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Abstract: Analytical solutions of second- and third-order non-homogeneous Ordinary Linear Differential Equations (OLDEs)
with variable coefficients have been investigated using an established mathematical tool, the integral transform, together with
a new analytic method developed in this study. This study aims to utilize the integral transform alongside the new analytical
method. The new method was derived from the concept of exactness in higher-order ODEs. Specifically, second- and third-order
ODEs with variable coefficients are exact if there exist first- and second-order linear ODEs whose derivatives correspond to the
given equations, respectively. In this new analytic method, an integrating factor function formula for second-order ODEs has been
carefully formulated and derived, making every second-order ODE with variable coefficients reducible to its lower-order form,
specifically first-order ODEs. To ensure the accuracy of the new method, two well-known classes of second-order linear ODEs,
namely the Whittaker second-order linear ODE and the Modified Bessel equation, were applied. The results demonstrated that
the new analytic method effectively solves these equations, producing exact analytical solutions. To validate the effectiveness and
efficiency of the new analytic method, a comparative analysis was conducted using illustrative examples, followed by graphical
representations of the solution results.
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1. Introduction
This paper presents a novel analytic method for obtaining

solutions of linear nonhomogeneous second and third-order
Ordinary Differential Equations (ODEs) using an integrating-
factor approach. Their canonical forms of the ODEs are given:

y′′ + p(x)y′ +Q(x)y = R(x). (1)

g′′′ + α(x)g′′ + β(x)g′ + γ(x)g =M(x). (2)

Where y = y(x) and g = g(x) are the associated analytical
solutions for second and third-order ODEs respectively and
the coefficients p(x), Q(x), α(x), β(x) and γ(x) are some
real-valued functions of the independent variable x in I. The
nature of the coefficients for the second and third-order linear

ODEs considered in this study are polynomial functions of
degree n where n lies in this range (1 ≤ n ≤ 3). There
have been many studies of second-order ODEs with variable
coefficients see [1-3] for details. If one of the solutions of
Equation (1) is known or given, then the other solution can
be obtained using the method of reduction of order [4,5].
However, there is no universal analytical method to find even a
single solution for ODEs of the form (1) except under certain
restrictive conditions. Some well-known techniques, including
reduction of order, change of independent variables, variation
of parameter, and the method of undetermined coefficients, are
applied to find the general solution or one specific solution
for certain particular classes of ODEs of the form (1). Also,
the third order in Equation (2) can only be solved in its
general form when it is written in the form of an Euler-Cauchy
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equation. Hence, this area of differential equations especially
second-order linear ODEs has received numerous applications
in the theory of electric circuits and establishing a connection
with vibrations in mechanics see [6-8] in details. These are of
great importance, as their solution has important implications
and builds the basic phenomena of electromagnetics, wave
motion, heat conduction, fluid mechanics, stress analysis, and
aerodynamics, among others [9,10] see in details. Meanwhile,
for the third- and higher-order ODEs do not come much at an
elementary level, but some of the applications can be seen here
in much more detail [11]. When the applications of integral
transforms for solving differential equations are discussed,
many attempts have been made to transform Equation (1) into
a simple form to make it solvable with the help of different
transformations, i.e. Laplace transformation [12].

Wilmer III, A. and Costa, G. [13] developed a method in
which an analytical solution is obtained for certain classes
of second-order differential equations with coefficients of
polynomial variables. A desired solution is obtained by
the use of transformations and repeated iterated integration.
This alternative method represents a different way to acquire
a solution from classic power series techniques and other
approaches. Ahmed, Z. and Kalim, M. [14] introduced a new
analytical approach toward the general solution of Ordinary
Linear Differential Equations (OLDEs) of order two. The
method involves a transformation based on an integral function
in an exponential form which leads to the general solution of a
given differential equation. The authors discussed a special
case of second-order OLDEs to develop the formulae and
solution procedure and different problems have been solved to
explain the solution method. They extended the idea to solve
the general form of second-order OLDEs.

Recently, Beccar-Varela et al. [15] developed two analytic
methods for solving higher-order ODEs without numerical
solutions: the self-adjoint type formulation and the integrating-
factor approach. They proposed a Riccati equation for
a variable b to solve a second-order Ordinary Differential
Equation (ODE), using its particular solution to find the
integrating factor. This type of integrating factor technique
was able to obtain particular solution for the second-order
ODEs. However, they introduced the second-order integrating
factor equation u′′−u′P +u(Q−P ′) = 0 without solving it.
They emphasized that the integrating factor for second-order
ODEs can still be obtained.

Pala, Y. and Kahya [16] in a study they conducted, they were
able to present four different methods for solving second-order
ODEs with variable coefficients analytically. The solution
of the first method which is a special case is presented
explicitly or integrally in the first method. The second
approach involves solving similar two adjoined second-order
homogeneous ordinary differential equations in order to solve
the analytic solution of the general second-order ODEs. If
the analytical solutions for both adjoined equations can be
determined, the analytical solution for the original second-
order ODE equation can always be obtained. In the third
method, they utilized what is called a Riccati equation to
transform the second-order ODE into a Riccati equation. Thus,

the solution could be found using a recently developed method
by Pala, Y. and Ertas [17]. In method four, they proposed a new
transformation based on an integral function in an exponential
form which leads to the Riccati equation and the solution
once again relies on solving the Riccati equation. The results
showed that the first method is limited to when Q(x) = p′(x).
The second method requires the solutions of the two adjoined
equations. As long as the analytical solution of the two
adjoined equations can be obtained, the analytical solution of
the second-order ODEs can be found. The third method is
a method of transforming second-order ODE into a Riccati
equation and the fourth method is a newly modified method
from the third method that involves a transformation based on
an integral function in an exponential form and the solution of
the fourth method again depends on the solution of the Riccati
equation. However, if one of the two adjoined equations is
presented here, it reads as follows; N ′′−PN ′+(Q−P ′)N =
0. So, the authors pointed out that the analytical solutions
of two adjoined equations are still not known. Moreover,
the adjoined equation appears identical to the one presented
earlier, which is u′′ − u′P + u(Q− P ′) = 0. Both equations
are exactly the same despite being derived by two different
independent researchers.

Therefore, in light of these two prior studies [15, 16], what
they have in common is that unsolved second-order integrating
factor function equation which is very important for finding the
analytic solution for second-order Ordinary Linear Differential
Equation with variable coefficients. Thus, the present study is
motivated to solve this second-order integrating factor function
equation using a new analytic method constructed from the
concept of exactness of higher-order ODEs.

The present work motivation entails the following novel
aspects: first, constructing a new analytic method from the
concept of higher-order ODEs exactness. Secondly, deriving a
formula for writing the general solution of second-order linear
non-homogeneous ODEs of the form Equation (1) without
knowing or finding one of the associated solutions. Thirdly,
deriving the general integrating factor function formula for
second-order ODEs. Fourthly, the same new analytic method
is applied to a general third-order linear ODE to derive its
integrating factor function formula. Finally, a comparison
analysis between the new analytic method and the integral
transformations was done via examples to validate the findings
of the new analytic method.

2. Constructing the New Analytical
Method

2.1. Using the Concept of Exactness of Differential
Equations

Higher-order ODEs involving functions of one variable
y(x) are said to be exact if they stem from the process
of differentiating a lower-order equation. This means that
for example, for a second-order linear ODE with variable
coefficients to be exact, there must be a first-order linear
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ODE whose derivative is the given second-order linear ODE.
Likewise, for a third-order linear ODE to be exact, there must
be a second-order linear ODE whose derivative is the given
third-order linear ODE. And so on the concept extends to
higher-order ODE and beyond. Mathematically this definition
of higher-order linear ODEs exactness can be constructed as
the following way. Given by a second-order linear ODE;

y′′ + p(x)y′ +Q(x)y = 0. (3)

Multiplying Equation (3) by an integrating factor function
gives

µ(x)y′′ + µ(x)p(x)y′ + µ(x)Q(x)y = 0. (4)

If Equation (4) is exact, then it can be written as a first-order
linear ODE with an integrable form: (µ(x)y′ + k(x)y)

′
= 0.

If the derivative of this first-order linear ODE gives Equation
(4), then Equation (4) is exact. Provided that the integrating-
factor function µ(x) and k(x) are hopefully to be determined.
The same way can be done to third-order linear ODE

y′′′ + P (x)y′′ +Q(x)y′ +R(x)y = 0. (5)

To make this Equation (5) exact, multiply an integrating-
factor function gives

µ(x)y′′′+µ(x)P (x)y′′+µ(x)Q(x)y′+µ(x)R(x)y = 0. (6)

If this Equation (6) is exact, then it can be written
as a second-order linear ODE with an integrable form:
(µ(x)y′′ +W (x)y′ + V (x)y)

′
= 0. If the derivative

of this second-order linear ODE gives Equation (6), then
Equation (6) is exact. Provided that the integrating-factor
function µ(x),W(x) and v(x) are hopefully determined.
This concludes the construction new analytic method; the
method just re-writes any linear ODEs into its lower order
equation with integrable form. In a similar way as has been
demonstrated above.

Theorem 2.1. Consider the second-order linear non-
homogeneous ODEs of the form Equation (1) in an interval
I. provided that p(x) and Q(x) are non-zero differentiable
functions in I. Then, the general solution of the ODEs of the
form Equation (1) in I is given as

y(x) = e−
∫ k(x)
µ(x)

dx ·
∫ {

e
∫ k(x)
µ(x)

dx

[
1

µ(x)

∫
µ(x)R(x)dx+

c1
µ(x)

]}
dx+ c2e

−
∫ k(x)
µ(x)

dx (7)

where k(x) = µ(x)p(x)− µ′(x). And the µ(x) is the integrating-factor function and c1 and c2 are arbitrary real constants.
Proof of Theorem 2.1 first, let us give the general form of a second-order linear nonhomogeneous ODE with variable

coefficients.
y′′ + p(x)y′ +Q(x)y = R(x). (8)

To make this equation exact, multiply it by an integrating-factor function gives

µ(x)y′′ + µ(x)p(x)y′ + µ(x)Q(x)y = µ(x)R(x). (9)

If Equation (9) is exact, then it can be written as a first-order linear ODE with an integrable form as

(µ(x)y′ + k(x)y)
′
= µ(x)R(x). (10)

Integrating both sides gives

µ(x)y′ + k(x)y =

∫
µ(x)R(x)dx+ c1, (11)

y′ +
k(x)

µ(x)
y =

1

µ(x)

∫
µ(x)R(x)dx+

c1
µ(x)

. (12)

This is a first-order linear ODE with this integrating-factor function IF = e
∫ k(x)
µ(x)

dx. Then,(
e
∫ k(x)
µ(x)

dxy
)′

= e
∫ k(x)
µ(x)

dx

[
1

µ(x)

∫
µ(x)R(x)dx+

c1
µ(x)

]
. (13)

Integrating both sides gives

e
∫ k(x)
µ(x)

dxy =

∫ [
e
∫ k(x)
µ(x)

dx

[
1

µ(x)

∫
µ(x)R(x)dx+

c1
µ(x)

]]
dx+ c2, (14)

y(x) = e−
∫ k(x)
µ(x)

dx ·
∫ {[

e
∫ k(x)
µ(x)

dx

[
1

µ(x)

∫
µ(x)R(x)dx+

c1
µ(x)

]]}
dx+ c2e

−
∫ k(x)
µ(x)

dx. (15)
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Where k(x) = µ(x)p(x) − µ′(x). How k(x) equals this
value can be observed in the next section where equation
(19) is equated with equation (17). Additionally, the general
integrating factor function formula for second-order linear
OLDES will be derived. This concludes the proof!

2.2. Derivation of an Integrating-factor Function for
Non-homogeneous Second Order ODEs with Variable
Coefficients Using the New Analytic Method

The whole idea of this new analytic method is to reduce
the order of linear ODEs to its lowest order linear ODEs with
variable coefficients by an integrating factor function µ(x)
which enables us to make the inexact (for example ) second-
order linear ODEs to exact ODEs to a form of integrable
first-order ODEs. The integrating factor function formula for
second-order linear ODEs with variable coefficients has been
derived using a new analytic method. Consider the general
form of non-homogeneous second-order linear DE.

y′′ + p(x)y′ +Q(x)y = R(x). (16)

The coefficients p(x), Q(x) are some real-valued functions
of the independent variable x in I. Multiply Equation (16) by
an integrating-factor ′µ(x)′ gives,

µ(x)y′′ + µ(x)p(x)y′ + µ(x)Q(x)y = µ(x)R(x). (17)

If Equation (17) is exact, the order of the equation can be
reduced to first-order ODE of an integrable form as follows:

(µ(x)y′ + k(x)y)
′
= µ(x)R(x). (18)

Where µ(x) and k(x) are functions to be determined.
Differentiating LHS of Equation (18) yields

µ(x)y′′ + µ′(x)y′ + k(x)y′ + k′(x)y = µ(x)R(x). (19)

Combining coefficients of y′ and then comparing
coefficients with Equation (17) gives the following equation in
terms of an integrating-factor function alone

µ′′(x)− p(x)µ′(x) + (Q(x)− p′(x))µ(x) = 0. (20)

This is the same equation that was left unsolved in these
two researches [15,16]. The level of difficulty of finding the
integrating factor in Equation (20) which is a second-order
ODE, is the same as that of Equation (16). Now, to solve the
integrating factor ′µ(x)′ in Equation (20), let’s divide µ(x) on
both sides of the equation provided that the µ(x) 6= 0.

µ′′(x)

µ(x)
− p(x)µ

′(x)

µ(x)
= p′(x)−Q(x). (21)

Let

W (x) =
µ′(x)

µ(x)
. (22)

So that µ′(x) =W (x)µ(x). Differentiating both sides gives

µ′′(x) =W (x)µ′(x) +W ′(x)µ(x). (23)

Putting Equation (23) in Equation (21) by substituting
µ′′(x) to its equivalent quantity gives(

W (x)− p(x)

2

)2

= p′(x)−Q(x)−W ′(x)

+

(
p(x)

2

)2

.

(24)

Let

τ(x) =W (x)− p(x)

2
. (25)

So that,

W (x) = τ(x) +
p(x)

2
. (26)

Differentiating both sides gives

W ′(x) = τ ′(x) +
p′(x)

2
. (27)

Putting equations (27) and (25) in Equation (80) gives

τ2(x) + τ ′(x) =
1

2
p′(x) +

1

4
p2(x)−Q(x)︸ ︷︷ ︸
f(x)

,

τ2(x) + τ ′(x) = f(x). (28)

If a solution to Equation (28) is known, then the solution
of the integrating factor in Equation (22) is obtained. Now,
from Equation (22) an explicit formula of the integrating-
factor function µ(x) can be obtained in terms of τ(x) and p(x).
From Equation (22) gives

µ′(x)

µ(x)
=W (x). (29)

And also from Equation (26) states that

W (x) = τ(x) +
p(x)

2
. (30)

So, by re-writing the Equation (29) while changingW (x) to
its equivalent form in Equation (30) gives

µ(x) = e
∫
(τ(x)+ p(x)

2 )dx. (31)

In this Equation (31), a very important function called
an integrating-factor function ′′µ(x)′′ for second-order ODEs
with variable coefficients has been derived. As it can be
seen the function µ(x) depends on another function called
τ(x). the solution of τ(x) can be found from this equation

τ2(x) + τ ′(x) =
1

2
p′(x) +

1

4
p2(x)−Q(x)︸ ︷︷ ︸
f(x)

. which of course

tells us that the τ(x) also depends on the outcome of the nature
of f(x). Those possible outcomes of f(x) found during this
study are presented as the following cases:

Case 1: if f(x) = ±β, where β is a R − {0}. Then
the expected solution for τ(x) and µ(x) will be obtained
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respectively in the following way:
For f(x) = +β

τ2(x) + τ ′(x) = β,

τ ′(x) = β − τ2(x).

Dividing both sides by (β − τ2(x)) and then integrating
gives;

τ(x) =

√
β
(
e2
√
βx − 1

)
(
e2
√
βx + 1

) . (32)

The solution for the integrating factor function µ(x) will be;

µ(x) =
1 + e2

√
βx

e2
√
βx

e
∫ p(x)

2 dx (33)

For f(x) = −β

τ2(x) + τ ′(x) = −β,
τ ′(x) = −

(
β + τ2(x)

)
.

Dividing both sides by (β + τ2(x)) and then integrating
gives;

τ(x) = −
√
β tan(

√
βx). (34)

The solution for the integrating-factor function µ(x) will
therefore be

µ(x) = cos(
√
βx)e

∫ p(x)
2 dx. (35)

Case 2: if f(x) = 0, the expected solution for τ(x) and
µ(x) will be obtained respectively in the following way

τ2(x) + τ ′(x) = 0,

Dividing both sides by τ2(x) and then integrating both sides
gives;

τ(x) =
1

x
. (36)

The solution for the integrating-factor function µ(x) will be

µ(x) = xe
∫ p(x)

2 )dx. (37)

The advantage of these two cases (Case 1 and Case 2) is
that they can also be applied to second-order linear ODEs
with constant coefficients to determine their integrating factor
function without using the standard way of solving them which
is generating their characteristic equation by letting y = emx

where m is constant.
Case3: If f(x) = n

x2 or f(x) = n
(x±k)2 , where n and k

are R − {0}, the expected solution for τ(x) and µ(x) will
be obtained respectively in the following ways. For the case
f(x) = n

x2 ,

τ2(x) + τ ′(x) =
n

x2
. (38)

By assuming that the solution of τ(x) in Equation (38) as

v
x , where v is R − {0}. Then one can verify that the general
solution of the differential equation in Equation (38) of τ(x)
in terms of n will be

τ(x) =
(1±

√
1 + 4n)

2x
. (39)

The solution for the integrating-factor function µ(x) will
therefore be

µ(x) = e
∫ ( (1±

√
1+4n)

2x +
p(x)
2

)
dx
. (40)

For the case f(x) = n
(x±k)2

τ2(x) + τ ′(x) =
n

(x± k)2
. (41)

By letting the solution τ(x) in Equation (41) as m
(x±k) ,

where again m is R−{0}. Then one can verify that the general
solution of τ(x) in terms of n will be

τ(x) =
(1±

√
1 + 4n)

2(x± k)
. (42)

The solution for the integration factor function µ(x) will
therefore be

µ(x) = e
∫ ( (1±

√
1+4n)

2(x±k) +
p(x)
2

)
dx
. (43)

Case 4: If f(x) = n
x2(x−v)2 or f(x) = n

x2(x+v)2 where
n and v are R− {0}, the expected solution for τ(x) and µ(x)
will be obtained in the following way. By writing as a compact
form for f(x), that if f(x) = n

x2(x±v)2 then,

τ2(x) + τ ′(x) =
n

x2(x± v)2
. (44)

Proposing a solution for τ(x) in Equation (44) to be τ(x) =
kx+l
x(x±v) , where k and l are unknown constants and are R−{0}.
Then one can verify that the general solution of the differential
equation in Equation (44) of τ(x) in terms of n and v will be

τ(x) =
x+

(
±v±

√
v2+4n
2

)
x(x± v)

. (45)

The solution for the integrating-factor function µ(x) will
therefore be

µ(x) = e

∫ x+

(
±v±
√
v2+4n
2

)
x(x±v) + 1

2p(x)

dx
. (46)

Case 5: If f(x) = n
x4 where n is R − {0}, the expected

solution for τ(x) and µ(x) will be obtained respectively in the
following ways: For the case f(x) = n

x4

τ2(x) + τ ′(x) =
n

x4
. (47)
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By proposing a solution of τ(x) in Equation (47) which
takes the following form as τ(x) = kx+l

x2 , where k and l
are unknown constants and they are R − {0}. Then one can
verify that the general solution of the differential Equation in
Equation (47) of τ(x) in terms of n will be

τ(x) =
x±
√
n

x2
. (48)

The solution for the integrating-factor function µ(x) will
therefore be;

µ(x) = xe(
±
√
n

x +
∫ p(x)

2 dx). (49)

2.3. Deriving an Integrating-factor Function for
Third-order ODEs with Variable Coefficients
Using the New Analytic Method

The methodology of using the integrating factor approach,
which involves reducing the order of an equation to a lower-
order equation, has been applied to third-order ODEs as
well. Specifically, for a third-order linear ODE to be exact,
there must exist a second-order linear ODE whose derivative
corresponds to the given third-order ODE. The general form
of third-order linear non-homogeneous ODEs with variable
coefficients is given as

y′′′ + p(x)y′′ +Q(x)y′ +R(x)y =M(x). (50)

Let’s multiply an integrating factor throughout the Equation (50).

µ(x)y′′′ + µ(x)p(x)y′′ + µ(x)Q(x)y′ + µ(x)R(x)y = µ(x)M(x). (51)

If Equation (51) is exact after multiplying the integrating-factor function, then the left-hand side of the equation can be written
as the result of differentiating its lower-order equation, in this case, second-order ODE of an integrable form.

(µ(x)y′′ +W (x)y′ + V (x)y)
′
= µ(x)M(x). (52)

Where µ(x), W (x) and V (x) are functions to be determined. Let’s differentiate the left-hand side of Equation (52), gives

µ(x)y′′′ + (µ′(x) +W (x)) y′′ + (W ′(x) + V (x)) y′ + V ′(x)y = µ(x)M(x). (53)

And by comparing coefficients of Equation (53) with Equation (51), gives

µ′(x) +W (x) = µ(x)p(x), (54)

W ′(x) + V (x) = µ(x)Q(x), (55)

V ′(x) = µ(x)R(x). (56)

Finding W ′(x) from Equation (54) gives the following.

W ′(x) = µ(x)p′(x) + µ′(x)p(x)− µ′′(x). (57)

Also from Equation (55), making W ′(x) as a subject of formula gives

W ′(x) = µ(x)Q(x)− V (x). (58)

Equate equations (57) and (58) and put V (x) =
∫
µ(x)R(x)dx.

µ(x)p′(x) + µ′(x)p(x)− µ′′(x) = µ(x)Q(x)−
∫
µ(x)R(x)dx, (59)∫

µ(x)R(x)dx = µ′′(x)− µ′(x)p(x) + (Q(x)− p′(x))µ(x). (60)

Now, let’s differentiate both sides of the Equation (60) to eliminate the integral(∫
µ(x)R(x)dx

)′
= (µ′′(x)− µ′(x)p(x) + (Q(x)− p′(x))µ(x))′ , (61)

µ(x)R(x) = µ(x)′′′ − µ′(x)p′(x)− µ′′(x)p(x) +Q(x)µ′(x) +Q′(x)µ(x)− p′(x)µ′(x)− p′′(x)µ(x), (62)

µ(x)′′′ − µ′′(x)p(x) + (Q(x)− 2p′(x))µ′(x) + (Q′(x)− p′′(x)−R(x))µ(x) = 0. (63)
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If a solution to the associated integrating factor Equation
(63) is known, a particular solution to Equation (50) can be
found. As observed, solving the associated integrating factor
equation is quite challenging. However, imposing a condition
on the last term can simplify the problem, allowing us to
resolve the remaining three terms and solve the integrating
factor equation. The condition is given by R(x) = Q′(x) −
p′′(x). This condition allows the general form of the third-
order ODE in Equation (50) to be expressed as follows: y′′′ +
p(x)y′′(x) + Q(x)y′(x) + (Q′(x)− p′′(x)) y(x) = M(x).
By continuing our derivation and applying this condition, the
following equation for the integrating factor was obtained.

µ′′′(x)− p(x)µ′′(x) + (Q(x)− 2p′(x))µ′(x) = 0. (64)

Let
T (x) = µ′(x). (65)

then,

T ′′(x)− p(x)T ′(x) + (Q(x)− 2p′(x))T (x) = 0. (66)

Dividing both sides by T (x), provided that T (x) 6= 0 yields

T ′′(x)

T (x)
− p(x)T

′(x)

T (x)
= 2p′(x)−Q(x). (67)

Let

Z(x) =
T ′(x)

T (x)
. (68)

By cross multiplication gives us, T ′(x) = Z(x)T (x).
Differentiating both sides gives

T ′′(x) = Z(x)T ′(x) + Z ′(x)T (x). (69)

Putting this Equation (69) in Equation (67) gives(
Z(x)− p(x)

2

)2

= 2p′(x)−Q(x)− Z ′(x)

+

(
p(x)

2

)2

.

(70)

Let

τ(x) = Z(x)− p(x)

2
. (71)

Differentiating both sides gives

τ ′(x) = Z ′(x)− p′(x)

2
. (72)

Going back to the equation (70) gives

τ2(x) = 2p′(x)−Q(x)−
(
τ ′(x) +

p′(x)

2

)
+
p2(x)

4
,

τ2(x) + τ ′(x) =
3

2
p′(x) +

1

4
p2(x)−Q(x)︸ ︷︷ ︸
g(x)

,

τ2(x) + τ ′(x) = g(x). (73)

If the solution to Equation (73) is known, then the solution
of the integrating factor in Equation (65) is obtained. Now,
from Equation (65) an explicit formula of µ(x) can be obtained
in terms of τ(x) and p(x). It is known from Equation (65) that

T (x) = µ′(x). (74)

Then from Equation (68) becomes

Z(x) =
T ′(x)

T (x)
=
µ′′(x)

µ′(x)
. (75)

But, from Equation (71), Z(x) = τ(x) + p(x)
2 . Using this

value and placing it in Equation (75) gives

µ′′(x)

µ′(x)
= τ(x) +

p(x)

2
. (76)

Integrating twice gives;

µ(x) =

∫ (
e
∫
(τ(x)+ p(x)

2 )dx
)
dx. (77)

This is an integrating factor function for the following
special non-homogeneous third-order ODE of the form: y′′′ +
p(x)y′′(x) + Q(x)y′(x) + (Q′(x)− p′′(x)) y(x) = M(x).
The objective was to derive the integrating factor function for
general third-order ODEs with variable coefficients. However,
the derivation led to Equation (63), which is challenging to
solve. Nonetheless, by applying a condition to Equation (63),
Equation (77) was derived as the integrating factor function
for the special type of third-order ODE mentioned earlier,
resulting in a complete solution.

3. Comparative Analysis Between the
New Analytical Method and the
Integral Transform

This section presents a comparative study through
two experiments, each solved using integral transforms,
specifically, the Laplace transform, along with a new analytic
method that employs the integrating factor function approach.
The first experiment addresses the Whittaker second-order
linear ODE, while the second experiment addresses the
modified Bessel equation of order 1/2. Laplace equations used
in these two experiments are provided in [12,18].

3.1. The First Experiment of Comparing the
Two Methods

Experiment 1: Solution by the New Analytical Method.
The new analytic method was applied for solving the well-
known Whittaker second-order differential equation of the
form; y′′ +

(
−1
4 + k

x + (1/4)−m2

x2

)
y = 0, where k and m are

constant parameters. The method is able to solve this equation
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by finding the integrating-factor function for all values of m
and k held by this relation: k = 2m−1

2 . Where m is an integer.
The general form of the Whittaker Equation is;

y′′ +

(
−1
4

+
k

x
+

(1/4)−m2

x2

)
y = 0. (78)

Solution

y′′ +

(
−1
4

+
k

x
+

(1/4)−m2

x2

)
y = 0. (79)

The general solution of this Whittaker second-order ODE
for all values of m and k was derived such that when k =
2m−1

2 . This relation between k and m is not for our choice
selection but it is based on derivation of the integrating factor
of the above Whittaker equation. The general solution when
considering the relation between m and k mentioned above is
given as;

y(x) = c1x
( 1−2m

2 )e
−x
2 ·
∫
x(2m−1)e−xdx

+ c2x
( 1−2m

2 )e
x
2

(80)

To find the integrating-factor function for the above
Whittaker Equation (79), we must first find the nonlinear first-
order equation in the integrating-factor formula which is τ(x).
Knowing that p(x) = 0 and Q(x) =

(
−1
4 + k

x + (1/4)−m2

x2

)
,

then τ(x) has this relation equation: τ ′(x)+ τ2(x) = 1
2p
′(x)+

1
4p

2(x)−Q(x). Then τ ′(x)+τ2(x) =
(1/4)x2−kx+(m2−1/4)

x2 .
To find the solution of τ(x), an assumption was taken that such
solution takes the form as τ(x) = sx+l

x for s and I are R. Then,
τ ′(x) + τ2(x) = s2x2+2slx+l2−l

x2 . Comparing coefficients
gives;

(
s2 = 1/4

)
, (2sl = −k),

(
l2 − l =

(
m2 − 1/4

))
.

Taking the positive value of s = 1/2 and taking the value
of l to be l = 1−2m

2 . To keep the consistency of the second
equation, 2sl = −k, the following relation between m and
k such that k = 2m−1

2 was derived. In this experiment 1,
let us consider positive integer values for m, such that m =
1, 2, 3, .... , corresponding to k’s values become: k = 1

2 ,
3
2 ,

5
2

and so on. starting with the first value for m = 1 we have,

y′′ +

(
−1
4

+
1/2

x
− 3/4

x2

)
y = 0. (81)

Integrating-factor function, µ(x) and k(x) are given by;

µ(x) = e
∫
(τ(x)+ 1

2p(x))dx = x
−1
2 e

1
2x, (82)

k(x) = µ(x)p(x)− µ′(x) =
(
x
−3
2 − x

−1
2

) 1

2
e

1
2x. (83)

Putting values of these equations (82), (83) to the general
solution formula in Theorem 1 gives the solution of the
Whittaker equation;

y(x) = c1x
−1
2 e

−1
2 x(x+ 1) + c2x

−1
2 e

1
2x. (84)

Or just simply put m = 1 in Equation (80) gives the same
solution. This is the analytic solution of the Whittaker equation
when m = 1 and k = 1/2. To prove the validity of this
solution, the Laplace transform is used.

Figure 1. Solution graph for m = 1, k = 1/2 for the above Whittaker second-order
equation.

In Figure 1, the graph of the solution y(x) =

c1x
−1
2 e

−1
2 x(x+1)+ c2x

−1
2 e

1
2x was drawn in comparing with

the solution of Whittaker functions for the Whittaker equation
when m = 1 and k = 1

2 . Figure 1 displays the Whittaker
functions, plotted in terms of the real part of the solution while
letting c1 = c2 = 1. Wolfram Mathematica Software was used
to plot the graph.

Experiment 1: Solution by the Laplace Transform.

y′′ +

(
−1
4

+
1/2

x
− 3/4

x2

)
y = 0. (85)

Solution

L
(
x2y′′

)
− 1

4
L
(
x2y
)
+

1

2
L(xy)− 3

4
L(y) = 0. (86)

Applying the Laplace transform equations, the next equation
is obtained;

Y ′′(s) +
4s− 1

2
(s2 − 1/4)

Y ′(s) +
5/4

(s2 − 1/4)
Y (s) = 0. (87)

The solution of this second-order linear ODEs with variable
coefficients in the Laplace domain can be solved analytically
by applying the following general solution formula given in
theorem 1.

Y (s) = e−
∫ k(s)
µ(s)

ds ·
∫ {

e
∫ k(s)
µ(s)

ds

[
1

µ(s)

∫
µ(s)R(s)ds+

c1
µ(s)

]}
ds+ c2e

−
∫ k(s)
µ(s)

ds. (88)
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Given that R(s) = 0 as the equation is homogeneous.
Provided that µ(s) and k(s) are given below respectively;

µ(s) = e
∫
(τ(s)+ 1

2p(s))ds = (1− 2s)(1 + 2s)
5
2 , (89)

k(s) = µ(s)p(s)− µ′(s) = −(1 + 2s)
5
2 . (90)

Putting these two values into the general solution formula in
Equation (88) gives the solution in the Laplace domain;

Y (s) = −c1
(s+ 1)

3(1 + 2s)
3
2

+
c2

(1− 2s)
1
2

. (91)

Taking Laplace inverse on both sides gives;

y(x) = c1x
−1
2 e

−x
2 (x+ 1) + c2x

−1
2 e

x
2 . (92)

This is the same solution derived by the new analytic
method.

3.2. The Second Experiment of Comparing the Two
Methods

Experiment 2: Solution by the New Analytical Method.

This experiment 2 presents a modified Bessel equation of
order 1/2. The general form of the modified Bessel equation
is:

x2y′′ + xy′ −
(
x2 + v2

)
y = 0. (93)

Considering order 1/2 for v in this experiment 2 , we get;

x2y′′ + xy′ −
(
x2 +

1

4

)
y = 0. (94)

Solution

x2y′′ + xy′ −
(
x2 +

1

4

)
y = 0. (95)

Writing in standard form gives;

y′′ +
1

x
y′ −

(
x2 + 1/4

x2

)
y = 0. (96)

The solution of this second-order linear ODE can be solved
analytically by applying the general solution formula given in
theorem 1.

y(x) = e−
∫ k(x)
µ(x)

dx ·
∫ {

e
∫ k(x)
µ(x)

dx

[
1

µ(x)

∫
µ(x)R(x)dx+

c1
µ(x)

]}
dx+ c2e

−
∫ k(x)
µ(x)

dx. (97)

Given that R(x) = 0 as the equation is homogeneous. Provided that µ(x) and k(x) are given by;

µ(x) = e
∫
(τ(x)+ 1

2p(x))dx = x
1
2

(
ex + e−x

)
, (98)

k(x) = µ(x)p(x)− µ′(x) = 1

2
x
−1
2

(
ex + e−x

)
+ x

1
2

(
e−x − ex

)
. (99)

Substituting these two values back to the general solution
formula given in Equation (97) gives the solution of this
modified Bessel equation;

y(x) = c1x
−1
2 e−x + c2x

−1
2 ex. (100)

In figure 2, the graph of the solution y(x) = c1x
−1
2 e−x +

c2x
−1
2 ex was drawn in comparison with the solution of the

Modified Bessel functions in which c1 and c2 were taken to be
equal to 1.

Figure 2. Solution graph for Modified Bessel equation of order 1/2.

Experiment 2: Solution by Laplace transform

x2y′′ + xy′ −
(
x2 +

1

4

)
y = 0. (101)

Solution

x2y′′ + xy′ −
(
x2 +

1

4

)
y = 0. (102)

Applying Laplace transform gives;

L
(
x2y′′

)
+ L (xy′)− L

(
x2y
)
− 1

4
L(y) = 0. (103)

Applying Laplace equations gives the next equation;

Y ′′(s) +
3s

s2 − 1
Y ′(s) +

3/4

s2 − 1
Y (s) = 0. (104)

This transformed second-order linear ODE in the Laplace
domain can be solved analytically by applying the general
solution formula given in Theorem 1.
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Y (s) = e−
∫ k(s)
µ(s)

ds ·
∫ {

e
∫ k(s)
µ(s)

ds

[
1

µ(s)

∫
µ(s)R(s)ds+

c1
µ(s)

]}
ds+ c2e

−
∫ k(s)
µ(s)

ds. (105)

Given that R(s) = 0 as the equation is homogeneous. Provided that µ(s) and k(s) are given below respectively;

µ(s) = e
∫
(τ(s)+ 1

2p(s))ds = (1 + s)(1− s) 3
2 , (106)

k(s) = µ(s)p(s)− µ′(s) = 1

2
(1− s) 3

2 . (107)

Putting these two values into the general solution formula in Equation (105) gives the solution in the Laplace domain;

Y (s) =
c1

(1− s) 1
2

+
c2

(1 + s)
1
2

. (108)

Taking Laplace inverse on both sides gives in terms of y(x);

L−1[Y (s)] = c1L−1
(

1√
1− s

)
+ c2L−1

(
1√
1 + s

)
, (109)

y(x) = c1x
−1
2 ex + c2x

−1
2 e−x. (110)

This is the exact same solution obtained by the new analytic
method.

4. Conclusions

In this study, a novel analytical method for solving classes
of second-order linear ODEs with variable coefficients was
introduced. By utilizing the concept of higher-order ODE
exactness, a new analytic method was constructed and derived
the following key findings; firstly, an important integrating-
factor function formula for second-order linear ODEs with
variable coefficients was derived. Secondly, in Theorem
1, a general solution formula was provided for the second-
order linear ODE expressed only in terms of the integrating
factor function, µ(x), and another function called k(x).
cases were given for the non-linear first-order term function,
τ(x), in the integrating factor function formula, as this
term is governed by non-linear relation: τ ′(x) + τ2(x) =
1

2
p′(x) +

1

4
p2(x)−Q(x)︸ ︷︷ ︸
f(x)

, five cases were constructed with

their solutions for the possibilities that f(x) becomes constants
or function of x so as to simplify the computation of
the integrating-factor formula. A comparative analysis was
performed to validate the new analytic method, demonstrated
through two experiments. The first experiment showed that the
well-known Whittaker second-order linear ODE can be solved
for all values m and k such that m and k held by this relation:
k = 2m−1

2 , when m = [1, 2, 3, ...]. The second experiment
solves the modified Bessel equation of order 1/2. In both
experiments 1 and 2, the results showed that the solutions of
the new analytic method were consistent with those obtained
from the Laplace transform. The following major conclusions
can be drawn from the study:

1. Any second-order linear ODE with variable coefficients
may be analytically solvable if the non-linear term τ(x)
in the integrating factor function formula is determined.
This function plays a critical role in the existence of
an integrating factor function for the given second-order
ODE.

2. For a general third-order linear ODE with variable
coefficients to be reducible to a second-order linear
ODE, a solution to the associated integrating factor
Equation (63) must be known.

It would be of interest to Further pursue on generalizing the
integrating factor function for solving nth higher order ODEs
using this new analytic method. Also worthy of investigation
is the non-linear term,τ(x), in the integerating-factor formula
that possesses the nonlinearity property which adds further
complexity in the integerating-factor function formula.

Remark
1. The following observations were noted about the plots

of two experiments.
(a) In experiment 1, the Whittaker functions,

c1WhittakerW
[
1
2 , 1, x

]
+ c2WhittakerM

[
1
2 , 1, x

]
which represent the exact known solution
to the Whittaker second-order ODE, were
plotted alongside the analytical solution y(x)
derived using the new analytical method. The
analytical solution partially align with the
Whittaker functions. This partial allignment
arises because c1 WhittakerW

[
1
2 , 1, x

]
=

c1e
−x
2

[
x
−1
2 + x

1
2

]
and c2 WhittakerM[

1
2 , 1, x

]
= c2e

−x
2

[
−2x−1

2 − 2x
1
2

]
+ c2x

−1
2 e

x
2 .

While y(x) = c1x
−1
2 e

−x
2 (x + 1)+ c2x

−1
2 e

x
2 .

Clearly, the first term of y(x) matches the structure
of c1WhittakerW

[
1
2 , 1, x

]
completely. However,
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the second term of y(x) only match with the
second term of c2 WhittakerM

[
1
2 , 1, x

]
and differs

with the first term. This explains why the two
curves don’t coincide.

(b) In experiment 2, the Modified Bessel equation
of order 1/2 was solved, giving the solution
as y(x) = x

−1
2 (ex + e−x), which is identical

to the well-known expression for the modified
Bessel functions of first and second kind,
given as; BesselK

[
1
2 , x
]
+ Bessell

[
1
2 , x
]

=

x
−1
2 (ex + e−x) . As a result, the graph of y(x)

naturally overlaps with the graph of BesselK[
1
2 , x
]
+ Bessell

[
1
2 , x
]

across the entire plotted
domain. Both curves are identical and coincide
because they represent the same analytical solution
to the Modified Bessel equation of order 1/2.

Symbols and Abbreviations

OLDEs Ordinary Linear Differential Equations
ODEs Ordinary Differential Equations
ODE Ordinary Differential Equation
R The set of Real Numbers
L−1 Inverse Laplace transform
µ(x) Integrating factor function∫

An intgeral
R− {0} The set of Real Numbers except zero
L{f(t)} Laplace transform of a given function f
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