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Abstract: This research focuses on enhancing fluid mobility by optimizing heat transfer, a crucial aspect in various industrial
applications, including oil recovery. The study introduces an innovative framework that integrates microorganisms, hybrid
nanoparticles, non-Newtonian fluid properties, a power law model, and inclined magnetic fields. The underlying dynamics are
described by nonlinear partial differential equations, which are converted to ordinary differential equations using similarity
transformation and subsequently solved through the BVP4c method. Key results demonstrate that fluid velocity increases with
higher Reynolds, Hartman, Thermal Grashof, and Mass Grashof numbers due to factors such as reduced viscous drag, the
Lorentz force’s acceleration effect, and enhanced buoyancy. On the other hand, a higher Prandtl number slightly reduces
velocity, while an increased Schmidt number raises it by steepening the velocity gradient. Regarding temperature, higher
Reynolds and Prandtl numbers, along with increased Eckert and Radiation parameters, result in elevated fluid temperatures due
to enhanced convective heat transfer, decreased thermal diffusivity, viscous dissipation, and radiative heat effects. The insights
gained from this study are valuable for improving oil extraction efficiency by identifying and manipulating key parameters that
affect fluid behavior.

Keywords: Multiphase, Hybrid, Gyro-tactic, Numerical Solution, Nanofluid, BVP4c

1. Introduction

The study of multiphase hybrid gyro-tactic nanofluid flow
through porous convergent pipes with injection and suction
holds significant relevance in both theoretical and applied fluid
dynamics. These complex systems are pivotal in numerous
industrial and engineering applications, including enhanced
oil recovery, biomedical engineering, and advanced thermal
management in electronic devices. The addition of nanofluids-
fluids containing nanoparticles suspended in a base fluid-
introduces marked improvements in thermal conductivity and
heat transfer capabilities, offering a superior alternative to
conventional fluids. This enhanced performance is particularly
critical in environments where precise thermal control is
necessary, such as microelectronics and medical devices.

Moreover, the integration of gyrotactic microorganisms into
these nanofluids introduces an additional layer of complexity
and potential benefits. Gyrotactic microorganisms, which
orient themselves in response to fluid flow and gravity, can
create unique bioconvective patterns that further enhance heat
and mass transfer within the fluid. These characteristics make
the study of such systems not only a subject of academic
interest but also of considerable practical value.

The application of numerical methods, such as the BVP4c
function in MATLAB, is instrumental in analyzing these
intricate fluid dynamics. BVP4c, designed for solving
boundary value problems for ordinary differential equations,
provides a robust framework for conducting precise numerical
simulations. These simulations are essential for understanding
the multifaceted interactions within the fluid, such as
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the effects of nanoparticle concentration, magnetic fields,
and microorganism behavior on the overall flow and heat
transfer properties. By leveraging these computational tools,
researchers can optimize the performance of hybrid nanofluids
in real-world applications, ultimately leading to more efficient
and effective industrial processes.

Nazeer et al. [1] carried out numerical solution of gyrotactic
microorganism flow of nanofluid over a Riga plate with the
characteristics of chemical reaction and convective condition.
They used Runge-Kutta method together with shooting
technique to track the brownian motion of microorganisms.
They took into account chemical reaction so as to aid
thermophoresis of the nanoflow. They found that shear
stress at the walls and the movement of microorganisms are
significantly influenced by magnetic parameters.

Alsaedi et al. [2] carried out magnetohydrodynamics
stratified bioconvection flow of nanofluid due to gyrotactic
microorganisms. Microorganisms were used to stabilise the
suspended nanoparticles through bioconvection. They used
Homotopy method to solve the model. They remarked that
Homotopy analysis method ensures the convergence of the
series solutions. They noted that the velocity profiles decreases
with increase in Hartman number. Increase in Peclet number
and Lewis number, leads to an increase in the velocity profiles.

Jawad et al. [3] carried out a novel computational
study on magnetohydrodynamics flow of nanofluid flow
with gyrotactic microorganisms due to porous stretching
sheet. They transformed the partial differential equations to
ordinary differential equations using similarity transformation.
The ODEs were solved using the package ND-solve on
mathematica, and was numerically intergrated using shooting
method. They noted that the field of microorganisms decreases
by raising the value of bioconvection and peclet number.

Khan et al. [4] explored heat transfer enhancement in
nanofluids using the Darcy-Forchheimer model, employing
both analytical and numerical solutions. Their results indicated
improved heat transfer rates in the presence of a magnetic
field and thermal radiation, with applications in energy storage
systems and cooling technologies.

sheikholes et al. [5] conducted a study on MHD nanofluid
flow in porous cavities using numerical simulations with the
finite difference method. They found that convection heat
transfer is significantly enhanced under magnetic fields and
heat flux boundary conditions, which can be applied in cooling
systems for electronics and MHD power generation.

Kotnurkar & Giddaiah [6] studied bioconvection second
grade Nanofluid flow containing Nanoparticles and Gyrotactic
microorganisms. The governing partial differential equations
were transformed into a system of ordinary differential
equations using similarity variables and solved analytically
using Homotopy analysis method. = The microorganisms
concentration diminished for the Brownian motion parameter
and schmidt number, while it increased for the second
grade nanofluid parameter. The temperature reduced with
increase in Prandtl number, while it increased with increase
in thermophoresis parameter and Lewis number.

Ahmad et al. [7] carried out a study on Nanofluid flow

comprising Gyrotactic microorganisms through a porous
medium. They noted that the dispersal of microorganisms
in nanofluids improves heat transfer. The porous medium
was also remarked to contribute to thermal efficiency.
The governing equations were numerically solved by using
successive over relaxation parameter method. The insertion
of the gyrotactic microorganisms in the suspensions is widely
used in the bio-microsystems. The gyrotactic microorganisms
improved the stability of the nanofluid. The results proved
beneficial in improving the efficiency of microbial fuel cells
and heat transfer devices.

Pandey et al. [8] studied radiative heat transfer in stretching
cylinders with nanofluids using analytical solutions with
similarity transformations.  Their findings demonstrated
that radiation enhances heat transfer in nanofluid flow over
stretching cylinders, relevant for manufacturing processes and
energy systems.

Recent advancements in the mathematical modeling
of multiphase hybrid gyro-tactic nanofluid flow have
addressed various aspects of fluid behavior in porous
media.  One notable study focused on ternary hybrid
nanofluids containing gyrotactic microorganisms flowing over
different geometries, such as flat plates, wedges, and cones.
Utilizing the Cattaneo CChristov model and solving with the
BVP4c method, the research revealed that the geometrical
configuration significantly influences heat and mass transfer
rates, with cone geometries exhibiting the highest heat
transfer (Moh, et al.) [9].

Another significant contribution explored non-Newtonian
hybrid nanofluids under the influence of magnetic fields within
porous media. This research highlighted how the Hartmann
number, indicative of magnetic field strength, enhances fluid
velocity due to the Lorentz force, offering valuable insights
for optimizing cooling systems and magnetic field-based
industrial applications (Lisha & Vijaya) [10].

The impact of suction and injection on hybrid nanofluid
flow through porous media was examined, revealing that these
processes significantly affect velocity and temperature profiles.
The study demonstrated that suction decreases boundary layer
thickness, leading to improved heat transfer efficiency, which
is critical in thermal management systems (Moh, et al.) [9].

Research on the role of gyrotactic microorganisms in
non-Newtonian nanofluids provided further insight, showing
that these microorganisms enhance both velocity and
temperature profiles, thereby improving heat and mass
transfer. This finding is particularly relevant for applications in
bioconvection and microbial fuel cells, where efficient transfer
rates are essential (Lisha & Vijaya) [10].

The effects of magnetohydrodynamics (MHD) on hybrid
nanofluid flow in porous media were also investigated, with
results indicating that magnetic fields can be effectively used to
control and enhance heat transfer, making this study pertinent
to the design of advanced cooling systems (Moh, et al.) [9].

Another study explored how the shape of nanoparticles
influences the flow and heat transfer properties of hybrid
nanofluids. It was found that platelet-shaped nanoparticles
provided the highest heat transfer rates, while spherical
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nanoparticles offered the best balance between thermal
conductivity and fluid flow. These insights are crucial for
optimizing thermal systems in various industries (Moh, et
al.) [9].

Chepkonga et al. [11], investigated fluid flow through
collapsible tubes, the governing non linear equations were first
transformed to ordinary differential equation using similarity
transformation before being implemented in Matlab BVP4C
solver. It was seen that the flow parameters significantly
influence the flow properties.

Finally, the effects of thermal radiation on hybrid nanofluid
flow in porous media were analyzed, revealing that thermal
radiation significantly enhances temperature profiles, which
is vital for high-temperature applications, particularly in
aerospace and industrial processes (Moh, et al.) [9].

These studies collectively advance our understanding of
how various factors, including geometrical configurations,
magnetic fields, suction, injection, and thermal radiation,
influence the behavior of hybrid nanofluids. This knowledge
is essential for optimizing fluid flow and heat transfer in a
range of industrial applications, from oil recovery to aerospace
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engineering.

Despite significant advancements in the study of multiphase
hybrid gyro-tactic nanofluid flow through porous media, a
comprehensive understanding of the combined effects of non-
Newtonian fluids, hybrid nanoparticles, microorganisms, and
inclined magnetic fields remains elusive. Existing research
has predominantly focused on individual components such
as gyrotactic microorganisms, magnetic fields, or nanofluids
in isolation, often utilizing distinct methodologies like
the Runge-Kutta method, Homotopy analysis, or similarity
transformations for simplified geometries and conditions.
There is a notable research gap in systematically integrating
these elements within a single, coherent model to capture
their synergistic interactions accurately. Furthermore, the
potential of leveraging inclined magnetic fields in enhancing
the heat transfer and mobility of such complex fluid systems
has been underexplored. Addressing these gaps could lead
to optimized strategies for enhanced oil recovery and other
industrial applications, providing a more robust framework for
future experimental and computational studies in this domain.

Enhanced oil recovery
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Figure 1. Flow Geometry.

2. Mathematical Formulation

This study investigates the flow dynamics within a
porous convergent pipe, focusing on a stratified two-layer
scenario involving an incompressible fluid and Gyro-tactic
microorganisms, as depicted in Figure 2. The upper half of

the pipe contains an Oil phase while the lower half contains
water. The flow is characterized as laminar and unsteady, with
viscosity varying nonlinearly due to temperature gradients
and tangential directions in both phases. The energy driving
the fluid flow includes viscous dissipation, thermal radiation,
and chemical reactions, with thermal conductivity exhibiting
temperature-dependent changes.
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magnetic field
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Figure 2. Computational Domain.

2.1. The Effective Properties of Hybrid Nanofluid

The study focuses on a hybrid nanofluid denoted as C'u —
AlsO3 — HoO/OIL,Cu — AlsOs — HyO/OIL. Employing
the pseudo-single phase approach, this methodology treats the
composite of water and oil as a singular fluidic entity. This

pseudo-fluid is characterized by averaging relevant physical
properties of water and oil. The properties considered include
dynamic viscosity, density, heat capacity, thermal expansion
coefficient, thermal conductivity, and electrical conductivity.
These properties, extensively utilized in similar research such
as by [12], are summarized as follows:
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This study addresses the comprehensive modeling of oil,
water, hybrid nanoparticles, and microorganisms through
a set of fundamental equations: continuity, momentum
conservation, energy conservation, concentration, and
microorganism density. The momentum equation is enriched
by incorporating a magnetic field at an angle, buoyancy force
driving flow dynamics, a Darcy-type source term to account
for porosity effects, and a variable viscosity formulation
that considers non-linear variations with temperature and
direction. The energy equation is extended to include
internal heating via viscous dissipation, joule heating due

to induced electric currents influenced by magnetic fields,
and thermal radiation effects to capture electromagnetic
radiation phenomena. Additionally, the concentration
equation incorporates chemical reactions and thermophoresis,
providing a comprehensive framework to model the behavior
of hybrid nanofluids in complex flow scenarios. These
advancements significantly enhance our ability to simulate and
understand the intricate dynamics of such multiphase systems,
contributing valuable insights to the field of fluid dynamics
and heat transfer in heterogeneous media.
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2.2. Equation of Continuity
0
E(rur) =0 ©)
2.3. Equation of Conservation of Momentum
o . = - - —»
Phnf a—&—u%Vu) =—VP+V T+ ppnsF (10)
2.4. Equation of Energy
o = = -
2.5. Equation of Concentration
oC - = -
E—i—V.(VC) :Dhan2C+Shnf (12)
2.6. Equation of Microorganism Density
aN — = —
7tV (VN) = D VN (13)
The boundary conditions for the multiphase flow is given by,
At the pipe wall, § = +«
U = 0,ug = uo, T =Ty,C = Cy, N = Ny (14)
At 0 = 0, the interface is treated as a moving wall.
Up = Ugo,Ug = 0, T =Too,C = Cso, N = Ny (15)
Atr =20
ur:'U/OO7u9:OaT:TocaCZCooaN:Noo (16)
At r = oo, the gradients of all variables in the flow direction are zero as proposed by [13].
Ouy ou, oT oC ON
or T or " or " or " Or a7

The equations 9, 10, 11, 12, and 13 are initially converted to ~ Spectral method for numerical solution. By doing so, we

the cylindrical coordinate system to align with the geometry of
the computational domain. Subsequently, these transformed
equations are subjected to a similarity transformation,
thereby converting them into ordinary differential equations.
This preparatory step is crucial before employing the

Q 1 T-T,

w(n)

optimize computational efficiency and accuracy, harnessing
the method’s robustness in addressing intricate boundary value
problems effectively.

The similarity transforms used are;

o)  C-C» O()  N-Ny

'Uwr(97t> = _7 ym+1 f(n)a gm1 - T T

Tomtl Oy — O, 8™t Ny — N, (18)

The transformations 18, transforms the equations 10, 11, 12 and 13. Additionally the thermophysical properties are applied to

obtain;
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Transforming the boundary conditions 14, 15,16 and 17, using the transformations 18, we have
At = +a
Atf =0, .
m+
f(n) _uong W= 6m—|—17 ¢ _ 6m+17 o= 6m+1 (24)
Atr=20 ju—
F(n) —%M — gL = gmHl @ = gt 25)
At =00 of 0 06 00
w
s Wi Wik Y i 2
or " or " or " Or 0 (26)
3. Numerical Solution less. It basically targets to reduce a higher-order ordinary

3.1. Reduction of Order of ODEs

The equations (19), (20), (21) and (22) together with the
boundary conditions (23) to (26) are first reduced to one order

differential equation to a first order ODE. This is basically
done to simplify the problem and make it more managable to
solve. The reduction of order technique is particularly useful
when trying to solve homogenous ODE:s.
The suitable substitutions in this case are

= ye=[fys= f”' i
=w =w =w"
o bur— o 35—¢“ @7
yg—@yg—@'yg e

Substituting (27) into equation (19) we have,

Re sin 31

Qr

[Gr Y5 + Gr(c)y7 + G’I" ] }

=/,
yl = y? f 9
y2 =Y3 = //7
1 m+1 m Re Re
vy = 1" = Aes(n_l){ Gt 2 + s+
1 cos 31
+ es(n—l) { - QT’ [GT(T)yé + GT(C)yS + GT(N)ny]
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F Ha?sin? a
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Substituting (27) into equation (20) we have,
Ya w,
Ys = wl7
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Substituting (27) into equation (21) we have,
Yo = ¢7
Yr = (bI?
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Substituting (27) into equation (22) we have,
Ys = @7
Yg = 9/3
A|R P (m+ 1) rm+l A P 1 Gl
I € € m r € m—+1 /
Yo =0 Lb{AngrBLbrng A1 sl y8}+Lb{TALb (Nnd™ ! + yg) 5m+1y7}
3.2. Reduction of Order for Boundary Conditions
Substituting (27) into equations (23) to (26) we have,
At 0 = £« we have
f) =y =0,w=ys =0"" ¢ =yg = 6", 0 =" (32)
At 0 = 0 we have
— UL
f(77) Q 7w:y4207¢:y6:07®:y8: (33)
Atr = 0 we have
— UL
f(n) = 0 yw=y1=0,0=ys =0,0 =ys =0 (34)
As r — oo we have
f)' =192=0,0' =ys =0,¢' =97 =0,0" =9 =0 (35)

3.3. Final Set of Governing Equations

The final set of governing equations together with the boundary conditions is given as
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Y2 =0,y5 =0,y7 =0,y9 =0asr — oo

3.4. Results

The systems of equations (36) together with the boundary conditions (37) were implemented in BVP4c, inbuilt function in
MATLAB, and the results were visualized through graphs. These graphical representations are comprehensively discussed as
follows:
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3.5. Effects of Flow Parameters on Velocity

Graph of Velocity Against Theta
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Figure 3. Graph of velocity for varying Reynolds Number.

From Figure 3, it is evident that an increase in the Reynolds
number results in a higher fluid velocity. This behavior can
be attributed to the corresponding decrease in viscous forces
with an increasing Reynolds number. As the fluid experiences
reduced viscosity, it encounters less resistance to flow, thereby
facilitating a faster movement.

Graph of Velocity Against Theta
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f(0)
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0

Figure 4. Graph of velocity for varying Hartman Number.

From Figure 4, it is observed that an increase in the Hartman
number enhances the velocity profile. The magnetic field,
applied at an angle to the fluid flow, generates a Lorentz
force. This force accelerates the fluid, resulting in increased
velocity. The acceleration is particularly effective because the
angled application of the magnetic field enhances the fluid’s
movement.

Graph of Velocity Against Theta
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Figure 5. Graph of velocity for varying Thermal Grashof Number.

From Figure 5, it is evident that an increase in the Thermal
Grashof number leads to higher velocity profiles. This occurs
because the Thermal Grashof number quantifies the buoyancy
force relative to viscous forces in the fluid. As the Thermal
Grashof number increases, buoyancy forces become more
significant, driving the fluid to move faster and thus increasing
the velocity profiles.

Graph of Velocity Against Theta
1.2 T T T T

GrC=0.1

f(0)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

Figure 6. Graph of velocity for varying Mass Grashof Number.

From Figure 6, it is evident that an increase in the mass
Grashof number results in higher velocity profiles. The mass
Grashof number measures the ratio of buoyancy forces due
to concentration differences to viscous forces. As the mass
Grashof number increases, the buoyancy forces become more
dominant, causing the fluid to accelerate and resulting in
increased velocity profiles.
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Graph of Velocity Against Theta
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Figure 7. Graph of velocity for varying Schmidt Number.

From Figure 7, it is observed that an increase in the Schmidt
number leads to higher velocity profiles. The Schmidt number
is the ratio of viscous diffusion rate to mass diffusion rate.
A higher Schmidt number indicates lower mass diffusivity,
meaning the momentum diffuses more slowly compared to the
concentration. This results in a steeper velocity gradient and,
consequently, an increase in velocity profiles.

Graph of Velocity Against Theta
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Figure 8. Graph of velocity for varying Prandtl Number.

From Figure 8, it can be seen that an increase in the Prandtl
number leads to a slight decrease in the velocity profile.
Although the change is gradual, this trend occurs because the
Prandt]l number represents the ratio of momentum diffusivity to
thermal diffusivity. A higher Prandtl number indicates lower
thermal diffusivity relative to momentum diffusivity, which
reduces the rate at which heat spreads compared to momentum.
This reduction in thermal diffusion results in a decrease in the
velocity profile, albeit gradually.

3.6. Effects of Flow Parameters on Temperature

Graph of Temperature Against Theta
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Figure 9. Graph of temperature for varying Reynolds number.

From Figure 9, it is observed that an increase in the
Reynolds number results in a higher fluid temperature. This
occurs because a higher Reynolds number indicates a more
turbulent flow, which enhances convective heat transfer within
the fluid. Increased turbulence promotes better mixing and
more efficient heat distribution, leading to a rise in the fluid’s
temperature.
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Figure 10. Graph of temperature for varying Prandtl Number.

From Figure 10, it is observed that an increase in the Prandtl
number leads to a rise in the fluid temperature. The Prandtl
number is the ratio of momentum diffusivity (kinematic
viscosity) to thermal diffusivity. A higher Prandtl number
indicates that thermal diffusivity is relatively low compared
to momentum diffusivity. This means that heat transfers
less efficiently through the fluid compared to momentum.
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Consequently, with a higher Prandtl number, heat tends to
accumulate more in the fluid, resulting in an increase in the
temperature profile.

Graph of Temperature Against Theta
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Figure 11. Graph of temperature for varying Eckert Number.

From Figure 11, it is evident that an increase in the Eckert
number leads to a rise in the fluid temperature. The Eckert
number is a dimensionless number that quantifies the relative
importance of viscous dissipation to thermal energy in the
fluid. As the Eckert number increases, it indicates that the
energy generated by viscous dissipation (due to frictional
forces within the fluid) becomes more significant compared to
the thermal energy. This additional energy input from viscous
dissipation contributes to an increase in the fluid’s temperature.
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Figure 12. Graph of temperature for varying Radiation Parameter.

From Figure 12, it is observed that an increase in the
Radiation parameter results in a higher fluid temperature.
The Radiation parameter quantifies the relative significance of
radiative heat transfer compared to conductive and convective

heat transfer. A higher Radiation parameter indicates that
radiative heat transfer becomes more dominant. As radiation
contributes additional thermal energy to the fluid, it enhances
the overall heat content, leading to an increase in the fluid’s
temperature.

4. Conclusion

The key findings of this research are:

1. Reynolds Number and Velocity: It was observed that
higher Reynolds numbers substantially increase fluid
velocity, primarily due to the reduction in viscous
resistance. This is a crucial factor in applications
requiring efficient fluid movement, such as in pipeline
transport and cooling systems.

2. Hartman Number and Velocity: The enhancement of
fluid velocity with an increased Hartmann number
highlights the significant role of the Lorentz force in
accelerating fluid flow under magnetic fields. This
finding is particularly relevant for magnetic fluid
applications, including magnetic drug delivery and
electromagnetic pumps.

3. Thermal Grashof Number and Velocity: The study
demonstrated that higher Thermal Grashof numbers
effectively boost velocity profiles by amplifying
buoyancy forces relative to viscous forces. This result
is vital for optimizing natural convection processes in
thermal management systems.

4. Mass Grashof Number and Velocity: Similarly, an
increase in mass Grashof numbers leads to higher
velocities due to stronger buoyancy forces from
concentration differences. = This phenomenon can
be leveraged in enhanced oil recovery techniques,
where buoyancy-driven flows are essential for efficient
extraction.

5. Schmidt Number and Velocity: The research showed
that a higher Schmidt number steepens the velocity
gradient by decreasing mass diffusivity, thereby raising
velocity profiles. This insight is useful for applications
involving mass transfer, such as in chemical reactors and
separation processes.

6. Prandtl Number and Velocity: The study found that
a higher Prandtl number slightly decreases velocity
profiles due to reduced thermal diffusivity relative to
momentum diffusivity. Understanding this relationship
is crucial for systems where precise thermal and flow
control is necessary.

7. Reynolds Number and Temperature: Higher Reynolds
numbers were found to increase fluid temperature,
primarily due to enhanced convective heat transfer
driven by increased turbulence. This finding
underscores the importance of Reynolds number control
in heat exchangers and cooling technologies.

8. Prandtl Number and Temperature: Increased Prandtl
numbers were shown to lead to higher fluid
temperatures, as lower thermal diffusivity causes heat
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to accumulate. This result is particularly relevant for
designing systems that require efficient heat retention,
such as in thermal storage devices.

. Eckert Number and Temperature: The study revealed

that higher Eckert numbers result in increased
temperature due to greater viscous dissipation, which
contributes to thermal energy. This effect is important
for high-energy applications where managing viscous
heating is critical.

Radiation Parameter and Temperature: Finally, the
research indicated that a higher Radiation parameter
increases fluid temperature by adding more thermal
energy through radiative heat transfer. This finding has
implications for high-temperature industrial processes,
where radiation effects must be carefully managed.

4.1. General Recommendations

1.

Optimization of Flow Parameters: Optimize parameters
such as Reynolds number, Hartmann number, and
Grashof numbers based on specific applications to
achieve desired fluid dynamics outcomes, like enhanced
heat transfer or controlled flow behavior.

Integration of Magnetic Fields: Consider incorporating
magnetic fields to increase flow rates in applications
where electromagnetic control can enhance system
performance, such as in magnetic drug targeting or
cooling systems.

Temperature Control Through Radiative and Viscous
Effects: Carefully control the Radiation parameter and
Eckert number in thermal management systems to
ensure precise temperature regulation, which is critical
in microelectronics and biomedical devices.

4.2. Recommendations for Engineers

1.

Design of Heat Exchangers and Cooling Systems:
Engineers should take into account the influence of
Reynolds and Prandtl numbers when designing heat
exchangers and cooling systems. Higher Reynolds
numbers can enhance convective heat transfer, while the
Prandt]l number should be optimized to balance thermal
and momentum diffusivity.

2. Application of Magnetic Fields in Fluid Flow Systems:

Utilize the enhancement of fluid velocity through
increased Hartmann numbers by exploring magnetic
fields in fluid flow systems, such as magnetic
refrigeration or electromagnetic pumps, to optimize flow
performance.

. Enhanced Oil Recovery (EOR) Techniques: Consider

increasing both thermal and mass Grashof numbers to
amplify buoyancy forces, improving the efficiency of
oil extraction processes in enhanced oil recovery (EOR)
applications.

4. Advanced Thermal Management: Control the Radiation

parameter in high-temperature environments like
aerospace or industrial furnaces to effectively manage

radiative heat transfer and prevent overheating.
Customization of Nanofluid Properties: Tailor nanofluid
properties, including nanoparticle concentration and
base fluid type, based on desired Schmidt and Prandtl
numbers to achieve optimal fluid dynamics, especially
in designing specialized cooling fluids or lubricants in
mechanical systems.
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