
International Journal of Theoretical and Applied Mathematics
2021; 7(6): 85-91
http://www.sciencepublishinggroup.com/j/ijtam
doi: 10.11648/j.ijtam.20210706.11
ISSN: 2575-5072 (Print); ISSN: 2575-5080 (Online)

Positive and Negative Solutions of a Class of Fractional
Schrödinger Equation

Jianing Wang

School of Mathematics Qilu Normal University, Jinan, China

Email address:
2545516792@qq.com

To cite this article:
Jianing Wang. Positive and Negative Solutions of a Class of Fractional Schrödinger Equation. International Journal of Theoretical and
Applied Mathematics. Vol. 7, No. 6, 2021, pp. 85-91. doi: 10.11648/j.ijtam.20210706.11

Received: November 11, 2021; Accepted: December 16, 2021; Published: December 29, 2021

Abstract: In this paper, we study the existence of positive and negative solutions for a class of fractional Schrodinger equations.
Firstly, we give the definition of fractional Laplace operator and the conditions satisfied by nonlinear terms. This paper introduces
the previous progress in this field, and gives the definitions of space and energy functional and the positive and negative parts of
function. Then we introduce the main results of this paper. Next,we give the embedding relationship between workspace and Lp

space and give the definition of inner product and norm of space. In order to obtain the existence of positive and negative solutions
of the equation, we give the definitions of functions u+, u−and functional weak solutions. This paper mainly uses mountain pass
lemma to prove. Firstly, according to the embedding relationship of workspace and the condition of nonlinear term f , it is proved
that functional I satisfies mountain road structure. Secondly, we need to prove that functional I satisfies the (Cc) condition, we
first prove that the sequence un is bounded, then prove that UN has convergent subsequence by the definition of inner product
and holder inequality. Therefore, we prove that functional I satisfies the (Cc) condition. Then,we define functional I± and its
inner product form to verify that functional I± also has mountain path structure and satisfies (Cc) condition. Finally, taking u+

and u− as experimental functions respectively, it is verified that they are the solutions of functional I . It is obtained that both u+

and u− are the solutions of functional I . Therefore,we get the conclusion.
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1. Introduction
This paper is concerned with the following fractional

Schrödinger equation:

(−∆)αu+ V (x)u = f(x, u), x ∈ RN , (1)

where N ≥ 2, α ∈ (0, 1), (−∆)α stands for the fractional
Laplacian of order α, V is a positive continuous potential,
f : RN × R → R is a Carathéodory function. Here the
fractional Laplacian (−∆)α with α ∈ (0, 1) of a function
u ∈ S is defined by

F((−∆)αφ)(ξ) = |ξ|2αF(φ)(ξ), ∀ α ∈ (0, 1),

where S denotes the Schwartz space of rapadly decreasingC∞

functions in RN , F is the Fourier transform, i.e., F(u)(ξ) =

1

(2π)
3
2

∫
R3 e
−2uiξ·xu(x)dx. If u is smooth enough, it can also

be computed by the following singular integral:

(−∆)αu(x) = CN,αP.V.

∫
RN

u(x)− u(y)

|x− y|N+2α
dy,

where P.V. is the principal value and CN,α is a normalization
constant.

In recent years, the study of nonlinear problems has
received much attention. Fractional Schrödinger equation
has become an important research object for mathematicians
and physicists, and has far-reaching influence on nonlinear
analysis, differential geometry and mathematical physics, etc.

Chang had applied the variational methods to obtain the
existence of ground state solutions for (1) when f(x, u) is
asymptotically linear with respect to u at infinity, [1]. i.e.,
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lim sup
t→0+

f(x, t)

t
< µ∗ < lim inf

t→+∞

f(x, t)

t
≤ lim sup

t→+∞

f(x, t)

t
< +∞,

Uniformly in x ∈ RN .
When f has subcritical growth, Simone Secchi had obtained

that (1) has at least a non-trival solution by using the Mountain
Pass Theorem [2].

When f(x, u) = λ|u|pu with λ > 0, p ∈ (0, 2N
N−2s ), N ≥

2. Feng had obtained the existence of ground state solutions
for (1) by using concentration compactness principle [3].

Khoutir had utilized the variational methods to obtain the
existence of nontrivial solution for (1) when V (x) which
is allowed to be sign-changing and a sublinear nonlinearity
f(x, u) [4].

In this paper, we assume
(V1) V ∈ C(RN ,R), V0 = inf

x∈RN
V (x) > 0.

(V2) There exists r0 > 0 such that, for any K > 0,

meas({x ∈ Br0(y) : V (x) ≤ K})→ 0 as |y| → ∞.

(f1) f : RN × R → R is a Carathéodory function with a
subcritical growth.

|f(x, t)| ≤ c(1 + |t|q−1), t ∈ R, x ∈ RN ,

where q ∈ (2, 2∗α), 2∗α = 2N
N−2α .

(f2) f(x, t) ≥ 0 for all (x, t) ∈ RN×R and f(x, t) = o(|t|)
as |t| → 0.

(f3) lim
|t|→∞

F (x,t)
t2 = +∞ uniformly for x ∈ RN , where

F (x, t) =
∫ t
0
f(x, s)ds.

(f4) There exist θ ≥ 1, s ∈ [0, 1] s.t.

θF(x, t) ≥ F(x, st), (x, t) ∈ RN × R,

where F(x, t) = f(x, t)t− 2F (x, t) ≥ 0.
The main result is as follows.
Theorem 1.1 Assume that (V1), (V2) and (f1) − (f4) hold.

Then the problem (1) admits a positive solution and a negative
solution.

2. Preliminaries
Consider the Sobolev space:

Hα(RN ) = {u ∈ L2(RN ) :

∫
RN

(|ξ|2αû2 + û2)dξ <∞}.

where û = F(u).The norm is defined by

‖u‖Hα(RN ) = (

∫
RN

(|ξ|2αû2 + û2)dξ)
1
2 .

In view of the presence of potential V (x), we consider its
subspace:

E = {u ∈ Hα(RN ) :

∫
RN

V (x)u2dx <∞}.

We define the norm in E by

‖u‖E = (

∫
RN

(|ξ|2αû2 + û2)dξ +

∫
RN

V (x)u2dx)
1
2 ,

where û = F(u). Moreover, by [2], E is a Hilbert space with the inner product

(u, v)E =

∫
RN

(|ξ|2αû(ξ)v̂(ξ) + û(ξ)v̂(ξ))dξ +

∫
RN

V (x)u(x)v(x)dx, ∀ u, v ∈ E.

Note that, by Plancherel’s theorem we have ‖u‖2 = ‖û‖2 and∫
RN
|(−∆)

α
2 u(x)|2dx =

∫
RN

( ̂(−∆)
α
2 u(ξ))2dξ =

∫
RN

(|ξ|αû(ξ))2dξ =

∫
RN
|ξ|2αû2dξ <∞, ∀u ∈ Hα(RN ).

Together with (V1), it follows that the norm ‖ · ‖E is equivalent to the norm

‖u‖ = (

∫
RN

(|(−∆)
α
2 u|2 + V (x)u2)dx)

1
2 .

The corresponding inner product is

(u, v) =

∫
RN

((−∆)
α
2 u(−∆)

α
2 v + V (x)uv)dx.

Throughout out this paper, we will use the norm ‖ · ‖ in E.
Associated with problem (1.1), we consider the energy functional I : E → R defined by

I(u) =
1

2

∫
RN

(|(−∆)
α
2 u|2 + V (x)u2)dx−

∫
RN

F (x, u)dx, ∀u ∈ E. (2)
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We assume that
I±(u) =

1

2

∫
RN

(|(−∆)
α
2 u|2dx+ V (x)u2)dx−

∫
RN

f(x, u±)φdx, ∀u, φ ∈ E.

where u+ = max{u, 0}, u− = min{u, 0}, u = u+ + u−.
Lemma 2.1 (see[3], Lemma 1) Let (V1) and (f1) hold. Then I ∈ C1(E,R) and its derivative

〈I ′(u), φ〉 =

∫
RN

((−∆)
α
2 u(−∆)

α
2 φ+ V (x)uφ)dx−

∫
RN

f(x, u)φdx, ∀u, φ ∈ E.

Obviously, I± ∈ C1(E,R), and

〈(I±)(u), φ〉 =
1

2

∫
RN

((−∆)
α
2 u(−∆)

α
2 φ+ V (x)uφ)dx−

∫
RN

f(x, u±)φdx, ∀u, φ ∈ E.

It is easily seen that the critical points of I correspond to
weak solutions of problem (1). Moreover, if u1, u2 are the
critical of I+ and I−, then u1 > 0, u2 < 0 are the positive
solution and negative solution of (1).

Lemma 2.2(see[6] and [7]) E is continuously embedded
into Lp(RN ) for p ∈ [2, 2∗α] and compactly embedded into
Lploc(RN ) for p ∈ [2, 2∗α).

Lemma 2.3 (see [5]) E is compactly embedded into
Lp(RN ) for p ∈ [2, 2∗α) with 2∗α = 2N

N−2α .

Definition 2.4 Let (E, ‖ · ‖) be a real Banach space, I ∈
C1(E,R). We say that I satisfies the (Cc) condition if any
sequence {un} ⊂ E such that I(un) → c and ‖I ′(un)‖(1 +
‖un‖)→ 0 as n→∞ has a convergent subsequence.

Lemma 2.5 For any u ∈ E, we have

(u+, u−) ≥ 0.

Proof. Assume that u ∈ E, u+, u− ∈ E, for any u ∈ E, we
obtain

(u+, u−) =

∫
RN

((−∆)
α
2 u+(−∆)

α
2 u− + V (x)u+u−)dx

=

∫
RN

(−∆)
α
2 u+(−∆)

α
2 u−dx

=

∫
RN

∫
RN

(u+(x)− u+(y))(u−(x)− u−(y))

|x− y|N+2α
dxdy

=

∫
{u(x)≥0}×{u(y)≥0}

(u+(x)− u+(y))(u−(x)− u−(y))

|x− y|N+2α
dxdy

+

∫
{u(x)≥0}×{u(y)≤0}

(u+(x)− u+(y))(u−(x)− u−(y))

|x− y|N+2α
dxdy

+

∫
{u(x)≤0}×{u(y)≥0}

(u+(x)− u+(y))(u−(x)− u−(y))

|x− y|N+2α
dxdy

+

∫
{u(x)≤0}×{u(y)≤0}

(u+(x)− u+(y))(u−(x)− u−(y))

|x− y|N+2α
dxdy

=

∫
{u(x)≥0}×{u(y)≤0}

−u(x)u(y)

|x− y|N+2α
dxdy +

∫
{u(x)≤0}×{u(y)≥0}

−u(x)u(y)

|x− y|N+2α
dxdy

≥ 0,

Thus (u+, u−) ≥ 0.
Remark 2.6 Under the result of Lemma 2.4, for any u ∈ E,

we have
(i) (u, u+) ≥ (u+, u+),
(ii) (u, u−) ≥ (u−, u−).

3. Proof of the Main Theorems

Lemma 3.1 Assume that (V1), (V2) and (f1)− (f4) satisfy.
Then the functional I satisfying

(i) There exist δ, ρ > 0 such that I(u) ≥ δ, ∀u ∈ E with
‖u‖ = ρ;

(ii) There exists e ∈ E with ‖e‖ > ρ such that I(e) < 0.
Proof. (i) From the Lemma 2.2, E is continuously

embedded into Lp(RN ),
which implies that

‖u‖qp ≤ c∗‖u‖q, ∀p ∈ [2, 2∗α], (3)

where c∗ is a constant.
By (f1), (f2), there exist c(ε) > 0, such that
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|F (x, u)| ≤ ε|u|2 + c(ε)|u|q, ∀ε ∈ (0,
1

4c1
), ∀(x, u) ∈ RN × R. (4)

Consequently, by (3),(4), we have

I(u) =
1

2

∫
RN

(|(−∆)
α
2 u|2 + V (x)u2)dx−

∫
RN

F (x, u)dx

≥ 1

2
‖u‖2 − ε

∫
RN
|u|2dx− c(ε)

∫
RN
|u|qdx

≥ 1

2
ρ2 − εc1‖u‖2 − c2‖u‖q := δ ∀u ∈ E,

where c1, c2 ∈ R.
It is not difficult to see that there exists ρ > 0 sufficiently small such that
I(u) ≥ δ > 0, ∀u ∈ E with ‖u‖ = ρ.
(ii) By (f1), (f3),there exist ν > 2 such that

F (x, u) ≥ B1|u|ν −B2, ∀x ∈ RN . (5)

Therefore, for t > 0, u ∈ E we have

I(tϑ) =
1

2

∫
RN

(|(−∆)
α
2 tϑ|2 + V (x)(tϑ)2)dx−

∫
RN

F (x, tϑ)dx

≤ t2

2
‖ϑ‖2 −

∫
RN

(B1|tϑ|ν −B2)dx

≤ t2

2
‖ϑ‖2 −B1t

ν‖ϑ‖ν2 +B3,

where B1, B2, B3 > 0.
Combining the ν > 2, take e = t∗ϑ with t∗ = t. It is easily seen that I(e) < 0.
Lemma 3.2 Under the assumptions of Theorem 1.1, the functional I satisfies the (Cc) condition for any c ∈ R.
Proof. We first proof the any (Cc) sequence is bounded, then proof the (Cc) sequence have convergent subsequence.
Let {un} ∈ E such that

I(un)→ c, ‖I ′(un)‖(1 + ‖un‖)→ 0, n→∞, (6)

This implie that
c = I(un) + o(1), I ′(un)un = o(1), n→∞. (7)

We assume by contradiction that ‖un‖ → ∞. Set vn = un
‖un‖ , (1, 2, 3 . . .) Clearly, {vn} ⊂ E and ‖vn‖ = 1, for any n. There

exists v ∈ E such that, passing to a subsequence if necessary, we have
vn ⇀ v in E,

vn → v in Lp(RN ), p ∈ [2, 2∗α),

vn(x)→ v(x) a.e. x ∈ RN .

(8)

Suppose that v 6= 0, in E. Dividing by ‖un‖2 in both sides of (2), noting that I(un)→ c, we obtain∫
RN

F (x, un)

‖un‖2
dx =

1

2
+ o(‖un‖−2) < +∞, (9)

On the other hand, denote Ω 6= := {x ∈ RN : v(x) 6= 0}, by (f3), for all x ∈ Ω 6=, and we have

F (x, un)

‖un‖2
=
F (x, un)

|un|2
· |un|

2

‖un‖2
=
F (x, un)

|un|2
· |vn|2 → +∞,
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If |Ω 6=| > 0, using Fatou’s lemma, we obtain∫
RN

F (x, un)

‖un‖2
dx→ +∞, n→∞,

This contradicts (9). Therefore, Ω 6= has zero measure, i.e., v = 0 a.e. in RN . Let tn ∈ [0, 1] such that

I(tnun) = max
t∈[0,1]

I(tun).

Then we claim I(untn) is bounded. If tn = 0, I(0) = 0; if tn = 1, I(tnun) = I(un)→ c. Hence, I(tnun) is bounded when
tn = 0, 1. if 0 < tn < 1, for n large enough

〈I ′(tnun), tnun〉 =

∫
RN

(|(−∆)
α
2 tnun|2 + V (x)(tnun)2)dx−

∫
RN

f(x, tnun)tnundx,

= tn
d

dt
|t=tn I(tun) = 0.

Consequently, there exists θ ≥ 1, by (f3) and (7), we have

I(tun) ≤ I(tnun)− 1

2
〈I ′(tnun), tnun〉

=
1

2

∫
RN

f(x, tnun)tnundx−
∫
RN

F (x, tnun)dx

≤
∫
RN

θ[
1

2
unf(x, un)− F (x, un)]dx (10)

= θ[I(un)− 1

2
(I ′(un), un)]

≤ d1,

where d1 is a positive constant. But fixing any m > d∗(d∗ ∈ R), we let vn =
√

2m · un
‖un‖ =

√
2mvn. Note that from (f1), (f2),

we see that there exist d2 > 0, d3 > 0 such that

F (x, u) ≤ d2|u|2 + d3|u|p, ∀(x, u) ∈ RN × R.

Then by (8) we have

lim
n→∞

∫
RN

F (x, vn)dx ≤ lim
n→∞

∫
RN

(d2|vn|2 + d3|vn|p)dx = 0.

Then for n large enough,

I(tnun) ≥ I(
√

2m
un
‖un‖

) = Ivn) = m−
∫
RN

F (x, vn)dx ≥ m,

This also contradicts (10).
Now, the sequence {un} is bounded, as required. Next we confirm that {un} has a convergent subsequence. Without loss of

generality, we assume that

un ⇀ u in E,

un → u in Lp(RN ), p ∈ [2, 2∗α),
Combining this with (f1) and the Hölder inequality, we see

|
∫
RN

[f(x, un)− f(x, u)](un − u)dx| ≤
∫
RN

[2c+ c(|un|p−1 + |u|p−1)]|un − u|dx

≤ 2c|un − u|2 + c(

∫
RN

(|un|+ |u|)p)
p−1
p · (

∫
RN
|un − u|p)

1
p

≤ 2c‖un − u‖2 + c(‖un‖
p−1
p

p + ‖u‖p−1p ) · ‖un − u‖p → 0 as n→∞.
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Therefore,

‖un − u‖2 = 〈I ′(un)− I ′(u), un − u〉+

∫
RN

[f(x, un)− f(x, u)](un − u)dx→ 0,

with the fact that (I ′(un)− I ′(u), un − u)→ 0, when n→∞, this implies that un → u ∈ E. Hence, we prove that I satisfies
the (Cc) condition for any c > 0.

Proof of Theorem 1.1.
Definition 3.3 Define

f(x, u+) =

{
f(x, u), u ≥ 0,
0, u < 0,

f(x, u−) =

{
0, u ≥ 0,
f(x, u), u < 0,

Let

F (x, t±) =

∫ t

0

f(x, u±)du.

We note that f(x, u±) satisfies the (f2), (f3). Hence, f(x, u±) and F (x, t±) satisfies (f4) when t > 0; when t < 0, f(x, u−)
and F (x, u−) satisfies (f4).

Let us consider the functional I± : E → R

I±(u) =
1

2

∫
RN

(|(−∆)
α
2 u|2dx+ V (x)u2)dx−

∫
RN

F (x, u±)dx, (11)

It is easy to verify I± ∈ C1(E,R) and

〈(I±)(u), φ〉 =
1

2

∫
RN

((−∆)
α
2 u(−∆)

α
2 φ+ V (x)uφ)dx−

∫
RN

f(x, u±)φdx, ∀u, φ ∈ E. (12)

By lemma 3.1 and Lemma 3.2, we can also prove functional I± has the mountain pass geometry and satisfies (Cc) condition.
Therefore, u1 is a critical point of I+; u2 is a critical point of I−.

Using u−1 as the experimental function, By (12), (f4) and remark 2.6, we have

0 = 〈(I+)′(u1), u−1 〉

=

∫
RN

[(−∆)
α
2 u1(−∆)

α
2 u−1 + V (x)u1u

−
1 ]dx−

∫
RN

f(x, u+1 )u−1 dx

=

∫
RN

(−∆)
α
2 u1(−∆)

α
2 u−1 dx+

∫
RN

V (x)(u−1 )2dx.

≥
∫
RN

(−∆)
α
2 u−1 (−∆)

α
2 u−1 dx+

∫
RN

V (x)(u−1 )2dx.

= ‖u−1 ‖2,

Which implies that u−1 = 0, we also obtain u1 ≥ 0. On
the other hand, we note that u1 6≡ 0, by Maximum principle
[9], we have u1 > 0. In the same way, we can verify u2 < 0.
Thus, u1 and u2 are the positive solution and negative solution
of problem (1), respectively.
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