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Abstract 

Calculating the gravitational potential generated by non-spherical mass distributions is an old problem that has been tackled by 

astronomical researchers. The majority of small celestial objects have an elongated shape with a non-uniform mass distribution. 

Early work in this field modelled these elongated bodies as segments with a uniform mass distribution. In a previous work, we 

established the analytical form of the potential generated by an asteroid modelled by a linear and inhomogeneous repair whose 

mass density is a polynomial of order four. We have studied the dynamic behavior of a test particle in the vicinity of this asteroid, 

which is assumed to be at rest, and have extracted periodic orbits under certain conditions. Every celestial object has an angular 

momentum due to its own rotation. This result in competition between gravitational attraction and centrifugal repulsion in the 

synodic reference frame linked to the object. This led us to focus our research on the existence of relative equilibrium positions. 

We calculated the Jacobi integral analytically and used the zero velocity curves numerically to extract four equilibrium positions, 

two isosceles and two equilateral. 
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1. Introduction 

Numerous studies have been carried out into the model-

ling of irregular bodies and the determination of the gravi-

tational potential they generate. This approach makes it 

possible to analyse the equilibrium and stability of particles 

in the vicinity of these bodies, which is of crucial importance 

in the context of space missions aimed at exploring the small 

bodies of the solar system. Among these irregular celestial 

bodies, the asteroid belt offers a particularly rich field of 

study. These asteroids include elongated objects, and several 

attempts have been made to model these structures using 

linear mass distributions. Attempts have been made to cal-

culate the potential generated by various geometric shapes. 

Werner and Scheeres treated the case of a polyhedron for 

asteroid 4769 Castalia [8, 9]. The case of two intersecting 

segments, ellipsoids and point shapes were used by Bartczak 

and Breiter in [10] and Bartczak et al [11] to model elon-

gated shapes. Najid N, Zegoumou M, El ourabi E [12] 

modelled one of Saturn’s rings by an anisotropic circular 

ring. Riaguas A, Elipe A and Lara M calculated the potential 

generated by a homogeneous segment [1]. Elipe A and Lara 

M studied the dynamics in the vicinity of the asteroid 

Eros-433 using the results of [2, 3]. Ellipe and Lara [4] 
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described the motion around asteroid 433 Eros using the 

same homogeneous model. Our team Najid et al [5] pro-

posed for the first time a new inhomogeneous parabolic 

density model of a static elongated body and we established 

the closed and analytical formula of the potential generated 

by this body. Following Najid and El ourabi [6], we focused 

on the dynamic case of the parabolic profile, concentrating 

on equilibrium positions and their stabilities. The effect of a 

higher order on the dynamic orbits was carried out by El 

ourabi and Bennai [7], treating the case of a polynomial 

profile mass density of order 4 in the static case. Our work 

consists of treating the case where the linear mass distribu-

tion whose generalized profile [7] is rotating around the axis 

of greatest moment of inertia. First, we establish the dy-

namic equations, in the synodic reference frame, of a test 

particle gravitating in the vicinity of the elongated body. In 

the second part we establish the algebraic equations giving 

the equilibrium positions in the synodic reference frame. In 

the last part, we carry out the energy study by calculating the 

Jacobi first integral, which we solve numerically using the 

zero velocity curves to show the existence of four equilib-

rium positions. 

2. Dynamical Study 

2.1. Potential Gravitational 

The elongated body, of mass M and length 2l, is modelled 

by a segment centred at O, Figure 1 and Figure 2 

Non-homogeneity is characterised by the density: 

𝜆(𝑥) = 𝑏 − 𝑎𝑥2 + 𝑐𝑥4             (1) 

The mass of the body is: 

𝑀 = 2𝑏𝑙 −
2

3
𝑎𝑙3 +

2

5
𝑐𝑙5  

 
Figure 1. Study coordinates (ρ,θ,x). 

 
Figure 2. Coordinates r1 and r2. 

The analytical expression of the gravitational potential is 

given in [7]: 

𝑈(𝑃) = −𝐺 *𝑧1 +
𝑟1

2𝑙
𝑧2 +

𝑟2

2𝑙
𝑧3 + 𝑧4𝐿𝑛 (

𝑠:2𝑙

𝑠;2𝑙
)+    (2) 

with 𝐺  the Cavendish constant. The coefficients (𝑧𝑖)𝑖<1..4 

depend on the position of the point 𝑃, their expressions are: 

𝑧1 = −
55

48
𝑎4𝐵𝐶

3

2 +
2

3
𝑎3𝐵𝐶

3

2  

𝑧2 =
35

64
𝑎4𝐵3 −

5

8
𝑎3𝐵2 +

3

4
𝑎2𝐵 − 𝑎1  

𝑧3 = −
35

64
𝑎4𝐵3 + (

35

96
𝑎4 +

5

8
𝑎3) 𝐵2 − (

5

12
𝑎3 +

7

24
𝑎4 +

3

4
𝑎2) 𝐵 +

55

48
𝑎4𝐵𝐶  

− (
3

8
𝑎4 +

2

3
𝑎3) 𝐶 + 𝑎1 +

1

2
𝑎2 +

1

3
𝑎3 +

1

4
𝑎4  

𝑧4 =
35

128
𝑎4𝐵4 −

5

16
𝑎3𝐵3 −

15

16
𝑎4𝐶𝐵2 +

3

8
𝑎2𝐵2 +

3

4
𝐶𝐵 −

1

2
𝑎1𝐵 +

3

8
𝑎4𝐶2 −

1

2
𝑎2𝐶 + 𝑎0  

𝑠, 𝐵 and 𝐶 are functions of the position of point 𝑃, they 

are given by: 

𝑠 = 𝑟1 + 𝑟2, 𝑟1 = √(𝑥 + 𝑙)2 + 𝑦2 + 𝑧2,

𝑟2 = √(𝑥 − 𝑙)2 + 𝑦2 + 𝑧2  

𝐵 =
𝑟2

2;𝑟1
2;4𝑙2

4𝑙2
   ;      𝐶 =

𝑟1
2

4𝑙2
  

𝑎0, 𝑎1, 𝑎2, 𝑎3 and 𝑎4 are the constants given by: 

𝑎0 = 𝑏 − 𝑎𝑙2 + 𝑐𝑙4, 𝑎1 = 4𝑙2(𝑎 − 𝑐𝑙2), 𝑎2 =

4𝑙2(5𝑐𝑙2 − 𝑎), 𝑎3 = −32𝑐𝑙4, 𝑎4 = 16𝑐𝑙4  

2.2. Equations of Motion 

The speed of rotation of the body relative to (OZ) is de-
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noted by ω and the test particle is placed at point P as shown in 

Figure 3. 

 
Figure 3. Synodical reference. 

The dynamic equation in the synodic reference frame R is: 

(
𝑑2𝑂𝑃 ⃖    

𝑑𝑡2 )
𝑅

+ 2𝜔   ∧ (
𝑑𝑂𝑃 ⃖    

𝑑𝑡
)

𝑅
+ 𝜔   ∧ (𝜔   ∧ 𝑂𝑃 ⃖    ) = −∇⃖  𝑈(𝑃)   (3) 

By injecting expression (2) into equation (3) and projecting 

into the synodic reference frame we obtain: 

𝑥̈ − 2𝜔𝑦̇ = 𝜔2𝑥 −
𝜕𝑈

𝜕𝑥
            (4) 

𝑦̈ + 2𝜔𝑥̇ = 𝜔2𝑦 −
𝜕𝑈

𝜕𝑦
               (5) 

𝑧̈ = −
𝜕𝑈

𝜕𝑧
             (6) 

The effective potential W is given by the contribution of the 

gravitational potential and the centrifugal potential: 

𝑊(𝑥, 𝑦, 𝑧) = 𝑈(𝑃) −
𝜔2

2
(𝑥2 + 𝑦2)  

The equations (4, 5, 6) give: 

𝑥̈ − 2𝜔𝑦̇ = −𝑊𝑥             (7) 

𝑦̈ + 2𝜔𝑥̇ = −𝑊𝑦               (8) 

𝑧̈ = −𝑊𝑧                 (9) 

With 𝑊𝑥 =
𝜕𝑊

𝜕𝑥
. 𝑊𝑦 =

𝜕𝑊

𝜕𝑦
, and 𝑊𝑧 =

𝜕𝑊

𝜕𝑧
 Their expres-

sions are: 

𝑊𝑥 = −𝐺 .(
2

3
𝑎3 −

55

48
) (

𝑑2;𝑠2

4𝑙𝑝
𝐶3/2 + 3

𝑥:𝑙

4𝑙2
𝐶1/2𝐵)

    +
𝑟1

2𝑙

𝑑2;𝑠2

4𝑙𝑝
(

105

64
𝑎4𝐵2 −

5

4
𝑎3𝐵 +

3

4
𝑎2)

    +𝑧2
𝑥:𝑙

2𝑟1𝑙

    +
𝑟2

2𝑙
(*−

99

64
𝑎4𝐵2 + 2 (

35

96
𝑎4 +

5

8
𝑎3) 𝐵 − (

5

12
𝑎3 +

7

24
𝑎4 +

3

4
𝑎2)+

𝑑2;𝑠2

4𝑙𝑝

    −
55

48
𝑎4 (

𝑑2;𝑠2

4𝑙𝑝
𝐶 +

𝑥:𝑙

2𝑙2
𝐵) − (

3

4
𝑎4 +

2

3
𝑎3)

𝑥:𝑙

2𝑙2

    +
𝑥;𝑙

2𝑙𝑟2
𝑧3

    + *(
35

32
𝑎4𝐵3 −

15

16
𝑎3𝐵2 +

3

4
𝑎2𝐵 −

𝑎1

2
)

𝑑2;𝑠2

4𝑙𝑝

    −
15

16
(2𝐵𝐶

𝑑2;𝑠2

4𝑙𝑝
+ 𝐵2 𝑥:𝑙

2𝑙2
)

    +
3

4
(𝐵

𝑥:𝑙

2𝑙2
+ 𝐶

𝑑2;𝑠2

4𝑙𝑝
)

    + (
3

4
𝑎4𝐶 −

𝑎2

2
)

𝑥:𝑙

2𝑙2
]ln (

𝑠:2𝑙

𝑠;2𝑙
)

    −
4𝑙(𝑠𝑥;𝑙𝑑)

𝑝(𝑠2;4𝑙2)
𝑧4) − 𝜔2𝑥

              (10) 

𝑊𝑦 = −𝐺 ,(
2𝑎3

3
−

55𝑎4

48
)

3𝑦

4𝑙2
𝐵𝐶1/2 +

𝑧2𝑦

2𝑙𝑟1
+

𝑟2

2𝑙
(−

55𝑎4𝑦𝐵

96𝑙2
− (

3𝑎4

8
+

2𝑎3

3
)

𝑦

2𝑙2
)

    +
𝑦𝑧3

2𝑙𝑟2
+ (−

15𝑎4𝐵2

16
+

3𝐵

4
+

3𝑎4𝐶

4
−

𝑎2

2
)

𝑦

2𝑙2
ln (

𝑠:2𝑙

𝑠;2𝑙
)

    −
4𝑦𝑠𝑙𝑧4

𝑝(𝑠2;4𝑙2)
- − 𝜔2𝑦

             (11) 
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𝑊𝑧 = −𝐺 ,(
2𝑎3

3
−

55𝑎4

48
)

3𝑧𝐵𝐶1/2

4𝑙2
+

𝑧𝑧2

2𝑙𝑟1
+

𝑟2

2𝑙
(−

55𝑎4𝑧𝐵

96𝑙2
− (

3𝑎4

8
+

2𝑎3

3
)

𝑧

2𝑙2
)

    + (
15𝑎4𝐵2

16
+

3𝐵

4
+

3𝑎4𝐶

4
−

𝑎2

2
)

𝑧

2𝑙2
ln (

𝑠:2𝑙

𝑠;2𝑙
)

    −
4𝑧𝑠𝑙𝑧4

𝑝(𝑠2;4𝑙2)
-

             (12) 

The dynamic equations become: 

𝑥̈ − 2𝜔𝑦̇ = 𝐺 ,(
2

3
𝑎3 −

55

48
) (

𝑑2;𝑠2

4𝑙𝑝
𝐶3/2 + 3

𝑥:𝑙

4𝑙2
𝐶1/2𝐵)

    +
𝑟1

2𝑙

𝑑2;𝑠2

4𝑙𝑝
(

105

64
𝑎4𝐵2 −

5

4
𝑎3𝐵 +

3

4
𝑎2)

    +𝑧2
𝑥:𝑙

2𝑟1𝑙

    +
𝑟2

2𝑙
.(−

99𝑎4𝐵2

64
+ 2 (

35𝑎4

96
+

5𝑎3

8
) 𝐵

    − (
5𝑎3

12
+

7𝑎4

24
+

3𝑎2

4
))

𝑑2;𝑠2

4𝑙𝑝
−

55𝑎4

48
(

𝑑2;𝑠2

4𝑙𝑝
𝐶 +

𝑥:𝑙

2𝑙2
𝐵)

    − (
3𝑎4

4
+

2𝑎3

3
)

𝑥:𝑙

2𝑙2
) +

𝑥;𝑙

2𝑙𝑟2
𝑧3

    + .(
35𝑎4

32
𝐵3 −

15𝑎3

16
𝐵2 +

3𝑎2

4
𝐵 −

𝑎1

2
)

𝑑2;𝑠2

4𝑙𝑝

    −
15𝑎4

16
(2𝐵𝐶

𝑑2;𝑠2

4𝑙𝑝
+ 𝐵2 𝑥:𝑙

2𝑙2
)

    +
3

4
(𝐵

𝑥:𝑙

2𝑙2
+ 𝐶

𝑑2;𝑠2

4𝑙𝑝
)

    + (
3𝑎4

8
𝐶 −

𝑎2

2
)

𝑥:𝑙

𝑠;2𝑙
) 𝐿𝑛 (

𝑠:2𝑙

𝑠;2𝑙
)

    −
4𝑙(𝑠𝑥;𝑙𝑑)

𝑝(𝑠2;4𝑙2)
𝑧4- − 𝜔2𝑥

                    (13) 

𝑦̈ + 2𝜔𝑥̇ = 𝐺 ,(
2𝑎3

3
−

55𝑎4

48
)

3𝑦

4𝑙2
𝐵𝐶1/2 +

𝑧2𝑦

2𝑙𝑟1
+

𝑟2

2𝑙
(−

55𝑎4𝑦𝐵

96𝑙2
− (

3𝑎4

8
+

2𝑎3

3
)

𝑦

2𝑙2
)

    +
𝑦𝑧3

2𝑙𝑟2
+ (−

15𝑎4𝐵2

16
+

3𝐵

4
+

3𝑎4𝐶

4
−

𝑎2

2
)

𝑦

2𝑙2
ln (

𝑠:2𝑙

𝑠;2𝑙
)

    −
4𝑦𝑠𝑙𝑧4

𝑝(𝑠2;4𝑙2)
- − 𝜔2𝑦

          (14) 

𝑧̈ = 𝐺 ,(
2𝑎3

3
−

55𝑎4

48
)

3𝑧𝐵𝐶1/2

4𝑙2
+

𝑧𝑧2

2𝑙𝑟1
+

𝑟2

2𝑙
(−

55𝑎4𝑧𝐵

96𝑙2
− (

3𝑎4

8
+

2𝑎3

3
)

𝑧

2𝑙2
)

    + (
15𝑎4𝐵2

16
+

3𝐵

4
+

3𝑎4𝐶

4
−

𝑎2

2
)

𝑧

2𝑙2
ln (

𝑠:2𝑙

𝑠;2𝑙
)

    −
4𝑧𝑠𝑙𝑧4

𝑝(𝑠2;4𝑙2)
-

                   (15) 

3. The Equilibria 

3.1. Equations of Equilibria 

From expressions (13), (14) and (15) we derive the equations for the equilibrium positions: 
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𝐺 ,(
2

3
𝑎3 −

55

48
) (

𝑑2;𝑠2

4𝑙𝑝
𝐶3/2 + 3

𝑥:𝑙

4𝑙2
𝐶1/2𝐵)

    +
𝑟1

2𝑙

𝑑2;𝑠2

4𝑙𝑝
(

105

64
𝑎4𝐵2 −

5

4
𝑎3𝐵 +

3

4
𝑎2)

    +𝑧2
𝑥:𝑙

2𝑟1𝑙

    +
𝑟2

2𝑙
.(−

99𝑎4𝐵2

64
+ 2 (

35𝑎4

96
+

5𝑎3

8
) 𝐵

    − (
5𝑎3

12
+

7𝑎4

24
+

3𝑎2

4
))

𝑑2;𝑠2

4𝑙𝑝
−

55𝑎4

48
(

𝑑2;𝑠2

4𝑙𝑝
𝐶 +

𝑥:𝑙

2𝑙2
𝐵)

    − (
3𝑎4

4
+

2𝑎3

3
)

𝑥:𝑙

2𝑙2
) +

𝑥;𝑙

2𝑙𝑟2
𝑧3

    + .(
35𝑎4

32
𝐵3 −

15𝑎3

16
𝐵2 +

3𝑎2

4
𝐵 −

𝑎1

2
)

𝑑2;𝑠2

4𝑙𝑝

    −
15𝑎4

16
(2𝐵𝐶

𝑑2;𝑠2

4𝑙𝑝
+ 𝐵2 𝑥:𝑙

2𝑙2
)

    +
3

4
(𝐵

𝑥:𝑙

2𝑙2
+ 𝐶

𝑑2;𝑠2

4𝑙𝑝
)

    + (
3𝑎4

8
𝐶 −

𝑎2

2
)

𝑥:𝑙

𝑠;2𝑙
) 𝐿𝑛 (

𝑠:2𝑙

𝑠;2𝑙
)

    −
4𝑙(𝑠𝑥;𝑙𝑑)

𝑝(𝑠2;4𝑙2)
𝑧4- − 𝜔2𝑥 = 0

                          (16) 

𝐺 ,(
2𝑎3

3
−

55𝑎4

48
)

3𝑦

4𝑙2
𝐵𝐶1/2 +

𝑧2𝑦

2𝑙𝑟1
+

𝑟2

2𝑙
(−

55𝑎4𝑦𝐵

96𝑙2
− (

3𝑎4

8
+

2𝑎3

3
)

𝑦

2𝑙2
)

    +
𝑦𝑧3

2𝑙𝑟2
+ (−

15𝑎4𝐵2

16
+

3𝐵

4
+

3𝑎4𝐶

4
−

𝑎2

2
)

𝑦

2𝑙2
ln (

𝑠:2𝑙

𝑠;2𝑙
)

    −
4𝑦𝑠𝑙𝑧4

𝑝(𝑠2;4𝑙2)
- − 𝜔2𝑦 = 0

                  (17) 

𝐺 ,(
2𝑎3

3
−

55𝑎4

48
)

3𝑧𝐵𝐶1/2

4𝑙2
+

𝑧𝑧2

2𝑙𝑟1
+

𝑟2

2𝑙
(−

55𝑎4𝑧𝐵

96𝑙2
− (

3𝑎4

8
+

2𝑎3

3
)

𝑧

2𝑙2
)

    + (
15𝑎4𝐵2

16
+

3𝐵

4
+

3𝑎4𝐶

4
−

𝑎2

2
)

𝑧

2𝑙2
ln (

𝑠:2𝑙

𝑠;2𝑙
)

    −
4𝑧𝑠𝑙𝑧4

𝑝(𝑠2;4𝑙2)
- = 0

                          (18) 

Equation (18) shows that the equilibrium positions are 

contained in the (x,y) plane. 

3.2. Zero Velocity Curves 

The zero-velocity curves show lines separating the zones 

permitted and those prohibited by the test particle. See more 

details in [15, 16]. 

The dynamic system defined by equations (7), (8) and (9) 

has a first integral characterized by the Jacobi constant CJ 

related to the energy of the system. This first integral is de-

scribed by: 

𝐶𝐽 = 2𝑊(𝑥, 𝑦, 𝑧) + (𝑥̇2 + 𝑦̇2 + 𝑧̇2)  

For well-defined initial conditions, the orbit of the test 

particle must lie inside the curve of equation 2W(x, y, z) ≤ C. 

The zero velocity surface is expressed by the relation C = 

2W(x,y,z). In this case the contour delimiting the permitted 

zones from the forbidden zones is given by the equation 

𝑔(𝑥, 𝑦, 𝐶) = 2𝑊 − 𝐶 = 0  

Figures 4, 5 and 6 show a numerical resolution of the zero 

velocity curves for different values of the Jacobi constant. 

The curves in (Figure 4): 

1) (Figure 4-a) is plotted for l = 0.5, a = 0.1, b = 1, c = 0.01, 

w = 0.8 and for the values of the Jacobi constant: 

−1.1, −1.2,−1.3,−1.31,−1.32,−1.33,−1.34,−1.24,−1.25 

−1.26, −1.27,−1.28,−1.29,−1.4,−1.45,−1.46,−1.47,−1.48 

−1.49, −1.5,−1.6,−1.7,−1.8,−1.9,−2,−2.5,−3,−3.5 
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Figure 4. Zero velocity curves. 

2) (Figure 4-b) is plotted for l = 0.5, a = 0.1, b = 1, c = 0.01, 

w = 1 and for the values of the Jacobi constant: 

−1.1,−1.2,−1.3,−1.31,−1.32,−1.33,−1.34,−1.24,−1.25 

−1.26,−1.27,−1.28,−1.29,−1.4,−1.45,−1.46,−1.47,−1.48 

−1.49,−1.5,−1.6,−1.7,−1.8,−1.9,−2,−2.5,−3,−3.5 

3) (Figure 4-c) is plotted for l = 0.5, a = 0.1, b = 1, c = 0.01, 

w = 1.2 and for the values of the Jacobi constant: 

−1.1,−1.2,−1.3,−1.31,−1.32,−1.33,−1.34,−1.24,−1.25 

−1.26,−1.27,−1.28,−1.29,−1.4,−1.45,−1.46,−1.47,−1.48 

−1.49,−1.5,−1.6,−1.7,−1.8,−1.9,−2,−2.5,−3,−3.5 

4) (Figure 4-d) is plotted for l = 0.5, a = 0.1, b = 1, c = 0.05, 

w = 0.8 and for the values of the Jacobi constant: 

−1.1,−1.2,−1.3,−1.31,−1.32,−1.33,−1.34,−1.24,−1.25 

 
Figure 5. Zero velocity curves. 
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−1.26,−1.27,−1.28,−1.29,−1.4,−1.45,−1.46,−1.47,−1.48 

−1.49,−1.5,−1.6,−1.7,−1.8,−1.9,−2,−2.5,−3,−3.5 

The curves in (Figure 5): 

1) (Figure 5-a) is plotted for l = 0.5, a = 0.1, b = 1, c = 0.01, 

w = 0.8 and for the values of the Jacobi constant: 

−1.1,−1.2,−1.3,−1.31,−1.32,−1.33,−1.34,−1.24,−1.25 

2) (Figure 5-b) is plotted for l = 0.5, a = 0.1, b = 1, c = 0.02, 

w = 0.8 and for the values of the Jacobi constant: 

−1.1,−1.2,−1.3,−1.31,−1.32,−1.33,−1.34,−1.24,−1.25 

3) (Figure 5-c) is plotted for l = 0.5, a = 0.1, b = 1, c = 0.01, 

w = 1.4 and for the values of the Jacobi constant: 

−1.1,−1.2,−1.3,−1.31,−1.32,−1.33,−1.34,−1.24,−1.25 

 
Figure 6. Zero velocity curves. 

−1.26,−1.27,−1.28,−1.29,−1.4,−1.45,−1.46,−1.47,−1.48 

−1.49,−1.5,−1.6,−1.7,−1.8,−1.9,−2,−2.5,−3,−3.5 

4) (Figure 5-d) is plotted for l = 0.5, a = 0.1, b = 1, c = 0.05, 

w = 2 and for the values of the Jacobi constant: 

−1.1,−1.2,−1.3,−1.31,−1.32,−1.33,−1.34,−1.24,−1.25 

−1.26,−1.27,−1.28,−1.29,−1.4,−1.45,−1.46,−1.47,−1.48 

−1.49,−1.5,−1.6,−1.7,−1.8,−1.9,−2,−2.5,−3,−3.5 

The curves in (Figure 6): 

1) (Figure 6-a) is plotted for l = 0.5, a = 0.1, b = 1, c = 0.01, w 

= 2 and for the values of the Jacobi constant: 

−1.1,−1.2,−1.3,−1.31,−1.32,−1.33,−1.34,−1.24,−1.25 

−1.26,−1.27,−1.28,−1.29,−1.4,−1.45,−1.46,−1.47,−1.48 

−1.49,−1.5,−1.6,−1.7,−1.8,−1.9,−2,−2.5,−3,−3.5,−3.6,−3.8,−

4 

2) (Figure 6-b) is plotted forl = 0.5, a = 0.1, b = 1, c = 0.02, w 

= 2.5 and for the values of the Jacobi constant: 

−1.1,−1.2,−1.3,−1.31,−1.32,−1.33,−1.34,−1.24,−1.25 

−1.26,−1.27,−1.28,−1.29,−1.4,−1.45,−1.46,−1.47,−1.48 

−1.49,−1.5,−1.6,−1.7,−1.8,−1.9,−2,−2.5,−3,−3.5,−3.6,−3.8,−

4 

 
Figure 7. Equilibrium positions. 

The zero velocity curves show that there are four equilib-

rium positions, (Figure 7): 

Colinear positions E1 et E2. 

Isosceles positions: E3 et E4. 
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4. Conclusion 

The study we have developed models the behavior of a 

low-mass space probe orbiting in the gravitational field gen-

erated by an elongated asteroid, which has been modelled by 

an inhomogeneous linear distribution in rotation. The mass 

profile of the asteroid is characterized by a symmetric 

fourth-order polynomial density. We have established the 

dynamical equations of motion in the synodic reference frame 

associated with the irregular body, as well as those for the 

relative equilibrium positions. The numerical resolution of the 

zero-velocity curves has enabled us to find four symmetrical 

equilibrium positions, two of which are collinear with the 

segment and two of which lie on the axis orthogonal to the 

segment and passing through its centre. Locating the equilib-

rium positions saves energy and costs for space missions to 

explore irregular celestial bodies such as NEAR Shoemaker 

and ROSETTA, which have been carried out by space agen-

cies such as ESA and NASA [13] and [14]. Our future plans 

include exploring the case of more detailed mass distributions, 

namely volume distributions. 
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