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Abstract 

With the development of artificial intelligence (AI), AI plus science is increasingly valued, presenting new perspectives to sci-

entific research. The research on using machine learning (including deep learning) to discover patterns from data and predict 

targeted material properties has received widespread attention, which will have a profound impact in material science studies. In 

recent years, there has been an increased interest in the use of deep learning in materials science, which has led to significant 

progress in both fundamental and applied research. One of the most notable advancements is the development of graph convo-

lutional neural network models, which combine graph neural networks and convolutional neural networks to achieve outstanding 

results in materials science and bridge effectively the deep learning models and material properties predictions. The availability 

of large materials databases due to the rise of big data has further enhanced the relevance of these models in the field. We present, 

in this article, a comprehensive overview of graph convolutional neural network models, explaining their fundamental principles 

and highlighting a few examples of their applications in materials science, as well as current trends. The limitations and chal-

lenges that these models face, as well as the potential for future research in this dynamic area are also discussed. 
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1. Introduction 

The exploration of high-performance materials, along with the 

comprehension of structure-activity relationships and issues 

concerning the chemical structure of materials, presents an ex-

citing scientific endeavor with profound societal relevance [1]. It 

is well-established that computational simulations and experi-

mental measurements are the two principal methodologies em-

ployed in materials science. Experimental measurement offers a 

direct and intuitive method for investigating materials but tends 

to be less efficient over long durations. This approach requires 

sophisticated equipment, precise experimental conditions, and a 

high level of expertise from researchers. On the other hand, 

computational simulation encompasses various techniques, such 

as electronic structure calculations via density functional theory 

(DFT) [2, 3], molecular dynamics [4, 5], Monte Carlo methods 

[6], and continuum macroscopic approaches. These simulations 

employ computer algorithms to leverage existing theories for 

analytical purposes. Thanks to computational simulations, the 

field of materials design is advancing toward the discovery of 
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novel materials, thereby curtailing the time and costs associated 

with material development. With the aid of computational sim-

ulations, the recent surge in computational power, and the ac-

celerated pace of information exchange, we have seen an expo-

nential expansion in the size of public materials datasets [7-9]. 

Although computational methods offer a faster and more 

cost-effective alternative to traditional experiments, they are 

inherently limited by their underlying models and theories, 

which restrict their applicability. Concurrently, machine learning 

(ML) techniques are gaining traction in expediting the design of 

new materials by predicting material properties with an accuracy 

that rivals ab initio calculations, yet at computational speeds that 

are orders of magnitude faster [10-12]. The convergence of ex-

pansive datasets, algorithmic advancements, and enhanced 

computational power is driving an unparalleled interest in the 

application of ML in this domain. 

Deep learning (DL) [13], which is a subfield of ML, takes 

inspiration from the cognitive functions of the human brain and 

biological models [14, 15]. One of the key strengths of DL is its 

ability to process vast amounts of high-dimensional data, al-

lowing it to uncover complex features and correlations from raw 

input data. In the field of material design, DL has been shown to 

complement physics-based methods effectively [16-18]. More-

over, DL approaches can significantly accelerate processes 

compared to traditional computational simulation methods, 

achieving a level of accuracy in specific contexts that rivals that 

of conventional physics-based or computational models. Despite 

these advantages, DL methodologies do face challenges. A sig-

nificant concern within the scientific community is the opaque 

nature of DL methods, which often doesn't allow for the discov-

ery, comprehension, or application of new principles that they 

might reveal. This "black-box" characteristic [19] can hinder a 

deeper physical understanding of the phenomena being investi-

gated. Therefore, there is ongoing research to improve the inter-

pretability and explainability of DL models, which is a vibrant 

field of study. 

The Graph Neural Network (GNN) is a cutting-edge DL ap-

proach that enables relational reasoning and compositional gen-

eralization. Currently, GNNs are one of the most widely used 

DL techniques that utilize structural information to predict a 

diverse range of material properties [16, 20-22]. GNNs come in 

several variants, each defined by its unique propagation rules 

and aggregation methods. Among these variants, the Graph 

Convolutional Neural Network (GCNN) is the most extensively 

used in the field of GNNs. This article aims to explain the fun-

damental principles of GCNN methodologies, highlight their 

applications in the field of materials science, and explore the 

latest trends and advancements in this area. 

2. Neural Network 

2.1. Forward Propagation Neural Network 

The perceptron, also known as an "artificial neuron" or 

"naive perceptron," was first proposed in 1957 by Frank 

Rosenblatt [15]. It serves as a crucial component of artificial 

neural networks (ANNs) and is responsible for forwarding 

information. During operation, given a set of inputs 

 1 2 3, , ,..., nx x x x , the perceptron assigns corresponding weights 

 1 2 3, , ,..., nw w w w  and includes a bias term b . It then performs a 

weighted sum of the inputs, which is a vital step in its com-

putation process. 

Activation functions play a vital role in ANNs by intro-

ducing nonlinearity and enabling the network to approximate 

complex nonlinear functions. This ability allows ANNs to 

solve tasks that involve learning intricate patterns and rela-

tionships in data. Various types of activation functions are 

used in ANNs, including sigmoid, hyperbolic tangent (tanh), 

rectified linear unit (ReLU), leaky ReLU, and Swish. For 

instance, the sigmoid function is useful for binary classifica-

tion tasks as it outputs values in the range (0, 1) and is adept at 

mapping a real number to this interval. It is effective in sce-

narios where the features exhibit complex interactions or 

when the distinctions among features are subtle. Similarly, the 

tanh function scales real values to fall within -1 and 1, offering 

a centered range compared to sigmoid. Selecting an appro-

priate activation function is crucial since it significantly in-

fluences the network's training dynamics and the model's 

ultimate performance [23]. 

In the realm of neural networks, initializing weight matri-

ces is a crucial step that often involves assigning random 

values or utilizing pre-trained models. These weights play a 

crucial role in transforming input matrices (or outputs from 

previous layers) through multiplication to create new repre-

sentations. Non-linear activation functions are then applied to 

introduce non-linearity into the model. The loss function is 

pivotal in evaluating the network's performance, and it in-

volves comparing the network's output with the actual target 

values. This function, also known as the objective function or 

empirical risk, quantifies the difference between predicted 

and true values. To optimize the network, back-propagation is 

used, which involves calculating the partial derivatives of the 

loss function concerning each network parameter. This is 

achieved through the chain rule and reverse automatic dif-

ferentiation, enabling the iterative minimization of the loss 

function [24]. Among the gradient descent algorithms utilized 

for this optimization process are stochastic gradient descent 

(SGD), Adam, and Adagrad. SGD is a popular choice for 

iteratively updating network weights to reduce the loss func-

tion towards the targeted accuracy. Other algorithms adap-

tively adjust learning rates. The learning rate is a significant 

factor in the gradient descent process, influencing the speed of 

convergence and the stability of network training. Different 

loss functions, such as binary cross-entropy (BCE), negative 

log-likelihood (NLLL), or mean absolute error (MAE), are 

employed based on specific objectives, such as classification 

or regression, to tailor the training process. Deep learning 

models, especially neural networks, are sensitive to the scale 

of input data, requiring careful preprocessing. When features 

have varying scales, it can lead to the dominance of certain 
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features during training, potentially overshadowing others, 

and causing numerical stability issues like gradient explosion 

or vanishing gradients. To mitigate these issues, inputs are 

usually scaled to a uniform range. Common scaling tech-

niques include normalization (scaling data to [0,1]) and 

standardization (scaling data to have a mean of 0 and a 

standard deviation of 1). Additionally, techniques like batch 

normalization or layer normalization are applied to inputs of 

hidden layers to enhance the stability and performance of 

ANNs. 

The multilayer perceptron (MLP), also known as forward 

neural network, is one of the most elementary architectures in 

neural networks. It consists of several layers that perform 

linear transformations interspersed with non-linear activation 

functions. Each layer in this network processes an input vector 
mx  using the transformation: 

(x;w,b) w x b, Tf             (1) 

where m nw  is the weight matrix and nb  is the bias 

vector. Both w  and b  are adjustable parameters within the 

network. By integrating non-linear activation functions like 

ReLU or tanh on f , the network is able to model complex 

relationships beyond linear mappings. A forward neural 

network is essentially a sequential assembly of such layers, 

depicted as   ( ) ( 1) (1) ( )k kf f f
x , where k  indexes the 

layers. This stacked structure enables the network to learn 

hierarchical representations of data. Compared to a general 

neural network, a forward neural network has simpler input 

data vectors and more straightforward inter-layer connectivity. 

It lacks the complex feedback loops or recurrent structures 

found in more advanced networks. Nonetheless, the core 

principle underpinning both network types is leveraging a 

concatenation of simple computational units to craft a model 

capable of capturing and expressing intricate patterns within 

the data. 

2.2. Graph Neural Network 

In mathematical terms, a graph G  is represented as a trio 

of nodes (or vertices) V , edges (or links) E , and node fea-

tures X , expressed as ( , , )G V E X . Edges connect pairs of 

nodes, encapsulating the relational dynamics between them. 

Both nodes and edges may possess associated attributes or 

features that define their characteristics. The adjacency matrix 

A  serves as a square matrix that delineates the connections 

between nodes, using 1 to denote a connection and 0 for its 

absence. 

Graphs are classified into various categories, such as un-

directed or directed, weighted or unweighted, homogeneous 

or heterogeneous, and static or dynamic. Undirected graphs 

represent bidirectional, symmetrical relationships between 

nodes, while directed graphs illustrate unidirectional, asym-

metrical relationships, where the condition 
mn nmA A  may hold. 

Weighted graphs assign a scalar value to each edge to denote 

its weight, contrasting with unweighted graphs, which use 

binary values. Homogeneous graphs feature nodes and edges 

of a single type, signifying a uniform class of entities or rela-

tionships. In contrast, heterogeneous graphs consist of multi-

ple types of nodes and edges, indicating a diversity of entities 

and their interrelations. 

GNNs are a subclass of deep learning techniques designed 

to process graph-structured data. They model the dependen-

cies within a graph via a message-passing paradigm, where 

information is exchanged and processed across nodes and 

edges. GNN training involves two pivotal processes: (a) ag-

gregating information from neighboring nodes and edges and 

(b) updating the attributes of nodes and edges, with the ag-

gregation step being designed to be permutation invariant. 

Various GNN architectures have been developed, each 

characterized by its specific rules for propagation and meth-

ods for aggregation. Notable examples include the graph 

convolutional network (GCN) [25], which applies convolu-

tional operations in the graph domain; the graph attention 

network (GAT) [26], which implements attention mecha-

nisms to weigh the importance of nodes; the relational graph 

convolutional network (Relational-GCN) [27], tailored for 

heterogeneous graphs; the graph recurrent network (GRN) 

[28], which incorporates recurrent neural network principles; 

the graph isomorphism network (GIN) [29], designed to 

capture the isomorphic properties of graphs; and the line 

graph neural network (LGNN) [30], which explores high-

er-order interactions between graph edges. 

2.3. Convolutional Neural Network 

The convolutional neural network (CNN), which can be 

considered an enhanced version of the MLP, introduces a 

robust inductive bias that is particularly adept at learning 

translation-invariant features from image data. This charac-

teristic makes CNNs exceptionally suited for image pro-

cessing and recognition tasks. The architecture of a CNN 

encompasses four primary elements: (a) learnable convolu-

tion filters, (b) nonlinear activation functions, (c) spatial re-

duction techniques such as pooling or stridden convolutions, 

and (d) a prediction mechanism, usually consisting of fully 

connected layers that synthesize the extracted features into a 

global representation for the final output. In the convolutional 

layers, CNNs employ trainable filters or kernels, which are 

small matrix-like structures that traverse the input image in a 

sliding manner, applying element-wise multiplication to 

capture localized feature patterns. This process produces 

feature maps that highlight the presence of specific features at 

different locations in the input. By using these shared weights 

across the entire input space, CNNs can detect features re-

gardless of their position in the image, embodying the concept 

of translation invariance. 

Following the convolution operation, nonlinear activation 
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functions, such as ReLU, are applied to introduce nonlinearity 

into the model, enabling it to capture complex patterns and 

dependencies in the data. The spatial reduction component, 

often realized through pooling operations, serves to 

downsample the feature maps, reducing their dimensionality 

while retaining essential information. Pooling can be per-

formed in various ways, including max pooling, average 

pooling, and sum pooling, each contributing to the model's 

robustness to slight variations in the input.  

The culmination of these processes in a CNN is a series of 

convolutional and pooling layers that progressively abstract 

the input's features, culminating in a dense layer that inte-

grates these features into a comprehensive representation. 

This representation is then used in the prediction module, 

typically consisting of one or more fully connected layers, to 

make final decisions or classifications. Through this sophis-

ticated architecture, CNNs have established a benchmark in 

the field of image analysis, demonstrating remarkable effi-

cacy in tasks like image classification and object recognition 

[31, 32]. 

2.4. Graph Convolutional Neural Network 

GCN is an extension of CNNs that is specifically designed 

to model data with a graph structure. In a GCN, the data is 

represented as a graph ( , ) , where  is the set of nodes 

and   is the set of edges. The graph has N  nodes, denoted 

by
iv  , connected by edges ( , )i jv v  . The connections 

between the nodes are described by the adjacency matrix
N NA  , which can be either binary or weighted, and the 

degree matrix D , which is a diagonal matrix where 

ii ij

j

D A
. 

In GCNs, the convolution operation is adapted to handle 

graph data. The propagation rule is given by: 

1 1

1 2 2( ),l l lH D AD H W
 

            (2) 

where 
NA A I   represents the adjacency matrix with 

added self-connections (via the identity matrix
NI ), which 

enhances the flow of information. D  is the degree matrix 

corresponding to A , and lW  denotes the layer-specific 

trainable weight matrix. The matrix 
l N DH   contains the 

node features or activations at layer l , with (0)H X  being 

the initial node features. 

The convolution operation in GCNs can be understood as a 

signal processing operation, where the convolution of a signal 

x  (node features) with a filter g  is defined as: 

,g x UgU x                (3) 

where U  is the matrix of eigenvectors of the graph La-

placian. This transformation allows the filter g to be applied in 

a manner that respects the graph structure, ensuring that the 

convolution is sensitive to the patterns of connectivity within 

the graph. 

By iteratively applying this convolution process, followed 

by nonlinear activation functions (and potentially pooling 

layers), GCNs can effectively capture and model the intricate 

structures and feature relationships present in graph data. This 

ability makes GCNs particularly powerful for tasks where 

data is inherently structured in non-Euclidean domains, such 

as social networks, molecular structures, and communication 

networks. 

3. Application of Graph Convolution 

Neural Network 

The successful implementation of DL in materials science 

relies on several crucial factors that ensure the reliability and 

relevance of the developed models. These factors include: 

Acquisition of Large, Balanced, and Diverse Datasets: In 

order to train DL models effectively, it is necessary to obtain 

extensive datasets that accurately reflect the diversity of ma-

terials and their properties. These datasets should be balanced 

to avoid biases towards particular material classes or proper-

ties, ensuring that the model can generalize well across vari-

ous materials. 

Determination of Appropriate Representations for DL 

Methods and Input Samples: The way materials data is rep-

resented can significantly influence the effectiveness of DL 

models. In materials science, this might involve choosing the 

proper descriptors or features that capture the essential at-

tributes of materials. For graph-based models like GCNs, this 

includes deciding how to represent materials as graphs (e.g., 

atoms as nodes and bonds as edges) and defining node and 

edge features that accurately reflect the materials’ character-

istics. 

Selection of Performance Metrics Relevant to the Target 

Properties: The metrics used to evaluate the performance of 

DL models should align with the specific goals of the mate-

rials science applications. For instance, if the objective is to 

predict a material's electronic properties, the chosen metrics 

should reflect the accuracy and reliability of those predictions. 

When it comes to the application of GCNs in materials 

science, these considerations take on specific nuances: 

Data Representation: Materials must be represented as 

graphs for GCNs. The challenge lies in effectively translating 

the material's atomic or molecular structure into a graph 

format where nodes and edges correspond to atoms and bonds, 

respectively. Additional features such as atomic number, 

charge, or other chemical properties can be included as node 

or edge attributes. 

Graph-Based Data Processing: GCNs' unique advantage is 

their ability to process data in graph form, capturing the local 
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and global structural information inherent in materials. This 

capability allows GCNs to learn from the complex interac-

tions within materials, offering insights that might be inac-

cessible to other types of DL models. 

Domain-Specific Applications: In materials science, GCNs 

can be applied to a range of tasks, from predicting material 

properties based on their atomic structures to identifying new 

materials with desired characteristics. The choice of network 

architecture, learning algorithms, and training techniques 

must be tailored to these specific applications to maximize the 

effectiveness of the GCNs. 

In the following section, we will explore the applications of 

graph convolutional neural networks in materials science in 

greater detail, showcasing their potential to revolutionize our 

understanding and discovery of new materials. 

3.1. Crystal Graph Convolution Neural Network 

As we discussed earlier, the application of graph convolu-

tional neural networks (GCNNs) in the field of materials 

science requires the development of appropriate representa-

tional frameworks. One of the major challenges in this context 

is to represent periodic crystal systems, which come in vary-

ing sizes, as fixed-length vector representations that effec-

tively correlate with their target properties. Traditionally, this 

problem has been addressed through the creation of 

fixed-length feature vectors, derived from simple material 

properties [33-35], or by using symmetry-invariant transfor-

mations of atomic coordinates [36, 37]. The former approach 

requires specific designs for predicting multiple properties, 

making it somewhat rigid. On the other hand, the latter ap-

proach often results in complex transformation models that 

are difficult to interpret. These limitations have hindered the 

broader application of machine learning in this field. To 

overcome these challenges, Xie et al. [20] proposed a novel 

approach that employs graph construction for feature extrac-

tion, which is encapsulated in the crystal graph convolutional 

neural network (CGCNN) framework, as illustrated in Figure 

1. 

 
Figure 1. Illustration of the CGCNN. (a) Construction of the crystal 

graph. (b) Structure of CNN. From [20]. 

The constructed graph represents atomic features as nodes, 

where each node's characteristics are captured in the feature 

vector
iv . Instead of using continuous values directly, each 

continuous-valued attribute is segmented into ten distinct 

categories to establish a one-hot encoded feature vector. The 

graph's edges symbolize the bonds formed through interac-

tions between atoms, similar to how material fragment de-

scriptors with property labels are structured. A unique aspect 

of these crystal graphs is their ability to accommodate multi-

ple edges between two nodes, reflecting the periodicity in-

herent in crystal structures. Consequently, a one-hot encoded 

edge feature vector 
( , )ki ju  signifies the k th bond linking 

atoms i  and j . 

Although the crystal graph itself may not be the most ef-

fective representation for predicting target properties, its 

representational efficacy is significantly enhanced through the 

application of convolutional layers. Each convolutional lay-

er's processing results in the progressive integration of envi-

ronmental information into the node and edge feature vectors. 

Specifically, the ( 1)t  th layer of the graph neural network 

updates the feature vector 
iv  for node i  based on the output 

from the t th layer, as detailed in the following equation: 

1 ( ) ( ) ( ) ( ) ( ) ( )

( , ) ( , )

,

( ) ( )
k k

t t t t t t t t

i i i j f f i j s s

j k

z g    v v W b z W b    (4) 

Here, ( )t

fW , ( )t

sW , and ( )t

ib  represent the convolutional 

weight matrix, self-weight matrix, and bias at layer t , respec-

tively. The operation  denotes element-wise multiplication, 

 is the sigmoid function, and ( )

( , )k

t

i jz  embodies the concatena-

tion of neighboring vectors, as defined by: 

( ) ( ) ( )

( , ) ( , )k k

t t t

i j i j i jz   v v u          (5) 

where   represents vector concatenation. After multiple 

convolutions, spatial dimensions within the neural network 

are reduced via pooling layers, which operate on all feature 

vectors obtained throughout the convolutional stages. 

The CGCNN model, trained on DFT computational data 

from the Materials Project, is proficient at predicting various 

crystal properties, including formation energy, absolute en-

ergy, band gap, Fermi energy, bulk moduli, shear moduli, and 

Poisson's ratio. Notably, the model's mean absolute error 

(MAE) for formation energy prediction stands at 0.039 

eV/atom, surpassing the accuracy of DFT calculations relative 

to experimental data. This precision is evident when the 

model is trained with approximately 10
4
 data points, where its 

MAEs approach or exceed the DFT's accuracy in comparison 

to experimental results. Ultimately, crystal graph convolu-

tional neural networks offer a robust and adaptable framework 

for predicting material properties and facilitating knowledge 
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discovery in materials design. 

3.2. Improved Crystal Graph Convolution 

Neural Network 

Expanding upon the foundational principles of the crystal 

graph convolutional neural network, Cheol et al. [38] intro-

duced an advanced iteration of the CGCNN model, aptly 

named improved crystal graph convolutional neural network 

(iCGCNN), which is depicted in Figure 2. This enhanced 

model, iCGCNN, builds on the original framework by in-

corporating additional features or optimizations to improve its 

predictive accuracy and efficiency in analyzing material 

properties. 

The iCGCNN model introduces enhancements to the 

original CGCNN to address its three key limitations. The 

CGCNN is known for its flexibility in representing various 

crystal structures and predicting diverse material properties. 

However, it may not effectively capture the chemical en-

vironments of atoms due to its crystal graph design. 

 
Figure 2. Illustration of the iCGCNN. From [38]. 

The first limitation of CGCNN is that each node within any 

crystal graph connects to its 12 nearest neighbors, regardless 

of the crystal's structure. This approach may not accurately 

reflect an atom's local chemical environment, which is sig-

nificantly influenced by its closest neighbors, particularly the 

first and second nearest. The second limitation is that CGCNN 

encodes only pairwise interactions in the convolutional layers, 

neglecting higher-order correlations like three-body interac-

tions. Lastly, the model's representation of chemical bonds 

using edge vectors lacks optimization. 

To overcome these limitations, the iCGCNN model en-

hances the local environment representation by linking each 

node to its Voronoi neighbors and incorporating the following 

term into Equation (4): 

, ,

( ) ( ) ( ) ( ) ( ) ( )

( , , ) 1 1 ( , , ) 2 2

, , ,

( ) (( ))
k k k k

t t t t t t

i j l i j l

j l k k

z W b g z W b
 



             (6) 

Here,
,

( ) ( ) ( ) ( ) ( ) ( )

( , , ) ( , ) ( , )k k k k

t t t t t t

i j l i j l i j i jz v v v u u
 

      . Unlike the origi-

nal CGCNN, where node vectors undergo iterative optimiza-

tion while edge vectors remain static during training, the 

iCGCNN updates edge vectors to better represent chemical 

bonding. The updated convolutional function for edge vectors 

is illustrated by Equation (7): 

,

,

( 1) ( ) ( ) ( ) ( )

( , ) ( , ) ( , ) 1 1

( ) ( ) ( )

( , ) 2 2

( ) ( ) ( )

( , , ) 1 1

,

( ) ( ) ( )

( , , ) 2 2

( )

( )

( )

(( ))

k k k

k

k k

k k

t t t t t

i j i j i j

t t t

i j

t t t

i j l

l k

t t t

i j l

u u z W b

g z W b

z W b

g z W b












  



   

  


        (7) 

This equation highlights how the chemical attributes of 

atoms i  and j  impact their bond, with the summation term 

indicating the influence of neighboring atoms on this interac-

tion. By incorporating the Voronoi tessellation of crystal 

structures, explicit three-body correlations among neighbor-

ing atoms, and optimized representations of chemical bonds 

in the crystal graph, the iCGCNN model surpasses the per-

formance of the original CGCNN. 

The authors conducted a comparative analysis of the orig-

inal and improved CGCNN models by utilizing the Open 

Quantum Materials Database (OQMD) data to assess the 

accuracy of thermodynamic stability predictions. This analy-

sis involved two methodologies: (1) predicting the formation 

energy and then determining the hull distance in relation to the 

convex hull constructed from OQMD data; (2) directly pre-
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dicting the hull distance, thereby eliminating the need to 

calculate convex hull energies. In this context, thermody-

namic stability is defined as the disparity between a com-

pound's formation energy and the lowest-energy linear com-

bination of phases for that composition, which is often derived 

from convex hull constructions. The comparative results 

revealed notable disparities in predictive accuracy between 

the two models. Specifically, the improved CGCNN demon-

strated a 25% enhancement in predictive accuracy over the 

original CGCNN for the first method and a 20% improvement 

for the second method, as measured by the Mean Absolute 

Error (MAE) across the entire test dataset. Moreover, when 

applied to the prediction of new compounds with the ThCr2Si2 

structure, the iCGCNN not only identified twice the number 

of stable compounds compared to the original CGCNN but 

also exhibited a success rate that was 2.4 times higher. This 

superior performance in identifying stable compounds un-

derscores iCGCNN's potential to significantly expedite the 

discovery of new materials, highlighting its value beyond the 

mere comparative analysis with the original CGCNN model. 

3.3. Orbital Graph Convolutional Neural 

Network 

Karamad et al.[39] introduced the Orbital Graph Convolu-

tional Neural Network (OGCNN), a novel approach that in-

tegrates atomic orbital interactions into the graph convolu-

tional framework, as depicted in Figure 3. This model en-

hances the representation of atomic interactions by accounting 

for the specific orbital characteristics of each atom, offering a 

more nuanced understanding of material properties and be-

haviors. 

 
Figure 3. Schematic diagram of OGCNN framework. From [39]. 

The following text discusses the Orbital Graph Convolu-

tional Neural Network (OGCNN) proposed by Karamad et al. 

and its advantages over the traditional CGCNN for encoding 

local chemical environments of atoms. OGCNN incorporates 

orbit-orbit interactions leading to more accurate representa-

tions of the atomic environment. This is achieved by using an 

orbital field matrix (OFM), which captures atomic orbital 

interactions based on the distribution of valence electrons. 

The OFM approach represents the electronic configuration of 

an atom as a one-dimensional binary vector, and local atomic 

structure is represented by a matrix. The matrix is the sum of 

weighted vector representations of neighboring atoms. 

OGCNN has demonstrated its effectiveness in capturing 

complex interactions through its superior performance on 

property prediction across five datasets. It consistently out-

performs CGCNN, particularly on the lanthanide dataset, 

where OGCNN achieved a Mean Absolute Error (MAE) of 

0.061 eV/atom, significantly lower than CGCNN's MAE of 

0.133 eV/atom, indicating a 54% improvement in predictive 

accuracy. Across other datasets, OGCNN's performance ex-

ceeded that of CGCNN by 25% to 50%, underscoring its 

enhanced ability to predict material properties by effectively 

integrating atomic orbital interactions. 

3.4. Transfer Learning for Materials 

Informatics Using Crystal Graph 

Convolutional Neural Network 

Lee et al. [40] addressed the challenge of data scarcity in 

materials science machine learning applications by proposing 

a transfer learning approach using Crystal Graph Convolu-

tional Neural Networks (TL-CGCNN). This methodology 

leverages the knowledge acquired from one domain and ap-

plies it to another, thus mitigating the issue of insufficient 

training data in the target domain. Transfer learning is par-

ticularly beneficial in fields like materials science, where 

generating large datasets can be expensive or impractical. In 

their work, as illustrated in Figure 4, they compare the con-

ventional machine learning approach with the transfer learn-

ing approach based on convolutional neural networks. Tradi-

tional machine learning models require extensive data from 

the domain of interest to learn effectively and make accurate 

predictions. However, when such data are not available, these 

models can underperform due to overfitting or lack of gener-
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alizability. In contrast, transfer learning, as applied through 

TL-CGCNN, allows the model to leverage pre-learned pat-

terns and knowledge from a related domain where abundant 

data exist. This pre-training process on a large dataset helps 

the model develop a robust understanding of the underlying 

patterns and features, which can then be fine-tuned with a 

smaller dataset from the target domain, enhancing its predic-

tive performance and generalizability despite the data scarcity 

in the new context. 

 
Figure 4. Comparative schematic diagram of convolutional ML and 

TL concepts based on convolution neural network. From [40]. 

In traditional machine learning methods, creating separate 

models for each target variable is common practice, which can 

be limiting when data is scarce for certain variables. However, 

transfer learning has emerged as a promising solution to this 

challenge, especially in the context of CNNs. By utilizing a 

"pre-trained" model that has been developed using a large and 

diverse dataset, transfer learning enables the extraction and 

transfer of learned features (weights and biases) in the con-

volutional layers to a new target model that may have limited 

data available. The TL-CGCNN approach applies this prin-

ciple by using a pre-trained model to capture intricate features 

from a large dataset (source domain), and then transferring 

this knowledge to a target domain where the model is fi-

ne-tuned with a smaller dataset to predict specific material 

properties. This process is particularly helpful for material 

science applications where data may be limited or expensive 

to obtain. Several studies have demonstrated the effectiveness 

of TL-CGCNN, which consistently achieves lower MAE in 

predictions compared to conventional CGCNN models. This 

improvement is attributed to the nuanced feature recognition 

and generalization capabilities inherited from the pre-trained 

model. Moreover, it has been quantitatively shown that the 

size of the dataset used for the pre-trained model directly 

influences the effectiveness of knowledge transfer; larger 

pre-trained datasets typically result in better performance on 

the target task. By addressing the issue of data scarcity, 

TL-CGCNN enhances the predictive accuracy of models in 

material science, and widens the scope for applying machine 

learning to a broader range of material properties, even those 

with limited data available. This approach holds significant 

potential for accelerating discoveries and innovations in ma-

terials science by making efficient use of available data and 

learned knowledge across different domains. 

3.5. Atomistic Line Graph Neural Network 

Graph Neural Networks have proven to be a significant 

advancement in the field of materials science, particularly in 

modeling atomic material representations, outperforming 

traditional descriptor-based machine learning models. The 

strength of GNNs lies in their ability to capture complex 

structural and relational information within materials at the 

atomic level. However, a standard limitation among many 

GNNs is that they rely solely on atomic distance information. 

Although distances are essential for understanding material 

structure, the absence of explicit bond angle information can 

be a critical gap. Bond angles provide critical geometric in-

formation that is necessary to accurately distinguish between 

different atomic structures, which, in turn, can significantly 

impact the material's properties. 

To address this limitation, Choudhary et al.[22] introduced 

the Atomistic Line Graph Neural Network (ALIGNN). This 

innovative approach extends beyond the conventional atomic 

graph by incorporating a line graph representation. In the 

context of the SiO4 polyhedron, as illustrated in Figure 5, the 

crystal graph captures the connectivity between atoms. In 

contrast, the corresponding line graph further elucidates the 

interactions between bonds, effectively encoding bond angle 

information. The line graph is constructed by transforming the 

bonds (edges in the atomic graph) into nodes in the line graph, 

allowing the model to capture the angular relationships be-

tween atoms by examining the connections between these 

new nodes. This additional layer of information enriches the 

model's understanding of the material's atomic structure, 

enabling more nuanced and accurate predictions of material 

properties. The ALIGNN model, which integrates both atomic 

and line graph representations, provides a comprehensive and 

detailed view of the material's structure, offering significant 

improvements in predictive performance for a wide range of 

material properties. This approach not only demonstrates the 

potential of GNNs in materials science but also highlights the 

importance of incorporating comprehensive structural infor-

mation, including bond angles, for a deeper understanding and 

prediction of material behaviors. 
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Figure 5. Illustration of the undirected crystal graph representation and the corresponding line graph construction for a SiO4 polyhedron. 

From [22]. 

In the line graph, each node is representative of an edge 

from the original atomic graph; both elements symbolize the 

bonds connecting atoms and maintain a shared foundational 

representation. Edges within the line graph are associated 

with atomic triplets or dyads of interatomic bonds. 

ALIGNN employs a method called edge-gated graph 

convolution for the iterative refinement of node and edge 

features. This method is similar to that used in CGCNN, but 

with a notable difference: edge features are exclusively inte-

grated into the normalized edge gate. Additionally, 

pre-aggregated edge messages are used in this convolution 

process to refine edge representations. The node representa-

tion Ih  at the I th layer is updated using the following 

equations: 
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The edge messages described in Eq. (11) parallel the gating 

mechanism in CGCNN's update strategy, with the matrices A , 

B , and C  amalgamated into 
gateW . The enhanced edge rep-

resentation is defined as follows: 

ij i j ijz h h e                 (12) 

  1 1

gateSiLU NormI I I I

ij ij ije e W z         (13) 

These updates ensure a nuanced enhancement of feature 

representations within the graph convolution framework. 

ALIGNN executes alternating updates between the two 

graphs, employing Eq. (14) and Eq. (15), as illustrated in 

Figure 6. This process facilitates the transfer of bond angle 

information into atomic representations by moving from in-

teratomic bond representations to atom-wise representations 

and conversely. The integration of bond distances and angles 

from the line graph into the model captures intricate details of 

atomic structures, which significantly enhances the model's 

performance. The detailed incorporation of atomic structure 

nuances and advanced convolutional update mechanisms has 

enabled ALIGNN to achieve a leading mean absolute error 

(MAE) of 0.022 eV/atom for the formation energy of solids at 

0 K. 

1 1, EDGE Gated Graph Conv( ( ), , )I I I Im t L g e t    (14) 

1, EDGE Gated Graph Conv( , , )I I I Ih e g h m   (15) 

These equations delineate the method by which ALIGNN 

iteratively refines the features across both the atomic and line 

graphs, ensuring a robust and detailed representation of the 

material's structure. 
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Figure 6. Schematic of the ALIGNN layer structure. From [22]. 

3.6. Self-supervised Learning Graph Neural 

Network 

Supervised learning algorithms such as Graph Neural 

Networks are known for their effectiveness in predicting 

material properties. However, training precise machine 

learning models requires large labeled datasets, which can be 

expensive in terms of computational resources. 

Self-Supervised Learning (SSL) methodologies have recently 

emerged as a solution to this challenge by enabling the 

training of machine learning models using unlabeled data. 

This approach has shown remarkable achievements in com-

puter vision and natural language processing, as demonstrated 

by Chen et al. and Lan et al. [41, 42]. In this context, Magar et 

al. [43] introduced the Crystal twins (CT) framework, which 

is an SSL approach designed for predicting the properties of 

crystal materials using GNN. The CT framework's 

pre-training phase uses a self-supervised strategy, allowing 

the model to acquire crystal representations without relying 

on labeled data. This approach streamlines the model training 

process, making it more efficient and cost-effective. 

Within the CT framework, the CGCNN is responsible for 

encoding the crystal systems and learning their representa-

tions. Through comparison with other leading supervised 

learning models, the effectiveness of using self-supervised 

learning for predicting crystal material properties has been 

convincingly demonstrated. This analysis highlights the po-

tential of self-supervised learning to improve predictive ac-

curacy while reducing the reliance on large labeled datasets. 

It's important to note that the CT framework outperforms 

ALIGNN only in classification tasks. This is because 

ALIGNN is specifically designed to model three-body inter-

actions, which gives it a high level of accuracy. On the other 

hand, the CT framework uses CGCNN as its encoder, which 

focuses primarily on two-body interactions. Because of the 

explicit modeling of three-body interactions, ALIGNN is 

more robust and accurate than CGCNN. As a result, when the 

CT framework uses CGCNN, it is limited in its ability to 

achieve the same level of performance as ALIGNN in tasks 

that require three-body interactions for predictive accuracy. 

Researchers in the field of self-supervised learning for 

graph neural networks, such as Kong et al. [44,45], have 

shown that GNNs heavily rely on end-to-end learning from 

extensive material datasets. This approach often results in a 

limited understanding of the multiscale material information 

due to the absence of prior knowledge. Moreover, the data 

labeling process is labor-intensive, error-prone, and consumes 

substantial resources, which can limit the accuracy of subse-

quent predictions. To address these challenges, Kong et al. 

advocate for the adoption of node and edge information from 

crystal graphs within a self-supervised learning framework to 

pre-train GNN models. This method fosters the generation of 

self-supervised atomic representations, which outperform 

traditional, manually crafted material descriptors in terms of 

predictive capabilities. These representations allow for ad-

justable information scopes and offer enhanced insights into 

material properties. The application of self-supervised atomic 

representations on a magnetic moment dataset illustrates their 

potential in pattern and information extraction from magnetic 

materials. To encapsulate rich physical information within the 

GNN model, they introduced the Node Embedding Graph 

Neural Network (NEGNN) framework, depicted in Figure 8, 

which demonstrated a marked improvement in predictive 

accuracy. 
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Figure 7. Overview of the Crystal twins framework. From [43]. 

 
Figure 8. Illustration of self-supervised training and the NEGNN framework. From [45]. 

The combination of the self-supervised material represen-

tation and the NEGNN framework allows for a more thorough 

analysis of material information, making it particularly ef-

fective for smaller datasets and improving prediction accu-

racy. 

4. Limitations and Challenges 

GCNs, as a subset of DL methodologies, face several 

prevalent challenges. These include the reliance on annotated 

data, the lack of ground truth in non-simulated datasets, 

marked discrepancies between training data and real-world 

data distributions, and difficulties in benchmarking and in-

terpreting results [46, 47]. Additionally, the "black box" na-

ture of these models [19] complicates the extraction and 

comprehension of high-level physics or materials information. 

Research aimed at model interpretability is crucial for miti-

gating these issues, thereby improving GCN model perfor-

mance in specific applications. 

While predictions based on atomic graphs offer a com-

prehensive atomic-level description, their applicability has so 

far been limited to bulk materials, excluding defective sys-
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tems. This limitation underscores the necessity for input fea-

tures to be predictive of output labels and not to omit crucial 

information. Although GCNs have shown significant accu-

racy enhancements over previous models, there remains a 

need to reduce further model errors to achieve "chemical 

accuracy" akin to what is expected in deep learning. Moreover, 

the GCN architecture needs to scale beyond a few layers of 

depth [48]. 

Looking ahead, the integration of GCNs with the latest 

model technologies to overcome GCN-specific challenges, 

characterize material structural information, and boost model 

performance represents an exciting new research avenue. The 

evaluation and improvement of DL model interpretability 

continue to be significant areas of focus in the field. 
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