝛿 ≥ 0.75, at intervals of 5 

years as illustrated below. 

 

http://www.sciencepg.com/journal/ajam


American Journal of Applied Mathematics http://www.sciencepg.com/journal/ajam 

 

243 

 
Figure 4. The Kenya Population Pyramid for 2019 Population Census. 

 
Figure 5. Female population after the first four iterations (generations) with Social factors. The population indicated are (a) after 5 years, 

(b) after 10 years, (c) after 20 years and (d) after 25 years. 
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Further simulation after 31 years, the population pyramid is presented in Figure 6 for both male and female gender. 

 
Figure 6. Kenyan 2050 Population pyramid simulated for a period of 31years from 2019. 

Simulated results of 2050 clearly indicates the change in 

population to a constrictive structure pyramid characterized by 

positive increase literacy levels, increased access to quality 

health, low mortality, low fertility, and improved living stand-

ards. In this model, population has increased from 38,589,011 

to 57,956,100, a 50% increase. Using the same criterion, the 

dependency ratio will have dropped to 1:1.13665. 

4. Conclusion and Recommendation 

The findings of this research study include modification or 

extension of Von-Foester and McKendrick [10] equation, to 

capture distinct population growth parameetrs of different 

age brackets. This led to the structuring of human lifespan 

[0 – 𝑎:]  into 20 clusters at intervals of 5 years from 

[0 –  4], [5 –  9], [10 –  14], … , [95 − 𝑎:] , with a transition 

rate between clusters included. This gave rise to 20 partial 

differential equations, with corresponding initial and 

boundary conditions. Simulation of the effect of social 

factors was done was done using Crank-Nicolson numerial 

scheme with data from Kenyan demographic parameters of 

2019. It was found that, optimal provision of social factors at 

𝛿 ≥ 75% to a herd population of 70% yields a stable birth 

and death rates of 𝛽 = 0.05104  and 𝜇 = 0.00184 

respectively, which leads to a stable population of 

approximately 58million after 35 years, up from 

approximately 28million in 2019. Consequently, economic 

dependency ratio is improved from 1:2 to almost 1:1. It is 

concluded that social factors have a significant impact on 

birth rates, mortality rate, net migration rate and collectively 

on the population growth, and besides other population 

control strategies, industrialization, economic development 

and improvement of social factors like health standards, 

roads, housing, food security among others whould not be 

ignored. This therefor calls for proper planning with the 

ultimate stable population in mind. 

It is recommeded that this study is extended to include 

both age and sex structured dynamics and distict parameters 

for male and female to be captured, putting into 

consideration the effect contemporary (LGBTQ) lesbian, 

gay, bisexual, transgender and queer association reproductive 

dynamics. It is also recommended that cost component of 

provision of social factors to be incorporated and optimized 

to detrmine the minimum and cost effective herd population. 

Abbreviations 

AIDS Acquired Immune Deficiency Syndrome 

B Number of Births with B(t) as Number of Births at 

Time t 

D Number of Deaths with D(t) as Number of Deaths 

at Time t 

E Number of Emigrants with E(t) as the Number of 

Emigrants at Time t  

HIV Human Immunodeficiency Virus 

I Number of Immigrants with I(t) as the Number of 

Immigrants at Time t 

K Initial Population with 𝐾𝑘 Denoting Initial 
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Population of Cluster 𝑘 = 0,1,2, … ,19 

M Net Migration with M(t) as the Net Migration 

𝑀(𝑡) = |𝐼(𝑡) − 𝐸(𝑡)| 

P Total Population with P(t) as Population at Time t, 

and P(t+1) as Population at Time (t+1) 
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