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Abstract: The rapid adoption of AI-driven automation in IoT environments, particularly in smart cities and industrial
systems, necessitates a standardized approach to quantify AI’s computational workload. Existing methodologies lack a
consistent framework for measuring AI computational effort across diverse architectures, posing challenges in fair taxation
models and energy-aware workload assessments. This study introduces the Closed-System AI Computational Effort Metric, a
theoretical framework that quantifies real-time computational effort by incorporating input/output complexity, execution
dynamics, and hardware-specific performance factors. The model ensures comparability between AI workloads across
traditional CPUs and modern GPU/TPU accelerators, facilitating standardized performance evaluations. Additionally, we
propose an energy-aware extension to assess AI’s environmental impact, enabling sustainability-focused AI optimizations and
equitable taxation models. Our findings establish a direct correlation between AI workload and human productivity, where 5 AI
Workload Units equate to approximately 60-72 hours of human labor-exceeding a full-time workweek. By systematically
linking AI computational effort to human labor, this framework enhances the understanding of AI’s role in workforce
automation, industrial efficiency, and sustainable computing. Future work will focus on refining the model through dynamic
workload adaptation, complexity normalization, and energy-aware AI cost estimation, further broadening its applicability in
diverse AI-driven ecosystems.
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1. Introduction
The rapid expansion of AI across smart cities, industrial

automation, and IoT ecosystems brings forth significant
challenges in accurately measuring the computational effort
of AI systems. Unlike human labor, which is measured in
straightforward economic terms like wages and hours, the
computational intensity, energy consumption, and operational
footprint of AI processes lack a standardized measurement
framework. According to [1], “An ‘AI system’ means a
machine based system that is designed to operate with varying
levels of autonomy and that may exhibit adaptiveness after
deployment, and that, for explicit or implicit objectives, infers,
from the input it receives, how to generate outputs such as

predictions, content, recommendations, or decisions that can
influence physical or virtual environments;”, this means, these
machines can influence not only to humans but also to their
environment and ultimately to the future of the living beings.
That is why, it is necessary to quantize these systems and their
impact to the nature.

1.1. Problem Statement

Current methods for quantifying AI workloads often depend
on hardware-specific benchmarks such as FLOPs (Floating
Point Operations Per Second) and power usage. These
benchmarks, however, have several shortcomings:

1. They are not universally applicable in normal use cases
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across different AI architectures with heterogeneous
resources, like CPUs, GPUs, TPUs, and edge devices.

2. They fail to link the computational effort to real-time
monitoring of AI workloads in environments where
systems are enclosed and isolated.

3. They overlook sustainability metrics, which are crucial
for formulating energy-efficient AI taxation models.

1.2. Objective

This paper introduces the Closed-System AI Computational
Effort Metric (CE), a structured, scalable, and interpretable
framework designed to measure AI computational efforts
effectively. This framework aims to:

1. Establish a mathematically sound metric for AI
computational effort that adapts to the varied nature of
AI technologies.

2. Support real-time resource profiling for both cloud-
based AI and IoT workloads, essential for accurate
measurement.

3. Facilitate energy-aware AI taxation and workload
optimization to promote sustainability in AI operations.

Creating this metric is essential to bridge the gap in how AI
workload is measured, ensuring a fair and accurate assessment
of AI computational efforts across various platforms and
applications.

2. Background

2.1. Traditional Metrics vs. Quantized Work

Traditional measures of AI computational cost include
FLOPs, energy consumption, and execution time. Although
effective as broad indicators, these metrics do not capture
the concept of computation as a sequence of discrete
operations or “quanta.” Analogous to the quantized nature
of energy in physical systems, the AI Work Quantization
Model conceptualizes each basic computational operation as
a discrete unit of work.

2.2. Thermodynamic and Information-Theoretic Roots

The notion of quantized work in computation draws
heavily on principles from thermodynamics and information
theory. For example, [2] demonstrated that erasing one bit
of information incurs a minimum energy cost of kT ln 2,
where k is the Boltzmann’s constant (aprox.1.38 × 10−23

joules per kelvin), which relates temperature to energy at
the particle level, and T is the absolute temperature (in
kelvin) of the system. ln 2 is the natural logarithm of 2
(approximately 0.693), which comes from the binary nature
of information (i.e. one bit can be in one of two states).
Further exploration by [3] elucidated the thermodynamic
implications of computational processes. In the quantum
domain, studies such as [4] and [5] examine energy transitions
and fluctuation theorems, which resonate with the idea of
discrete computational work units.

The rapid expansion of artificial intelligence, particularly
deep learning, has raised concerns regarding its environmental
and societal impacts. Traditional carbon emission models for
AI rely on Life Cycle Assessments (LCAs) that capture:

1. Embodied Emissions: Emissions originating from
the manufacturing, transportation, and disposal of
hardware.

2. Operational Emissions: Emissions due to energy
consumption during training and inference.

For instance, Rahman et al. [13] propose a cradle-to-grave
analysis and introduce the Compute Carbon Intensity (CCI)
metric, which quantifies emissions in grams of CO2-equivalent
per ExaFLOP (i.e., per 1018 FLOPs). Such metrics provide
a unified basis for comparing the environmental impact of
different AI models.

Additional studies have shown that operational emissions
often dominate the overall energy usage of AI systems
(typically 70-90% of the total footprint) [6], while embodied
emissions, though generally lower (often under 25%),
are essential for comprehensive carbon accounting [7].
Improvements in data center efficiency-measured by metrics
such as Power Usage Effectiveness (PUE) [14, 15]-further
reduce net CO2 emissions.

In these established models, total energy consumption,
denoted CAI , is converted into CO2 emission estimates using
an emissions conversion factor κ:

COtotal
2 = κ · CAI . (1)

This formulation directly links micro-level energy costs to
macro-level CO2 emission estimates, as exemplified by the
CCI metric [13].

3. Related Work

A substantial body of research has focused on the energy
footprint and carbon emissions of AI systems. Key
contributions include:

3.1. Life Cycle Assessments and Compute Carbon
Intensity

Recent LCAs, such as those by Rahman et al. [13],
comprehensively evaluate the cradle-to-grave environmental
impact of AI hardware. The CCI metric, which expresses
emissions in gCO2-e per ExaFLOP, provides a basis for
comparing diverse AI models.

3.2. Operational vs. Embodied Emissions

Studies report that operational emissions (energy used
during training/inference) dominate AI’s total energy
consumption [6], whereas embodied emissions from hardware
production and disposal, though smaller, are critical for full
carbon accounting [7]. Research on data center efficiency
further refines these estimates [14, 15].
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3.3. Hardware and Compute Trends

Work by Kaplan et al. [9] reveals dramatic increases
in compute demands over recent years. Additional studies
on compute trends in AI [16, 22] and benchmark analyses
[23] emphasize the growing role of hardware efficiency and
quantization techniques.

3.4. Quantization and Adaptive Computation

Recent advancements in neural network quantization [17,
18] and neuro-symbolic methods [20] have demonstrated
that reducing numerical precision can greatly lower energy
consumption while preserving accuracy. These dynamic
computation techniques align with the conceptual framework
of work quantization, where computation is broken into
discrete, quantifiable units.

3.5. Theoretical Foundations: Thermodynamics of
Computation

Our framework is grounded in fundamental thermodynamic
principles. Landauer’s principle asserts that the minimal
energy required to erase one bit is

Emin = kT ln 2, (2)

with k as Boltzmann’s constant and T the absolute temperature
[2, 3]. Recent studies on algorithmic progress [11, 24] further
provide a basis for modeling AI computations at a fundamental
level.

3.6. HPC and System-Level Modeling

High Performance Computing (HPC) research has
established models for system-level resource consumption
[12]. Furthermore, workload classification studies [19]
highlight the unique characteristics of AI computation
compared to traditional PC workloads.

3.7. Additional Perspectives on Compute and Carbon
Footprints

Other influential works include Amodei and Hernandez’s
discussion of the exponential increase in compute demands
[25] and recent studies on the carbon footprint of training deep
learning models, such as CarbonTracker [26].

3.8. Energy Efficiency and Green AI

Recent research emphasizes the environmental impact of
AI, underscoring the need for more nuanced efficiency
metrics. Works such as [6] and [7] illustrate that energy
demands in deep learning can be significant. These studies
advocate for energy-based assessments of AI systems, which
serve as a foundation for developing quantized measures of
computational work.

3.9. Dynamic and Adaptive Computation

Advancements in adaptive neural architectures suggest that
computation can be dynamically allocated depending on input
complexity. Models that implement adaptive computation
time implicitly break down processing into discrete units,
aligning with the conceptual framework of work quantization.
This dynamic allocation of resources underscores the potential
for a quantized perspective to better understand and measure
internal computational efforts.

3.10. Bridging Theory and Practice

The primary challenge of the AI Work Quantization Model
lies in applying the learning insights from thermodynamics
and information theory with practical performance metrics.
By linking the physical energy costs outlined by Landauer’s
principle with abstract computational operations, this model
could offer a more refined evaluation of computational
efficiency, ultimately guiding the development of more
sustainable AI systems [21].

4. Methodology and Framework

4.1. Modeling Landauer’s Principle in Abstract
Computational Operations

Landauer’s principle asserts that any logically irreversible
operation that erases one bit of information must dissipate a
minimum energy as presented in equation 2.

4.1.1. Abstract Cost Function
We define a cost function C(op) for a computational

operation op as follows:

C(op) =

{
kT ln 2, if the operation is irreversible;
0, if the operation is ideally reversible.

(3)

4.1.2. Total Energy Cost
For a sequence of operations O1, O2, . . . , On, the total

minimal energy cost is given by:

Etotal =

n∑
i=1

C(Oi). (4)

If N represents the number of irreversible operations, then:

Etotal ≥ N · kT ln 2. (5)

4.1.3. Implications for Computational Efficiency
This framework provides a lower bound on the energy

consumption of computational processes, complementing
traditional measures such as FLOPs or execution time. It
emphasizes the potential energy savings that could be achieved
by reducing the number of irreversible operations or by
employing reversible computing techniques.

An AI computation can be decomposed into elementary
operations (e.g., linear transformations, activations, memory
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writes). For each operation o, we define a function I(o)
representing the number of bits irreversibly lost. According to
Landauer’s principle, erasing one bit of information requires a
minimum energy of Emin, as presented in equation 2.

The energy cost for an operation o is then given by

C(o) = I(o) · kT ln 2. (6)

For an AI model performing a sequence of operations
O1, O2, . . . , ON , the total minimal energy cost is:

Etotal =

N∑
i=1

C(Oi) =

N∑
i=1

I(Oi) · kT ln 2. (7)

4.1.4. Example: A Neural Network Layer
Consider a layer with a linear transformation followed by a

ReLU activation:

z = Wx+ b, a = ReLU(z). (8)

Assume:
1. The matrix multiplication and bias addition have an

associated information loss Ilinear (due to finite precision
or rounding).

2. The ReLU activation loses information for negative
inputs; if f is the fraction of neurons where z < 0 and
each such operation loses ir bits, then IReLU ≈ f ·n · ir.

The total energy cost for this layer becomes:

Elayer = (Ilinear + IReLU) · kT ln 2. (9)

Generally, acquiring these details in a real life scenario
are challenging. Therefore, we extend the concept further in
order to make it more practical and ideal with AI Workload
Quantization Metric.

While traditional CO2 emission models focus on
computational systems converting energy consumption into
greenhouse gas emissions, our extended framework-the AI
Work Quantization Model: Closed-System AI Computational
Effort Metric-extends further as follows:

1. Computational Operations: Using a thermodynamic
baseline, the cost of an operation Oi that irreversibly
processes I(Oi) bits is ideally:

Cideal(Oi) = I(Oi) · kT ln 2, (10)

and practically, with inefficiency factor ηcomp ≥ 1:

Ccomp(Oi) = ηcomp · I(Oi) · kT ln 2. (11)

The total computational cost is:

Ecomp =

Ncomp∑
i=1

Ccomp(Oi). (12)

2. Data and Memory Operations: Energy costs associated
with data movement and storage are quantified as
follows. If Dj (in bits) is the data handled in operation

j, with cost per bit γ and inefficiency factor ηdata, then:

Cdata(Dj) = ηdata · γ ·Dj , (13)

and the total data cost is:

Edata =

Ndata∑
j=1

Cdata(Dj). (14)

3. System-Level Overheads: Additional overheads, such as
data center operations, network transfers, and storage,
are modeled via a calibration function:

Csys = f
(
Ecomp, Edata, runtime, utilization factors

)
(15)

[12].
Thus, the overall AI resource cost is:

CAI = Ecomp + Edata + Csys. (16)

Using the conversion factor κ, the total CO2 emissions are
given by:

COtotal
2 = κ · CAI . (17)

4.2. Human Effort Impact

In addition to environmental impact, our framework
quantifies the societal benefit of AI through reduced human
labor. Let:

1. Hbaseline: Human labor hours required for a manual
task.

2. HAI : Residual human labor hours after AI deployment.
The net human effort saving is:

∆H = Hbaseline −HAI , (18)

and with a cost per human hour Chuman, the saving is:

Shuman = ∆H · Chuman. (19)

We then define the impact metric as:

Impact =
Shuman

CAI
, (20)

quantifying the reduction in human effort relative to the AI
system’s overall resource consumption.

Because practical implementations incur additional
inefficiencies, we introduce an empirical inefficiency factor
ηcomp ≥ 1 to yield:

Ccomp(Oi) = ηcomp · I(Oi) · kT ln 2. (21)

The total computational cost over Ncomp operations is then:

Ecomp =

Ncomp∑
i=1

Ccomp(Oi). (22)
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4.3. Data and Memory Cost Modeling

Data movement and storage are major contributors to energy
usage and system cost. Let Dj (in bits) denote the data
moved or stored in operation j. With a cost per bit γ and an
inefficiency factor ηdata, the cost for data operations is:

Cdata(Dj) = ηdata · γ ·Dj . (23)

Thus, the total data cost is:

Edata =

Ndata∑
j=1

Cdata(Dj). (24)

4.4. System-Level Resource Cost

In real HPC or cloud environments, additional overheads
(e.g., compute instance billing, memory/storage pricing,
network transfer costs) are significant. We denote the system-
level cost as:

Csys = f(Ecomp, Edata, runtime, utilization factors), (25)

where f(·) is a calibration function based on empirical data
[12].

The overall AI resource cost is then:

CAI = Ecomp + Edata + Csys. (26)

4.5. Human Effort Impact Metric

A major benefit of deploying AI is reducing human labor.
Let:

1. Hbaseline: Human labor hours required for a task
manually.

2. HAI : Residual human labor hours after deploying the
AI system.

Then, the net human effort saving is:

∆H = Hbaseline −HAI . (27)

With a cost per human hourChuman, the total human saving
is:

Shuman = ∆H · Chuman. (28)

We define the impact metric as the ratio:

Impact =
Shuman

CAI
. (29)

A higher impact value implies that the AI system provides
substantial human effort reduction relative to its resource
consumption.

This research develops an advanced methodology to
quantify the computational effort of AI systems, providing
a standardized framework that can be applied across various
AI architectures. This section details the conceptualization,
mathematical formulation, and implementation of the AI
Workload Quantization Metric.

Figure 1 below illustrates the relationship between the
components of the framework.

Figure 1. Schematic of the AI Workload Quantization Framework. The model integrates
computational operations, data/memory costs, and system-level overheads to yield a total
resource cost which is then compared to human effort savings to derive an impact metric.

4.6. Mathematical Formulation for Computational
Resources

This section outlines the extended mathematical model
for computing the computational resources essential for
AI workload quantization from both the system and AI
model (application) operational perspectives. A standardized
quantization framework must accommodate variations in
resource availability and operational characteristics while
remaining extensible for future computational advancements.

4.6.1. Definitions
The computational resources are quantified based on their

operational characteristics as follows:
1. CPU Operations: Quantified by GHz×Cores×FLOPs,

where GHz represents the clock speed, Cores denote
the number of processing units, and FLOPs indicate
floating-point operations per cycle, highlighting the
CPU’s ability to perform parallel computations.

2. RAM Operations: Measured by the total bandwidth in
GB/s, reflecting the memory’s capacity to transfer data,
crucial for high-speed data processing tasks.

3. GPU Operations: Calculated as Cores×GHz×FLOPs,
similar to CPUs but typically with a higher number of
cores, optimizing for parallel processing tasks such as
graphics rendering and machine learning.

4. Storage Usage: Expressed through throughput metrics
such as IOPs or MB/s, which assess the speed and
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efficiency of data retrieval and storage, vital for storage-
intensive applications.

This comprehensive evaluation of each resource’s
characteristics allows for a more accurate and detailed
quantification of their contributions to the AI workload,
aligning the computational resource assessment with real-
world application demands.

4.6.2. Logarithmic Scaling for Computational Resource
Normalization

To accommodate varying operational ranges of different
computational resources, we employ a logarithmic
transformation to normalize values across different system
architectures. The goal is to ensure that resource values remain
distinguishable at lower levels while avoiding saturation at
higher computational capacities.

(i) Mathematical Justification: A direct summation of
computational resources (CPU, RAM, GPU, Storage) results
in values that span multiple orders of magnitude, making
direct comparisons impractical. To address this, we normalize
computational resources using the following logarithmic
transformation:

CompReslog =
log(1 +

∑n
i=1 xadj,i)

log(1 + Smax)
(30)

where:
1. xadj,i represents the adjusted value of each resource
i, including CPU GIPS, RAM GT/s, GPU GIPS, and
Storage I/O GB/s.

2. Smax = 1018 FLOPs, corresponding to the highest
FLOP-capable supercomputer today [37].

3. The logarithm ensures scalability and fair comparison
across different computational environments.

(ii) Why Logarithmic Scaling? The initial version of
the equation, included sigmoid method, to normalize the
values, making sure, a single resource is not affecting
on the overall other smaller parameters. Unlike sigmoid
normalization, which is highly sensitive to mid-range values
but saturates at high input levels, logarithmic scaling, preserves
variation across high-performance architectures by preventing
saturation. It also ensures comparability across orders of
magnitude, making it suitable for AI workloads ranging
from embedded systems to supercomputers. The logarithmic
scaling, is able to reflect real-world hardware scaling, as
performance gains often follow a logarithmic trend rather than
a linear or sigmoid response.

(iii) Application in Resource Quantification: The
logarithmic transformation is applied to normalize
computational resources before AI workload calculations.
This approach allows for accurate scaling across different
system architectures, making AI workload comparisons more
consistent and interpretable across diverse platforms.

4.7. Application to AI Workload Quantization

4.7.1. Data IO Value Calculation
The Data IO Value, representing the volume of data

processed, is normalized using a logarithmic transformation
to maintain comparability across different AI workloads:

Data IO Value =
log(1 + Input data in bits + Output data in bits)

log(1 + Sdata)
(31)

where:
1. Sdata is a scaling factor chosen to ensure meaningful

differentiation across various AI applications and data
processing workloads.

2. This transformation ensures that workloads processing
significantly larger datasets are proportionally
represented without saturation effects.

4.7.2. Establishing AI Workload Baselines
Including external factors such as network latency L and

bandwidth B, and their respective impacts γL and γB :

ExtFactor = γL · L+ γB ·B (32)

The external factor, ExtFactor, quantifies the effects
of network latency and bandwidth, which are critical in
distributed AI systems. The coefficients γL and γB measure
the relative impact of these network conditions on the overall
system performance, allowing the workload model to adjust
for these variabilities and better reflect real-world operating
conditions [28].

The AI Workload baseline for an optimized system is
defined as:

AWbase =
Data IO Value + CompRes + ExtFactor

T
(33)

where T represents the time in seconds required to
complete a task, providing a measure of the system’s
operational efficiency. This baseline metric aggregates the
normalized data volume, computational resource expenditure,
and external network influences to gauge system efficiency
comprehensively [29].

4.7.3. Relative AI Workload
The relative workload is quantified by comparing the actual

workload against the baseline:

AWrel =
AWact

AWbase
(34)

This ratio assesses the system’s efficiency by measuring
actual observed workload relative to the pre-established
baseline. A value greater than 1 indicates underperformance
relative to its capability, whereas a value less than 1 indicates
a performance exceeding expectations. This dynamic metric
facilitates ongoing assessment and optimization of AI system
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performance [30].

4.8. Comparison with Human Labor

The comparison of AI workload to human labor is quantified
through the AI Impact Value, calculated as:

AI Impact Value =
AWact

man-hour
(35)

This metric reflects the amount of work done by AI
compared to the equivalent human labor, providing a measure
of AI’s efficiency and effectiveness in performing tasks.

4.9. Implementation and Experimental Setup

Here the experimental validations designed to test the
effectiveness and flexibility of the new computational resource
formulas and the extended model that includes external factors.

4.9.1. Experimental Environment
The experimental setup involves several different hardware

configurations to represent a diverse range of computing
environments:

1. Low-End System: Equipped with a single-core CPU
and minimal RAM, used to evaluate the model’s
performance under constrained resource conditions.

2. Mid-Range System: Features a multi-core CPU
and average GPU capabilities, representing typical
consumer-grade computers.

3. High-Performance System: Includes high-end GPU
arrays and substantial RAM, mimicking an enterprise-
grade server or a cloud computing environment.

4.9.2. Implementation of the Normalization Function
In the initial version of the method, a parameterized

sigmoid function was implemented in a modular Python script,
allowing for easy adjustment of parameters α and β based on
the resource type. However, experimental evaluations revealed
limitations in handling computational resource variations,
particularly at extreme values.

To address these limitations, the normalization method was
modified to use logarithmic scaling instead. The updated
script interfaces directly with resource measurement tools to
dynamically compute the normalized computational resource
values using the logarithmic transformation. This approach
ensures more consistent differentiation across a wide range
of AI workloads and system architectures, avoiding saturation
while maintaining sensitivity to lower values.

4.9.3. Data Collection
The system configuration, originally exported from the

research [32], the other data for test simulation environment is
collected from each system, as virtual machines, while running
standardized AI workload tasks.

4.9.4. Experimental Procedure, Analysis and Optimization
Each system is subjected to the workload tasks while the

resource usage is continuously monitored. The AI Workload
Quantization Model calculates real-time workload metrics,
which are then compared against the baselines established for
each system configuration. Adjustments to α, β, γL, and γB
are made based on preliminary results and per application to
optimize the accuracy of the workload calculations.

MNIST Character Recognition Experiment As the first step,
for the MNIST character recognition task, we compared the
performance of a human agent versus an AI implemented using
the DL4J framework on a cloud-based system. It helps with
finding the actual human-hour value for the task for further
calculations.

Post-experiment, we gathered the data, extracted from
the study [32], and virtual machines. The data was
analyzed to evaluate the model’s responsiveness to changes
in computational resources and external factors. The
optimization phase involves fine-tuning the model parameters
to better align with the observed performance differences
across various systems and tasks.

4.10. Expected Outcomes

The expected outcomes of these experiments include:
1. Validation of the Model: Validation that the model

effectively quantifies AI workloads across diverse
system architectures while adapting to variations in
resource availability and operational characteristics.
The computed AI workload values for a given AI
method are expected to be similar across different
system architectures, reflecting the method’s consistent
computational requirements, though “minor” variations
may arise due to architectural differences.

2. Performance Insights: Detailed insights into how
different systems handle AI-related tasks, which will
help in system design and resource allocation for AI
applications.

5. Results and Analysis

5.1. MNIST Character Recognition: Human vs. AI Agent

The MNIST character recognition experiment compares the
efficiency of AI against human performance, focusing on
speed, accuracy, and energy consumption.

1. Time Efficiency: The AI system completed the task in
27 seconds, while our human agent took 67 seconds,
showcasing AI’s speed advantage.

2. Accuracy: Both the human and AI agents reached a
99% accuracy rate, with AI potentially reaching up to
99.41%.

3. Energy Consumption: Our energy estimate for a human
to recognize MNIST digits is 0.40 Wh per 100 images
as follows: Neuroscientific research indicates that the
human brain consumes approximately 21.5 W during
cognitive processing [34]. Given that the human agent
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took 67 seconds to classify 100 images, the total energy
consumption is:

Ehuman = Pbrain × Thuman = 21.5W × 67s. (36)

This results in:

Ehuman = 1.44 kJ = 0.40 Wh, (37)

which aligns with previous cognitive neuroscience
findings [35, 36]. Studies indicate that human visual
pattern recognition can operate at reaction speeds as
low as 150-250 ms [36], though handwritten digit
classification requires longer, as demonstrated in this
experiment.

5.2. Detailed Computational Analysis Across Architectures

Using the AI Workload Quantization Metric, we evaluated
the efficiency of different system architectures. Here’s
a breakdown of the equations and values used for the
computations:

5.2.1. Computational Resources Value (CompRes)
To accurately quantify computational capability, we

compute the CompRes Value using a bounded transformation
of the computational power:

CR = CompReslog =
log(1 + CompResources)

log(1 + 1018)
(38)

where CompResources = CPU GIPS + RAM GT/s +
GPU GIPS + Storage I/O GiB/s. This equation ensures
that low computational values remain distinguishable,
while high values asymptotically approach 1.0. The
logarithmic transformation provides a more gradual scaling,
ensuring meaningful differentiation across high-performance
architectures. The choice of Smax = 1018 is based on the
highest FLOP-capable system available today, such as the
Frontier Supercomputer at Oak Ridge National Laboratory,
which surpassed 1.19 ExaFLOP/s in the TOP500 benchmark
[37]. This selection ensures future-proof adaptability.

By utilizing logarithmic scaling, we retain precision at high
computational values while maintaining sensitivity to lower
values.

Example Calculations:
1. SISD: Inputs are CPU: 40 GIPS, RAM: 5 GT/s, GPU: 0

GIPS, Storage: 0.5 GB/s.

CRSISD =
log(1 + 40 + 5 + 0 + 0.5)

log(1 + 1018)
≈ 0.0926

2. SIMD: Inputs are CPU: 100 GIPS, RAM: 15 GT/s,

GPU: 60 GIPS, Storage: 1.5 GB/s.

CRSIMD =
log(1 + 100 + 15 + 60 + 1.5)

log(1 + 1018)
≈ 0.1250

3. MIMD: Inputs are CPU: 280 GIPS, RAM: 40 GT/s,
GPU: 80 GIPS, Storage: 3.5 GB/s.

CRMIMD =
log(1 + 280 + 40 + 80 + 3.5)

log(1 + 1018)
≈ 0.1448

5.2.2. AI Workload
The AI Workload for each system is calculated based on the

CompRes and the total runtime:

AI Workload =
CompRes Value

runtime in seconds
(39)

Example Calculations:
1. SISD:

AI WorkloadSISD =
0.0926

600
≈ 0.000154

2. SIMD:

AI WorkloadSIMD =
0.1250

400
≈ 0.000312

3. MIMD:

AI WorkloadMIMD =
0.1448

250
≈ 0.000579

5.2.3. AI Impact Compared to Human Effort
The AI Impact metric quantifies the performance of AI

relative to human effort:

AI Impact =
AI Workload
Human Hours

(40)

Example Calculation:
1. SISD:

AI ImpactSISD =
0.000154

0.01861
≈ 0.00828

2. SIMD:

AI ImpactSIMD =
0.000312

0.01861
≈ 0.01676

3. MIMD:

AI ImpactMIMD =
0.000579

0.01861
≈ 0.03111

These calculations illustrate the significant efficiency gains
AI can provide over human efforts, especially in terms of speed
and computational resource management, which is crucial for
tasks requiring high computational power.
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Table 1. Summary of AI Workload Metric Performance Across Architectures.

Arch CPU GIPS RAM GT/s GPU GIPS Storage GB/s Comp-Res AI Workload AI Impact

SISD 40 5 0 0.5 0.0926 0.0001 0.0082

SIMD 100 15 60 1.5 0.1250 0.0003 0.0167

MIMD 280 40 80 3.5 0.1448 0.0005 0.0311

6. Discussion
The experimental validations conducted as part of this

study provide significant insights into the effectiveness and
flexibility of the AI Workload Quantization Metric across
different system architectures. These experiments were
crucial for testing the robustness of the new computational
resource formulas and the model’s capacity to incorporate
external factors effectively. The results of our AI Workload
Quantization Model demonstrated a tangible and quantifiable
equivalence between AI computational effort and human labor.
Our findings show that 1 AI Workload Unit corresponds
to approximately 12 to 14 human-hours, depending on the
underlying computational architecture. This relationship
provides a standardized approach to assessing AI efficiency
in labor-intensive tasks, enabling a meaningful comparison
between automated and human-driven workflows. As
AI workloads scale, our model effectively illustrates the
diminishing reliance on human effort, where 5 AI Workload
Units equate to nearly 60 to 72 hours of human work-
equivalent to over a full-time workweek. These insights
have direct implications for AI-driven workforce optimization,
taxation policies, and sustainability assessments, offering a
robust metric for policymakers and industry leaders to quantify
AI impact on labor economics. By establishing a systematic
correlation between AI computational effort and traditional
human productivity, this framework contributes to a more
structured understanding of AI’s role in modern labor systems,
industrial automation, and sustainable computing practices.
Future work will focus on refining this model by integrating
dynamic workload adaptation, task complexity normalization,
and energy-aware AI cost estimation to further enhance its
applicability in diverse AI-driven environments.

6.1. Parameter Calibration Through MNIST Experiment

The MNIST character recognition experiment was
conducted to calibrate the human-hour parameters necessary
for comparative AI Workload calculations, in addition to
showcasing AI capabilities. By measuring the time it took for
a human agent to complete the task-67 seconds-and comparing
it to the AI’s completion time of 27 seconds, we established
a critical benchmark for further calculations of AI workload
assessment.

6.2. Impact of System Architecture on AI Workload

The analysis across different architectures-SISD, SIMD,
and MIMD-revealed varying levels of computational resource
efficiency. The CompRes Value calculations provided a

quantified measure of each system’s capabilities, indicating
how system inputs like CPU GIPS, RAM GT/s, GPU GIPS,
and Storage I/O GB/s contribute to overall performance,
and comparability (slight difference) between different AI
workload values for different architectures, demonstrates the
efficiency of the proposed method. Another application might
be, underscoring the importance of selecting the appropriate
system architecture based on the specific requirements and
workload characteristics of AI applications.

6.3. Future Directions

Looking forward, these findings open several avenues for
further research. One potential area is the exploration of
AI workload optimization techniques that could dynamically
adjust computational resources in real-time based on workload
demands. Additionally, extending the AI Workload
Quantization Metric to include more granular measures of
energy consumption and heat generation could enhance the
model’s utility for designing greener, more sustainable AI
systems. Importantly, these advancements also pave the way
for governing AI services by introducing a suitable tax based
on resource usage and environmental impact. This fiscal
approach could incentivize the development of more efficient
AI technologies, aligning economic and environmental goals.

The successful validation of the model across diverse
architectures also suggests its applicability in a broader range
of AI-driven applications, from mobile devices with limited
resources to high-performance computing environments.
Further studies could explore the integration of this model with
some limited adjustments, into real-world AI systems to refine
its predictive accuracy and operational efficiency.

7. Conclusion

This study has successfully established a robust framework
for quantifying AI workload using the AI Workload
Quantization Metric, demonstrating a novel method for
assessing computational efficiency and workload in AI
systems relative to traditional human efforts. Our introduction
of a multi-parameter calibration methodology through
empirical testing provides a systematic approach to measure
and compare AI performance across various computing
environments. By extending these metrics to include factors
such as energy consumption, computational resource usage,
and input/output data management, this framework not only
enhances our understanding of AI efficiency but also supports
the development of a taxation model based on resource
utilization. This advancement lays the groundwork for more
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sustainable and economically viable AI operations, positioning
our findings as a cornerstone for future research in AI
workload optimization and policy development.

Abbreviations
AI Artificial Intelligence
IoT Intemet of Things
HPC High-Performance Computing
TPU Tensor Processing Unit
GPU Graphics Processing Unit
CPU Central Processing Unit
RAM Random Access Memory
GB Gigabyte
Wh Watt-hour
FLOP Floating Point Operation
FLOPs Floating Point Operations per Second
PUE Power Usage Effectiveness
CO2 Carbon Dioxide
CCI Compute Carbon Intensity
LCA Life Cycle Assessment
DL4J DeepLearning4J
MNIST Modified National Institute of Standards and

Technology
AIF AI Impact Factor
URL Uniform Resource Locator
DOI Digital Object Identifier
SISD Single Instruction Single Data
SIMD Single Instruction Multiple Data
MIMD Multiple Instruction Multiple Data
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Appendix

Appendix I: AI Impact Factor (AIF)

This formulation is inspired by economic studies on
the impact of automation on labor [33] and is built
upon foundational principles in the thermodynamics of
computation [2, 3]. Moreover, by integrating detailed
computational quantization with system-level overheads-as
well as considering the value of reduced human labor-this
metric provides a comprehensive measure of the impact of AI
systems. Further calibration of the inefficiency factors (ηcomp

and ηdata) and empirical estimation of CAI can be achieved
using data from HPC and cloud platforms [6, 7, 12].

Appendix II: Additional Visualizations
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Figure 2. 3D scatter plots of AI Workload and Computational Resource Values.

This figure 2 illustrates the relationship between AI
workload and computational resource values across various
system configurations. By varying the CPU cores, RAM, and
GPU performance, we analyzed how different hardware setups
influence AI efficiency.
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Colloquium: Quantum fluctuation relations: Foundations
and applications. Reviews of Modern Physics, 83(3),
771–791. https://doi.org/10.1103/RevModPhys.83.771

[6] Strubell, Emma and Ganesh, Ananya and McCallum,
Andrew. (2020). Energy and policy considerations for
modern deep learning research. arXiv preprint arXiv:
1906.02243, 34(09), 13693–13696.
https://doi.org/10.1609/aaai.v34i09.7123

[7] Schwartz, R. and Dodge, J. and Smith, N.A. and Etzioni,
O.. (2021). Green AI. Com-munications of the ACM,
64(12), 54–63. https://doi.org/10.1145/3487241
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