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Abstract 

In this paper, an effective technique for solving differential equations with initial conditions is presented. The method is based 

on the use of the Legendre matrix of derivatives defined on the close interval [-1,1]. Properties of the polynomial are outlined 

and further used to obtain the matrix of derivative which was used in transforming the differential equation into systems of 

linear and nonlinear algebraic equations. The systems of these algebraic equations were then solved using Gaussian elimination 

method to determine the unknown parameters required for approximating the solution of the differential equation. The 

advantage of this technique over other methods is that, it has less computational manipulations and complexities and also its 

availability for application on both linear and nonlinear second-order initial value problems is impressive. Other advantage of 

the algorithm is that high accurate approximate solutions are achieved by using a greater number of terms of the Legendre 

polynomial and once the operational matrix is obtained, it can be used to solve differential equations of higher order by 

introducing just a little manipulation on the operational matrix. Some existing sample problems from literature were solved and 

the results were compared to show the validity, simplicity and applicability of the proposed method. The results obtained 

validate the simplicity and applicability of the method and it also reveals that the method perform better than most existing 

methods. 
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1. Introduction 

The primary use of differential equations in general is to 

model motion, which is commonly called growth in econom-

ics. Specifically, a differential equation expresses the rate of 

change of the current state as a function of the current state. 

In economics, differential calculus is used to compute 

marginal cost, marginal revenue, maxima and minima elas-

ticity, partial elasticity and also enabling economists to pre-

dict maximum profit (or) minimum loss in a specific condi-

tion; one can also think of a change in general price level 

with respect to time as inflation. Second-order derivative 

with respect to time shows the rate of change of inflation, 

how inflation changes over time. Similarly, differentiating 
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capital with respect to time shows investment. 

Most ordinary differential equations arising in real-life ap-

plications cannot be solved exactly. These ordinary differen-

tial equations can be analyzed qualitatively. However, quali-

tative analysis may not be able to give accurate answers. A 

numerical method can be used to get an accurate approxi-

mate solution to a differential equation. 

Motivated by these advantages, we will use Legendre op-

erational matrix of derivatives through collocation method to 

approximate the solution of general second order differential 

equations with initial conditions. 

The general second order differential equation is given as 

follows: 

𝑑2𝑦

𝑑𝑥2
= 𝑎(𝑥)

𝑑𝑦

𝑑𝑥
+ 𝑏(𝑥)𝑦 + 𝑓(𝑥)             (1) 

where 𝑎(𝑥) 𝑏(𝑥)and 𝑓(𝑥) are functions of 𝑥. Conventionally, 

(1) can be solved using different methods such as the method 

of (educated) guess, the method of variation of parameters and 

it can also be solved by reducing it to a system of first order 

differential equations, and then any method of solving first 

order differential equations can then be applied to solve it. The 

setbacks of this technique were reported in ([2, 5, 12]). The 

method of collocation and interpolation of the power series 

and other polynomial basis functions were used to generate 

approximate solution and these techniques were reported by 

many scholars among them are ([1, 4, 6, 9, 11, 14]) to mention 

a few. Their approaches and techniques generated implicit 

continuous linear multistep methods which require separate 

predictors for implementation; this method is called the pre-

dictor-corrector method. There are major setbacks of these 

methods, numerical techniques such the block linear multistep 

methods lately introduced by researchers such as ([2-5, 7, 8, 

10 13]) have shown allot of advantages over the predictor-

corrector method. However, the advantages are compensated 

by tedious computational work and the use of more advance 

software to enable it handle the work. 

In this paper, a collocation technique based on the Legen-

dre operational matrix of derivatives for second order differ-

ential equations is proposed. The advantages of this tech-

nique over other methods is that it has less computational 

manipulations and complexities because it only involves 

operational matrix of derivatives and its transpose and thus, 

reduces the time involve in the derivation of the schemes, 

analysis and implementation as is in the case with linear mul-

tistep methods. 

1.1. Legendre Polynomials 

The Legendre polynomials exhibit simple and convenient 

form for calculation, compared with other orthogonal poly-

nomials (Chebyshev polynomials, shifted Legendre polyno-

mials...). They are well known family of orthogonal polyno-

mials on the interval [    ]. They are solutions to the popu-

lar Legendre differential equation given as follows; 

(  𝑥2)
𝑑2𝑦

𝑑𝑥2
  2𝑥

𝑑𝑦

𝑑𝑥
+  𝑛(𝑛 +  )𝑦 = 0           (2) 

They are widely used because of their smooth properties 

in the approximation of functions [15]. Equation (2) can be 

solved by series solution method (See [14]). The first few 

Legendre polynomials using the Rodriquez formula are: 

𝑙0(𝑥) =  , 𝑙1(𝑥) = 𝑥, 𝑙2(𝑥) =
1

2
(3𝑥2   ), 𝑙3(𝑥) =

1

2
(5𝑥3  3𝑥), 𝑙4(𝑥) =

1

8
(35𝑥4  30𝑥2 + 3) 𝑙5(𝑥) =

1

8
(63𝑥5  70𝑥3 +  5𝑥), 𝑙6(𝑥) =

1

16
(23 𝑥6  3 5𝑥4 +

 05𝑥2  5),... 

The recurrence relation for Legendre polynomial is given 

by 

𝑙0(𝑥) =  , 𝑙1(𝑥) = 𝑥 

𝑙𝑘:1(𝑥) =
(2𝑘:1)

(𝑘:1)
𝑥𝑙𝑘(𝑥)  

𝑘

(𝑘:1)
𝑙𝑘;1(𝑥) 𝑘 =   2 3 …  

The Rodrigues formula for the Legendre polynomial is 

𝑙𝑘(𝑥) =
1

2𝑘𝑘!
×

𝑑𝑘

𝑑𝑥𝑘
(𝑥2   )𝑘, 𝑘 =  0   2 . ..  

Properties of Legendre polynomials 

The following properties hold for Legendre polynomials 

are 

𝑙𝑘( 𝑥) = (  )
𝑛𝑙𝑘(𝑥) 

i. 𝑙𝑘( ) =    

ii. 𝑙𝑘(  ) = (  )
𝑛  

iii. 𝑙𝑘(0) = 0 𝑘 odd 

iv. 𝑙′𝑘(0) = 0 𝑘 even 

Thus, the condition for orthogonality is: 

∫ 𝑙𝑘(𝑥)𝑙𝑖(𝑥)
1

0
𝑑𝑥 = {

1

2𝑘:1
 𝑖𝑓 𝑘 = 𝑖

0 𝑖𝑓 𝑘 ≠ 𝑖

  

This implies that any function 𝑦(𝑥)  [    ] can be ap-

proximated by Legendre polynomials as follows: 

𝑦(𝑥) ≅ ∑ 𝑐𝑘𝑙𝑘(𝑥)
∞
𝑘<0                    (3) 

where 

𝑐𝑘 =< 𝑦(𝑥) 𝑙𝑘(𝑥) >= (2𝑘 +  ) ∫ 𝑦(𝑥) 𝑙𝑘(𝑥)𝑑𝑥
1

0
  

1.2. Preliminaries 

We introduce the Legendre vector  (𝑥)  in the 

form  (𝑥) = [𝑙0(𝑥) 𝑙1(𝑥) …  𝑙𝑛(𝑥)], then the derivative of 
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the vector  (𝑥), can be expressed in matrix form by ( (𝑥)′)𝑇 =ℳ( (𝑥))
𝑇
=  (𝑥)(ℳ)𝑇                       (4) 

Where ( (𝑥)′)𝑇 =

(

 
 
 
 

𝑙0
′(𝑥)

𝑙1
′(𝑥)

𝑙2
′(𝑥)
..
.

𝑙′(𝑥) )

 
 
 
 

 ℳ =

(

 
 
 

0
 
0
 .
.
0

0
0
3
0.
.
6

0
0
0
5.
.
0

…
……
……
…
…

0
0
0
0.
.
0

 

0
0
0
0.
.

(2𝑛   )

 

0
0
0
0.
.
0)

 
 
 

 and ( (𝑥))
𝑇
=

(

 
 
 
 

𝑙0(𝑥)

𝑙1(𝑥)

𝑙2(𝑥)
..
.

𝑙𝑛(𝑥))

 
 
 
 

 

Where the matrix ℳ is an ( +  ) × ( +  ) matrix calculus, similarly, the 𝑘   derivative of  (𝑥) can be obtained from 

the following relation; 

( (𝑥)′)𝑇 = ℳ( (𝑥))
𝑇
→  (𝑥)1 =  (𝑥)ℳ𝑇

( (𝑥)2)𝑇 =  (𝑥)1ℳ𝑇 =  (𝑥)ℳ𝑇ℳ𝑇 =  (𝑥)(ℳ𝑇)2

( (𝑥)3)𝑇 =  (𝑥)2ℳ𝑇 =  (𝑥)(ℳ𝑇)2ℳ𝑇 =  (𝑥)(ℳ𝑇)3

.

.

.
( (𝑥)𝑘)𝑇 =  (𝑥)(ℳ𝑇)𝑘 }

 
 
 
 

 
 
 
 

                                                          (5) 

In this paper, we shall use the collocation method based on 

Legendre matrix calculus to solve numerically the general 

second order differential equation. 

2. Derivation of the Method 

We now derive the algorithm for solving (1.1), that is 

𝑦′′ = 𝑓(𝑥 𝑦 𝑦′) 

Let us suppose the solution of (1) is to be approximated by 

the first ( +  ) terms of the Legendre polynomial; thus, we 

can write (3) as 

𝑦𝑁(𝑥) ≅ ∑ 𝑐𝑗(𝑥)𝑙𝑗(𝑥)
𝑁
𝑗<0 =  (𝑥)𝐶𝑇          (6) 

where the Legendre coefficients 𝐶 vector and the Legendre 

vector  (𝑥) are given by 

𝐶 = [𝑐0 𝑐1 𝑐2 …  𝑐𝑁]

 (𝑥) = [𝑙0(𝑥) 𝑙1(𝑥) 𝑙2(𝑥) …  𝑙𝑁(𝑥)]
}         (7) 

The second derivative of (6) can be expressed as follows 

𝑦𝑁
(2)(𝑥) = ∑ 𝑐𝑗(𝑥)𝑙𝑗

(2)(𝑥)𝑁
𝑗<0 =  (2)(𝑥)𝐶𝑇 =

 (𝑥)(ℳ𝑇)(2)𝐶𝑇                (8) 

where ℳ is the matrix calculus defined in (4) above. Now 

substituting (6) and (8) into (1), we have 

 (𝑥)(ℳ𝑇)(2)𝐶𝑇 = 𝑎(𝑥) (𝑥)(ℳ𝑇)(1)𝐶𝑇 + 𝑏(𝑥) (𝑥)𝐶𝑇 + 𝑓(𝑥) 

(9) 

Finally, to find the approximate solution, we collocate the 

transformed equation (9) at different collocation points 𝑥𝑗 =

(
𝑗

𝑁;𝑘
 𝑗)   = 0   2 …    𝑘 , to obtain   2  nonlinear 

algebraic equations using 

 (𝑥𝑗)(ℳ
𝑇)(2)𝐶𝑇 =

𝑎(𝑥𝑗) (𝑥𝑗)(ℳ
𝑇)(1)𝐶𝑇 + 𝑏(𝑥𝑗) (𝑥𝑗)𝐶

𝑇 + 𝑓(𝑥𝑗)  =

0   .    2                  (10) 

These equations together with the initial conditions give 

( +  ) × ( +  ) nonlinear systems of algebraic equations 

which can be solved using Newton’s iterative method for the 

unknown constants. Finally, 𝑦𝑁(𝑥) given in (6) can be cal-

culated. 

3. Numerical Illustrations 

The following numerical experiments are performed with 

the aid of MAPLE 18 and Scientific Workplace software 

packages in order to further affirm the applicability, simplici-

ty and accuracy of the proposed method. 

Example 1 

Let us first consider the second order pantograph equation 

solved by [9] given by 

𝑦′′(𝑥) =
3

4
𝑦(𝑥) + 𝑦 (

𝑥

2
)  𝑥2 + 2 𝑥  [0  ] ℎ = 0.0   
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Subject to the initial conditions 𝑦(0) = 𝑦′(0) = 0, the ex-

act solution to this problem is known to be 𝑦(𝑥) = 𝑥2. 

Applying our technique with  = 3, we have the follow-

ing expression; 

 (𝑥)(ℳ𝑇)(2)𝐶𝑇 =
3

4
 (𝑥)𝐶𝑇 +  (

𝑥

2
) 𝐶𝑇  𝑥2 + 2 (𝜗1)  

Using the initial conditions, we have respectively, 

 (0)𝐶𝑇 = 0  (0)(ℳ𝑇)(1)𝐶𝑇 = 0 (𝜗2)  

Collocating (𝜗1) at 𝑥 = 0 
1

2
 and evaluating (𝜗2) at 𝑥 = 0, 

we have the following algebraic systems of equations 

(

 
 
 

3𝑐₂ =
7

4
𝑐₀  

7

8
𝑐₂ + 2

3𝑐₂ +
3

40
𝑐₃ =

7

4
𝑐₀ +

1

160
𝑐₁  

69997

80000
𝑐₂  

239993

25600000
𝑐₃ +

79999

40000

𝑐₁  
3

2
𝑐₃ = 0

 𝑐₀  
1

2
𝑐₂ = 0 )

 
 
 

  

Solving for the unknown coefficients  [𝑐0 𝑐1 𝑐2 𝑐3] , we 

have 

[𝑐₀ =
1

3
 𝑐₁ = 0 𝑐₂ =

2

3
 𝑐₃ = 0]  

Substituting these approximate values into (6), we get the 

approximate solution to the problem as 

𝑦𝑁(𝑥) = 𝑥
2  

The approximate solution is the same as the exact solution 

showing the accuracy of the method. 

Example 2 

Consider the second order differential equation solved by 

[5] given by 

𝑦′′(𝑥) = 𝑦(𝑥) + 𝑥𝑒3𝑥 𝑥  [0  ] ℎ = 0.0025  

Subject to the initial conditions 𝑦(0) =  
3

32
 𝑦′(0) =  

5

32
, 

the exact solution to this problem is known to be 𝑦(𝑥) =
4𝑥;3

32    
. 

Applying our technique with  = 5  we have the follow-

ing expression: 

 (𝑥)(ℳ𝑇)(2)𝐶𝑇 =  (𝑥)𝐶𝑇 + 𝑥𝑒3𝑥 (𝜗1)  

Using the initial conditions, we have respectively, 

 (0)𝐶𝑇 =  
3

32
  (0)(ℳ𝑇)(1)𝐶𝑇 =  

5

32
 (𝜗2)  

Collocating ( 𝜗1 ) at 𝑥 = 0 
1

3
 
2

3
 
 1

2
 and evaluating (𝜗2) 

at 𝑥 = 0, we have the following Values of the unknown co-

efficients 

[𝑐₀ =  6. 0 5660797 02 ×  0⁻² 𝑐₁ = 2. 794908665 50 ×

 0⁻² 𝑐₂ = 0. 09373977 228 𝑐₃ = 0. 5977 274 744 𝑐₄ =

5. 624959089  2 ×  0⁻² 𝑐₅ = 2. 95775069  22 ×  0⁻²]  

Substituting these approximate values into (6), we get the 

approximate solution to the problem as 

0.232922866 934𝑥µ + 0.24609 960  49𝑥´ +

0. 4062500  378𝑥³  0.046875𝑥²  

0. 56250000 00 𝑥  0.09375  

Table 1. Showing the numerical comparison of example 2 for  = 5. 

𝒙  Exact Approximate solution by LOM Absolute error by LOM Absolute error by [5] 

0.0025  0.094 409 576 800   0.094 409 576 9  2.5000 ×  0⁻¹µ  7.020 ×  0;14  

0.0050  0.094532404 42338   0.09 4532404 423  5.6388 ×  0⁻¹µ   .2 7 ×  0;13  

0.0075  0.09492445 608388   0.09492445 6084   .9695 ×  0⁻¹´  3.396 ×  0;12  

0.0 00  0.0953 7044390700   0.0953 70443908  9.6425 ×  0⁻¹´  8. 22 ×  0;12  

0.0 25  0.0957 0 68480980   0.0957 0 6848 4  3.8902 ×  0⁻¹³   .453 ×  0;11  

0.0 50  0.096 03809629 00   0.096 038096304   .2407 ×  0⁻¹²  2.233 ×  0;11  

0.0 75  0.096497953340300   0.0964979533436  3.302 ×  0⁻¹²  3. 56 ×  0;11  

0.0200  0.096892584872264   0.0968925848799  7.678 ×  0⁻¹²  4.220 ×  0;11  

0.0225  0.097289689232 84   0.0972876892483   .6 04 ×  0⁻¹¹  5.42 ×  0;11  

0.0250  0.09768325  739 9   0.09768325 205   3.  49 ×  0⁻¹¹  6.754 ×  0;11  

 

http://www.sciencepg.com/journal/acm


Applied and Computational Mathematics http://www.sciencepg.com/journal/acm 

 

115 

 

xample 3 

Consider the following nonlinear second order boundary 

value problem solved in [16] given as: 

𝑦′′(𝑥) = (𝑦′(𝑥))
2
 𝑦(𝑥)   6𝑥6 + 2 𝑥  [    ] ℎ = 0.0025 

subject to the initial conditions 𝑦(  .0) = 0 𝑦′( .0) =  2, 

the exact solution to this problem is known to be 𝑦(𝑥) =

𝑥2  𝑥4. 

Applying our technique with  = 4 we have the following 

expression; 

 (𝑥)(ℳ𝑇)(2)𝐶𝑇 = ( (𝑥)(ℳ𝑇)(1)𝐶𝑇)
2
  (𝑥)𝐶𝑇   6𝑥6 +

2 (𝜗3)  

Using the initial conditions, we have respectively, 

 (0)𝐶𝑇 = 0  (0)(ℳ𝑇)(1)𝐶𝑇 = 0 (𝜗4)  

Collocating (𝜗3) at 𝑥 = 0 
1

2
 
1

4
 and evaluating (𝜗4) at 𝑥 = 0, 

we have the following Values of the unknown coefficients 

[𝑐₀ = 0. 33333333 333 𝑐₁ = 0.0 𝑐₂ =

9. 523809523 8 ×  0⁻² 𝑐₃ = 0.0 𝑐₄ =

 0.22857 428 57 ]  

Substituting these approximate values into (6), we get the 

approximate solution to the problem as 

  . 000000000 00𝑥´ +  . 000000000 00𝑥²  

 . 750000000 00 ×  0⁻¹³  

Table 2. Showing the numerical comparison of example 3 for  = 4. 

𝒙  Exact Approximate solution by LOM Absolute error LOM |𝒚𝑵(𝒙)  𝒚(𝒙)| 

0.0025  6.24996093750 ×  0⁻¶  6.24996076250 ×  0⁻¶   . 75 ×  0⁻¹³  

0.0050  2.4999 3750000 ×  0⁻µ  2.49993748250 ×  0⁻µ   . 75 ×  0⁻¹³  

0.0075  5.6246 8359375 ×  0⁻µ  5.62468357625 ×  0⁻µ   . 75 ×  0⁻¹³  

0.0 00  9.999000000000 ×  0⁻µ  9.99899998250 ×  0⁻µ   . 75 ×  0⁻¹³  

0.0 25   .562255859375 ×  0⁻´   .56225585763 ×  0⁻´   . 75 ×  0⁻¹³  

0.0 50  2.249493750000 ×  0⁻´  2.24949374825 ×  0⁻´   . 75 ×  0⁻¹³  

0.0 75  3.06 562 09375 ×  0⁻´  3.06 562 0763 ×  0⁻´   . 75 ×  0⁻¹³  

0.0200  3.998400000000 ×  0⁻´  3.99839999825 ×  0⁻´   . 75 ×  0⁻¹³  

0.0225  5.059937 09375 ×  0⁻´  5.059937 0763 ×  0⁻´   . 75 ×  0⁻¹³  

0.0250  6.24609375000 ×  0⁻´  6.24609374825 ×  0⁻´   . 75 ×  0⁻¹³  

 

Example 4 

Consider the second order differential equation solved by 

[5] given by 

𝑦′′(𝑥) = 𝑥(𝑦′(𝑥))
2
 𝑥  [    ] ℎ = 0.0025  

Subject to the initial conditions 𝑦(0) =   𝑦′(0) =
1

2
, the 

exact solution to this problem is known to be 𝑦(𝑥) =  +
1

2
𝑙𝑛 (

2:𝑥

2;𝑥
). 

Applying our technique with  = 4, we have the follow-

ing expression; 

 (𝑥)(ℳ𝑇)(2)𝐶𝑇 = 𝑥( (𝑥)(ℳ𝑇)(1)𝐶𝑇)
2
 (𝜗5) 

Using the initial conditions, we have respectively, 

 (0)𝐶𝑇 =    (0)(ℳ𝑇)(1)𝐶𝑇 =
1

2
 (𝜗6)  

Collocating (𝜗5) at 𝑥 = 0 
1

2
 
1

4
 and evaluating (𝜗6) at 𝑥 = 0, 

we have the following values of the unknown coefficients 

[𝑐₀ =  . 000003906 25 𝑐₁ = 0.524999990 234 𝑐₂ =

 .   6072282 34 ×  0⁻µ 𝑐₃ =  . 6666660 5 62 ×

 0⁻² 𝑐₄ = 4. 464289 29 35 ×  0⁻¶]  

Substituting these approximate values into (6), we get the 

approximate solution to the problem as 
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 . 953 26494 09 ×  0⁻µ𝑥´ + 4.  66665039 05 ×  0⁻²𝑥³ + 3. 75 ×  0⁻¹·𝑥² + 0.500000000 000𝑥 +  . 000000000 00  

Table 3. Numerical comparison of example 4 for  = 4. 

𝒙  Exact Approximate solution by LOM 
Absolute error LOM 

|𝒚𝑵(𝒙)  𝒚(𝒙)|  

Absolute error by [5] 

|𝒚𝑵(𝒙)  𝒚(𝒙)|  

0.0025   . 00 250000 65   .00 250000 60   .0 7 ×  0⁻¹¶   .339 ×  0⁻¹´  

0.0050   . 002500005 2    .002500004 82  9.359 ×  0⁻¹µ  7.32 ×  0⁻¹´  

0.0075   . 0037500 7 58   .0037500 6 29  9.339 ×  0⁻¹´   .000 ×  0⁻¹³  

0.0 00   . 00500004  67   .005000038 63  4.460 ×  0⁻¹³   .250 ×  0⁻¹²  

0.0 25   . 00625008  38   .006250075 49   .462 ×  0⁻¹²   .372 ×  0⁻¹²  

0.0 50   . 007500 40 63   .007500 30 52  3.8 2 ×  0⁻¹²  4.824 ×  0⁻¹²  

0.0 75   . 008750223 32   .008750207 37  8.5 4 ×  0⁻¹²  6.3 4 ×  0⁻¹²  

0.0200   . 0 0000333 35   .0 0000309 73   .70 ×  0⁻¹¹  2.80 ×  0⁻¹²  

0.0225   . 0  250474 65   .0  25044  25  3. 22 ×  0⁻¹¹  4.322 ×  0⁻¹²  

0.0250   . 0 250065   0   .0 2500605 63  5.367 ×  0⁻¹¹  6.757 ×  0⁻¹¹  

 

4. Conclusion 

In this work, a collocation technique based on the Legen-

dre matrix calculus for solving general second order linear 

and nonlinear differential equations was presented. The deri-

vation of this algorithm was essentially based on choosing a 

set of Legendre polynomials. The advantage of this tech-

nique over other methods is that it has less computational 

manipulations and complexities and also its availability for 

application on both linear and nonlinear second-order initial 

value problems. Other importance of the algorithm is that 

high accurate approximate solutions are achieved by using a 

few numbers of terms of the Legendre polynomial which 

result to simple matrix calculus and its transpose and thus, 

reduces the time involve in the derivation of the schemes to 

be used for implementation as compared to the case of linear 

multistep methods, more importantly the same matrix can be 

used to solve higher order differential equations by introduc-

ing just a little manipulation io it and also reduces the com-

putational run time. The comparison of the results shows that 

the method is a very simple and efficient mathematical tool 

for solving initial value problems of differential equations. 
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