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Abstract: The need for secure communication over the network has increased drastically over recent years, and Elliptic 

Curve Cryptography (ECC) carries out a significant role in moving secured information. In this work, a hardware 

implementation of modular arithmetic and group operations over the prime field for an Elliptic Curve Cryptography Processor 

(ECP) for an efficient security system is proposed. The modular addition or subtraction operation takes only one clock cycle 

and the modular multiplication, which is designed using the interleaved modular multiplication method, requires 257 clock 

cycles. For elliptic curve group operation separate point doubling (PD) and point addition (PA) architectures are implemented 

in Jacobean coordinates. These new architectures are simulated in a Xilinx ISE 14.7. After that, the architectures are 

implemented in Xilinx Virtex-7 field-programmable gate array (FPGA) with the VHDL language. Proposed modular arithmetic 

and group operations can be utilized to design an Elliptic Curve Point Multiplication (ECPM). 

Keywords: Elliptic Curve Cryptography (ECC), Modular Arithmetic, Elliptic Curve Group Operation, Point Doubling (PD),  

Point Addition (PA), Field-Programmable Gate Array (FPGA) 

 

1. Introduction 

Safety of data has emerged as a crucial factor for 

preventing unapproved access to websites, personal files, 

personal payment information, bank account details and 

personal databases. Cryptography, which allows only the 

sender and the intended recipient to explore the contents of a 

message, could provide this required data security. ECC is 

one of the PKC systems which was proposed for the first 

time in the mid-1980s by N. Koblitz [1] and V. S. Miller [2]. 

The security of ECC typically depends on the difficulty of 

the discrete logarithm problem. IEEE [3] and ANSI [4] have 

published ECC parameters. ECC usage has appeared to be 

more productive than other public-key cryptography systems. 

For instance, a 256-bit ECC can give a similar dimension of 

safety as a 3072-bit Rivest– Shamir– Adleman RSA [5]. It is 

observed that less memory and hardware resources are 

needed for executing elliptic curve cryptography processors. 

This makes ECC extremely popular for gadgets such as smart 

cards and cellular phones. 

Numerous hardware architectures have been proposed 

regarding the modular arithmetic operation and elliptic curve 

group operations over a prime field. There are a lot of 

architectures built for the modular multiplication operation, 

as the overall results depend vastly on this operation. Lee et 

al. implemented the Radix-4 modular multiplication method 

[6]. The Montgomery modular multiplication method has 

been applied by the authors [7]. The authors [8] have 

implemented modular multiplication operation using Booth 

Radix-4 multiplication and Moore multiplication methods. In 

the research [9], the authors have proposed a modified 

interleaved modular multiplication method which has proved 

to have better performance than most other available designs. 

For the group operations, both combined and separate 

architectures for point doubling and point addition over the 

prime field for 256-bit have been proposed in the research [9, 

10]. Hardware implementation results for group operations 

were presented by the authors [11] over the 192-bit prime 

field. Point doubling and point addition operations over 

binary field have been implemented using Xilinx by the 

authors [12]. The authors [13] have presented a flexible and 
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fast technique for elliptic curve point arithmetic over the 

prime field. In the research [14], the authors have presented 

point doubling and point addition results using Montgomery 

multiplication method. 

The prime focus of this paper is building the hardware 

architecture for efficient modular arithmetic and group 

operations for elliptic curve cryptography processor. To 

perform this, hardware architectures of modular addition, 

subtraction, multiplication along with separate point doubling 

and point addition operations have been designed. To achieve 

the best performance, the modified interleaved multiplication 

method has been used. Pre-computation and parallelization of 

operations have been applied to the elliptic curve group 

operations to reduce the delay. 

2. Preliminaries 

In this section, comprehensive information about elliptic 

curve cryptography over the prime field, modular arithmetic 

operations and the elliptic curve group operations have been 

described. If � is a prime then the prime field GF(�) can be 

described as the finite field for which elements x, y ∈GF(�) 

are integers and the range is between 0 and (� - 1) [7]. 

2.1. Elliptic Curve Cryptography 

Elliptic curve cryptography (ECC) sets up keys with the 

help of the properties of the elliptic curve equation rather 

than the common strategy for generating keys. ECC can be 

designed in either a prime field or a binary field, as the 

security levels provided by both of them are almost the same 

[10]. An elliptic curve E over a field K, which stands for E = 

K, can be expressed by the elongated form of the Weierstrass 

equation [15] 

E: y� + a	xy + a�y = x� + a�x� + a
x + a�         (1) 

Where the coefficients a	, a�, a�, a
 and a�  belong to the 

field K. There exist two conditions to develop the 

compressed model of the Weierstrass equation. 

Depending on the condition that field K exhibits feature = 

2 or 3 and when a	= 0, the elliptic curve E becomes 

y� + xy = x� + ax� + b                            (2) 

This equation is considered as the elliptic curve E over the 

binary field GF(2�). 

Depending on the condition that the field K exhibits 

feature ≠ 2 and ≠ 3, the elliptic curve E becomes 

y� = x� + ax + b                                (3) 

Where x, y, a, b∈ GF(�) with 

4a� + 27b� ≠ 0                                   (4) 

This equation is called the elliptic curve E over the prime 

field GF(�). 

The Weierstrass equation of the elliptic curve is 

Y� = X� + aXZ
 + bZ�                             (5) 

2.2. Modular Arithmetic over Prime Field 

A finite field, also known as a Galois field, refers to a field 

in which there exist finitely many components. A finite cyclic 

group is necessary for a cryptosystem in which the group 

operations can be efficiently calculated. There are three types 

of usable finite field: prime field, extension field, and binary 

field [15, 16]. 

The modular addition operation usually adds two inputs x, 

y and subtracts the modulus � from the sum of x, y until the 

sum Z becomes less than the modulus �.  

Z = x + y �mod �                                  (6) 

For modular subtraction, y is inverted bitwise and then 

added to x with a carry-in set to 1. If the subtraction result 

becomes negative then the modulus �  has to be added to 

bring the output within the correct range [9]. 

Z = x − y �mod �                                (7) 

Modular multiplication is regarded as the most valuable 

and significant operation over the prime field. The basic 

modular multiplier operation of two elements is presented as 

Z = x × y �mod �                               (8) 

2.3. Elliptic Curve Group Operations 

The following level in the hierarchy of an elliptic curve 

cryptosystem is an elliptic curve group operation i.e. point 

doubling (PD) and point addition (PA). The elements of these 

are the modular arithmetic operations such as modular 

multiplication, inversion, squaring, addition, subtraction [17]. 

In the PA, two distinct points on the elliptic curve are added. 

For two dissimilar points P = (x	, y	) and Q = (x�, y�), PA is 

the point R (R = P + Q) which can be defined as the line on 

the elliptic curve E that crosses the points P and Q; also the 

point R represents the reflection of the point about the x-axis. 

Likewise, the PD is the result of adding a point P to itself 

which can be defined as R = 2P. If the tangent to the elliptic 

curve at P is drawn then the projection over the x-axis of the 

point is defined as R. Both PD and PA can be computed in 

either a binary field or a prime field [9]. The Jacobian 

projective model for the Weierstrass equation is expressed by 

Y� = X� + aXZ
 + bZ�                             (9) 

Where the point of projective coordinates is represented by 

P = (X, Y, Z). 

For the PD operation, for a point P = (X	,Y	,Z	), the PD in 

Jacobian projective coordinates for the Koblitz curve  

R = (X�,Y�,Z�) = 2P can be calculated by [18] 

#� = �3#	
� � − 8#	&	    

�                           (10) 

&� = �3#	
� �4#	&	

� − #� − 8&	

                 (11) 

'� = 2&	'	                                   (12) 

For the PA operation, for two points P = (X	,Y	,Z	) and 

Q=(X�,Y�,Z�), the PA in Jacobian coordinates for the Koblitz 
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curve R = (X�,Y�,Z�) = P + Q can be calculated by 

#� � (� ! )� ! 2#	'�
�)�                     (13) 

&� � (�#	'�
�)� ! #� ! &	'�

�)�                 (14) 

'� � '	'�)                               (15) 

Where 

( � &�'	
� ! &	'�  

�                            (16) 

) � #�'	
� ! #	'�

�                           (17) 

3. Hardware Architecture Over GF(*) 

In this section, the proposed architectures for the modular 

arithmetic operations and elliptic curve group operations are 

demonstrated. Three architectures have been developed for 

modular addition, modular subtraction and modular 

multiplication; another two for group operations, i.e. point 

doubling and point addition. For all the hardware 

architectures, the National Institute of Standards and 

Technology (NIST) standard for +,-.  has been used. The 

prime number based on the NIST standards, for 256-bit 

operations for Koblitz curves over a prime field is 

� � 2�/� ! 2�� ! 20 ! 21 ! 22 ! 2� ! 2
 ! 1 

� �1157920892373161954235709850086879078532699846

65640564039457584007908834671663 

3.1. Hardware Architecture of Modular Arithmetic 

The flow chart for the modular addition operation is 

presented in Figure 1(a). According to the algorithm, two 

inputs x and y are added. The intermediate result (x + y) 

could become greater than the predetermined value of 

modulus�. An adder is used that sums up the intermediate 

result (x + y) to the bitwise-inverted modulus �  with the 

carry-in set to 1 for subtracting the modulus �  from the 

intermediate result. This action can be regarded as two’s-

complement subtraction. The intermediate output is checked 

by the carry out of the second adder as to whether it remains 

in the predetermined range or not. If the sum (x + y) remains 

in the proper range, the output of the first adder can be 

considered to be accurate; else, the output of the second 

adder is right. The condition is checked by using a 

multiplexer to select whether (x + y) is greater than or equal 

to the predetermined value of�. Only one clock cycle (CC) is 

required to complete the whole operation. A corresponding 

hardware architecture for modular addition is illustrated in 

Figure 2(a). 

 

Figure 1. Flow charts for (a) modular addition, (b) modular subtraction. 
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Figure 2. Hardware architectures for (a) modular addition, (b) modular subtraction 

The flow chart for the modular subtraction operation is 

illustrated in Figure 1(b). The modular subtraction operation 

is achieved in a similar process to modular addition. With a 

carry-in set to 1, y is bitwise inverted and added to x to 

perform the modular subtraction operation. Modulus � will 

be added if the result becomes negative, thus producing an 

output in the exact range between 0 and p – 1. This operation 

also requires only one cycle to be completed. A 

corresponding hardware architecture for modular subtraction 

is presented in Figure 2(b). 

The algorithm for modular multiplication is illustrated in 

Algorithm 1 which is based on the modified interleaved 

multiplication method. The critical path consists of only 

gates, an adder and a subtractor, which makes this modular 

multiplication algorithm a thoroughly efficient one. If m 

represents the bit length of the operands A, B or p, this 

approach needs (m +1) cycles to get the outcome. So, for a 

256-bit operation, a total of 257 CCs are needed. The 

modular squaring operation also needs 257 CCs, differs from 

the modular multiplication operation only in terms of inputs, 

as the inputs of the squarer need to be identical but, for the 

multiplier, the inputs can be different. 

 

3.2. Hardware Architecture of Group Operation 

The elliptic curve group operations PD and PA are 

designed using a finite-field modular arithmetic (FFMA) 

unit. Separate PD and PA architectures are designed for the 

elliptic curve group operations.  

The proposed hardware architecture for point doubling is 

presented in Figure 3. The architecture is built based on the 

equations of PD over GF(�) in Jacobian projective coordinates 

for the Koblitz curve. Pre-computation, balancing of 

architecture and parallelization of operations have been applied 

to reduce the total number of clock cycles (CCs), power 

consumption, longest path and to increase the speed of 

operation for more adequate performance. For example, at 

level 1, two multiplications and one squaring are operated in 

parallel. So only 257 CCs are required instead of 3×257 CCs, 

i.e. the number of CCs needed in level 1 is reduced to one-

third of the number of CCs if parallelization was not applied. 

Similarly, in level 3, six additions and one multiplication are 

operated in parallel. As a result, instead of 257 + (6 × 1) CCs, 

only 257 CCs are required in level 3. Modular inversion has 

been avoided as it is the most costly operation. The overall 

latency required for PD is 4m+3, where m is the latency of 

multiplication. The overall architecture requires 3 multipliers, 

4 squarers, 9 adders and 3 subtractors. Therefore the combined 

cost of PD is 3MUL+4SQ+9ADD+3SUB. Only seven levels 

are required to complete the total PDBL operation. The 

required total number of clock cycles is 

(257+257+257+1+1+257+1) = 1031 CCs. 

Based on the equations of PA over GF(p) for the Koblitz 

curve in Jacobian projective coordinates, a hardware 

architecture for point addition is proposed and is shown in 

Figure 4. Pre-computation, balancing of architecture and 

parallelization of operations have also been used for the point 

addition operation for achieving better performance. For 

example, five multiplications are operated in parallel in level 

2. So only 257 CCs are required instead of 5×257 CCs i.e. 

the number of CCs needed in level 2 is reduced to one-fifth 

the number of CCs if parallelization was not applied. 
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Figure 3. Proposed architecture for the point doubling (PD) operation. 

The overall latency required for PA is 6m+4, where m is the latency of multiplication. The overall architecture requires 12 

multipliers, 4 squarers, 1 adder and 6 subtractors. Hence the combined cost of PA is 12MUL+4SQ+1ADD+6SUB. Only 10 

levels are required to complete the total PD operation. The required total number of clock cycles is 

(257+257+257+257+257+1+1+1+257+1) = 1546 CCs. 
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Figure 4. Proposed architecture for the point addition (PA) operation. 
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4. Results and Analysis 

This passage shows the results of implementations for the 

proposed hardware architectures. The proposed architectures 

have been simulated using ModelSim PE and synthesized 

using a Xilinx ISE 14.7 for an FPGA board of the Virtex-7 

family with device code xc7vx485t, with an ultimate 

objective of high speed. The simulation results have been 

verified with the help of Maple software. 

NIST prime � -256 was used for all the hardware 

implementations of this work, and the Jacobian coordinate 

system has been used in them. Simulation results for the 

modular arithmetic operations are given in Table 1. The 

proposed modular adder and subtractor require only 1 clock 

cycle each. The modular multiplier is designed using the 

interleaved modular multiplication method which requires 

257 clock cycles. This modular multiplier need 1470 slice 

LUTs and 514 LUT-FF pairs with a total time of 2.09 µs. 

Table 1. Simulation results for modular arithmetic operations for ECP. 

Module Modular Addition Modular Subtraction Modular Multiplication 

Required no. of Clock cycles 1 1 257 

Minimum Time Period (ns) 5.66 5.67 8.14 

Maximum Frequency (MHz) 176.83 176.46 122.86 

Total Time Required (ns) 5.66 5.67 2091.72 

Required Slice LUTs 768 1023 1470 

Required LUT FF-pairs 0 0 514 

Required bonded IOBs 771 771 772 

 

The results of the hardware implementation of the group 

operations are illustrated in Table 2. The point doubling and 

point addition operations were implemented using pre-

computation and parallelization of operations for reducing 

the delay. For the PD operation, the number of required LUT-

FF pairs is 6644, the number of required slice LUTs is 19095, 

the number of required slice registers is 6701 and the delay is 

8.48 µs. For the PA operation, the number of required LUT-

FF pairs is 9602, the number of required slice LUTs is 31393, 

the number of required slice registers is 10048 and the delay 

is 12.72 µs. 

Table 3 represents a relative comparison of proposed work 

with some similar works over GF(p). The hardware 

architecture for PD operation described in this paper needs 

only 8.48 µs at a frequency of 121.62 MHz with 1031 

KCycles whereas the hardware architecture for PA operation 

needs only 12.72 µs at a frequency of 121.54 MHz with 1546 

KCycles. Comparing the results with other available works 

present in this literature; it can be seen that the hardware 

architectures described in this paper for the group operations 

provide better timing results than most other available works. 

Table 2. Simulation results for elliptic curve group operations for ECP. 

Module PDBL PADD 

Required no. of clock cycles 1031 1546 

Minimum Time Period (ns) 8.22 8.23 

Maximum Frequency (MHz) 121.62 121.54 

Total Time Required (ns) 8476.88 12718.94 

Required Slice Registers 6701 10048 

Required Slice LUTs 19095 31393 

RequiredLUT FF-pairs 6644 9602 

Required bonded IOBs 1540 2308 

Table 3. Comparison between proposed group operation designs and similar work over GF(�). 

Work Platform Bit length Group operation Time (µs) @f (MHz) KCycles 

This work Virtex-7 +,-.  
PD 8.48@121.62 1031 

PA 12.72@121.54 1546 

[19] Virtex-4 +,-.  
PD 17.20@60 1020 

PA 18.40@60 1089 

[20] Virtex-7 +,-.  
PD 8.49@121.62 1032 
PA 12.72@121.54 1547 

[7] Kintex-7 +,-.  
PD 7.65@146.40 1285 

PA 7.57@146.40 1283 

[21] Virtex-2 pro +,-.  
PD 8.31@39.46 328 

PA 13.33@39.46 526 

 

5. Conclusion 

A high-performance hardware architecture of modular 

arithmetic and group operations for elliptic curve 

cryptosystem over the prime field +,-. is implemented 

considering the trade-off between area and time. The 

Jacobian coordinate system has been used for implementing 

the architecture to avoid the expensive modular inversion 

procedure. Separate modular adder and subtractor 
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architectures were implemented. Both of them need only one 

clock cycle. For the modular multiplication operation, 

modified interleaved modular multiplication is used because 

the intermediate result in this technique is only one or two bit 

larger than the operands, as the intermediate result is always 

reduced by taking the modulus. This multiplication needs 

257 clock cycles and a delay of 2.09 µs to operate which is 

faster than most other related architectures. In order to 

achieve the best performance, pre-computation, balancing of 

architecture and parallelization of operations have been 

applied for implementing the architectures of point doubling 

and point addition. As a result, the number of total levels and 

the required logic stages get reduced. The proposed design of 

PD takes only 8.48 µs with 1031 clock cycles whereas PA 

takes only 12.72 µs with 1546 clock cycles. Analyzing the 

performance and comparing with other similar works in table 

3, it is seen that these results are better than most other 

available architectures in the literature. All the proposed 

architectures are synthesized using a Xilinx Virtex-7 FPGA. 

These architectures are used in elliptic curve scalar 

multiplication or elliptic curve point multiplication to build 

an overall efficient hardware architecture for the elliptic 

curve cryptosystem over the prime field +,-.. 
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