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Abstract: Integro-differential equations arise in modeling various physical and engineering problems. Several numerical and
analytical methods have been developed for solving integro-differential equations. In this paper, a powerful semi analytical
technique known as Optimal Homotopy Asymptotic Method (OHAM) has been used for finding the approximate solutions of
Fredholm type integro-differential equations and Volterra type integro-differential equations. The proposed method does not
required discretization like other numerical and approximate method, and it is also free from any small/large parameters. The
presented technique provides better accuracy at lower order of approximation, the accuracy of the method can further be
increases with higher order of approximation. Moreover, we can easily adjust and control the convergence region. The ability
of the method is checked with different problems in literature. The results obtained through OHAM are compared with
solutions of Adomian Decomposition Method. It is observed that solutions obtained through the proposed method is more
accurate than existing techniques, which proves the validity and stability of the proposed method for solving integro-
differential equations. The presented technique is more consistent, effective, suitable and rapidly convergent. The use of
Optimal Homotopy Asymptotic Method is simple and straight forward. For the computation of problems, we have used
Mathematica 9.0.
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14] for the solution of differential equations. Many authors
extended the proposed method for the solution of different
kinds of integral equations. Khan et al. [15] used the
proposed method for the solution of Volterra integral
equation of the first kind. Almousa et al. [16] applied it for
the solution of linear Fredholm integral equations of the first
kind. Hashmi et al. [17] implemented the proposed method
for the solution of Fredholm integro-differential equations.

In this article, we apply the proposed method for finding
the approximate solutions of Volterra and Fredholm integro-
differential equations. The general nth order integro-
differential equations [18] has the following form

1. Introduction

Numerous mathematical formulations of physical
phenomena involve integro-differential equations (IDE),
these equations arise in many fields of science like chemical
kinetics, fluid dynamics and biological models. In fact,
obtaining the exact solutions of integro-differential equations
are usually problematic so it is mandatory to attain efficient
approximate solutions. Different approaches in literature
have been used for the solutions of these equations. Some of
them are Variational Iterative Method (VIM) [1-2], Modified
Homotopy Perturbation Method (MHPM) [3-4], Homotopy
Analysis Transform Method (HAM) [5-8], Conjugate
Gradient Method (CGM) [9], Adomian Decomposition
Method (ADM) [10-11] and Block Pulse Functions (BPF)
[12] etc. Optimal Homotopy Asymptotic method (OHAM) is
one of the most power full techniques for finding the
approximate solutions of differential and integro differential
equations. The method was introduced by Marinca et al. [13,

n—l1 b
W)+ Y W 66+ [Ke0g" O di=ge), a<s<b,
i=0 u

with initial conditions
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w@=ay, ¢' @=a, ¢"@=a,, ..¢ " @=a,,,

where @,'s are real constants, m and n are integers such
that m<n, f,'s, g and k are given functions and ¢ is the

solution to be determined. The error analysis of the numerical
problems confirms convergence and stability of the proposed
method.

This paper is divided into five main sections. In section 2,
basic idea of OHAM is introduced. Section 3 consists of
numerical problems. Section 4 is the results and discussion,
while in section 5 some conclusions are drawn.

2. Basic Idea of OHAM

In this section, the formulation of OHAM is presented,
consider equation of the form:

L)) +g6)+N (@) =0, B[ ,‘;—‘szo. (1)

where [ is for linear and p; for non-linear operator, ¢/(s) is

unknown function and g(s) is known function while B is
boundary operator. We obtain the family of equations by
introducing an embedding parameter »O[0,1] as follows:

(a-p{L(0(s.0))* 2@} = HD|L([0(5.0)) + )+ N(w(s.p))}. @)

dy s,
B(‘ﬂ (S’p)’Mj =0.
ds
where {/(s,p) is unknown function, and for p#0 the non-
zero auxiliary function H(p) is given as

H(p)=c p' +e, p*+ey p° +.be, p™

UL (g (s)
L(wk(s)_wk—l(s))zckNO (‘//o(s))"'zci ( b )

where N, (l/lo (8), Y, (8),eecs ), (5) ) is the coefficient of p™,
obtained by expanding N (l/l(s,p;ci)) in series with respect
to the embedding parameter p; For ¢ =1,2,....,

00

N (@(5,p3¢)) = No () + D Ny (or 5ot )" (9)

k=1

where {/(s, p; Ci) is given by Eq. (6) It should be noted that
Y, for k20 is given by the Eq. (5) and Eq. (8) with the

boundary conditions that come from original problem, which
can be solved easily. If the series (6) convergent at p =1,

then we have

where
C1,Cy5CqpueesC

>¥m

H(p)=0.When p=0 or p =1 clearly, we have

are auxiliary constants and for p =0,

p=0= H(y(s,0),0)= L@(s,0) +g(s) =0, (3)
p=1= H(p(s.1).1) = HO{L@W(s. p) +g(5) + N@(s. p)} = 0. (4)

Obviously when p =0 and p =1 . It keeps that
Y(s,0)=4,(s), and YAs,1) =(A(s), respectively. So as P
varies from 0 to 1, the result ¢ (S, p) approaches from

,(s) to @(s), where J,(s) is obtained Eq (2). for p =0:

L(ty(s)) + g(s) = O,ﬁ[%, d;ﬂs" j =0. (5)

The Taylor’s series expansion about p for obtaining the
approximate solution, we write as follows:

0

‘)[/(Sap;ci) :l//O (S)+Z‘//K (S’ci)pK’ i:1’2"" (6)

k=1
when p =1, one has written the series (6) as

00

l//(s,l;ci) =Y, (s)+Zt//K (s,ci), i=L2,... (7))

K=l
when Eq. (6) is substituted in Eq. (2) and the coefficients of
like power of p is compare, we obtain the equation of
l,,l/0 (S) given by (5) and the governing equations of U, (S)
is obtained as follows:

d
L(,(9))=c,N, (0 (5)), B(z/jl,%j:(),

dy,

, Bly ,—jZO, k=23,.., (8
w1 PN (wo(s)’l/jl(S)s--'awk—l(s))] [ s

Y)Y () *+ D Wi (s.0)).

k=1

The solution of Eq. (1) can be expressed approximately in
the form:

l//’”(s,ci):l/lo(s)+Zl//k(s,ci), i=1,2.3...,m. (10)

k=1
As the solution contains the auxiliary constants
¢,, i=12,... we form the residual equation by putting Eq.

(10) into Eq. (1) to find these constants as follows:



102 Muhammad Akbar ef al.: Optimum Solutions of Fredholm and Volterra Integro-differential Equations

R(s,¢;)=L (w'” (s,c,«))+g(s) +N(l/l’”(s,cl~)), i=1,2,...m (11)

By using the least square method, we find ¢,, i=1,2,....
as

b
J(c) =.[R2(s,cl-)ds. (12)

Where a and b are the domain of the given problem. The
constants ¢;,i=1,2,3,...,m can be optimally identified
from the conditions

=2 =0. (13)

w"(x) = x —sin(x) - L? xtu(t)dt, u(0)=0, w'(0)=1,

With these constants, the approximate solution (of order
m) in eq. (10) is well determined.

3. Implementation of OHAM to
Integro-differential Equations

In this section, the effectiveness and accuracy of OHAM is
tested by solving Volterra and Fredholm integro-differential
equations

Problem 1

Consider the Fredhohm integro-differential equation [19]
of the following form

Eq. (14) has exact solution u(x) =sin(x). From the given equation

The homotopy using OHAM is as follow

=H(q)| .7

A series of problems is created by comparing the co-efficient of same power of ¢, the series is

0(¢"): ug"(x) = x=sin(x),

(14)
L(u(x; q)) =u"(x), (15)
N (u(x;9)) = Iftxu(t)dt, (16)
fx)= —(x—sin(x)). 17
(1= )2ty "(6) + gy ") + g, (x) + TI= (= sin()) )

(19 (0) * gy (x) + g1y (0) + T (x = sin(x) ) | (18)

+ 2 (g (0 qu (6)+ s (6 it

u(0;9) =0, u'(0;¢) =1
uy(0)=0, u,(0)=1, (19)
0(q"): u"(x)=¢ .[05 txuy(x)dt , u;(0)=0, u,'(0)=0, (20)
0(¢*): uy"(x) = (1 +¢ )ul”(x) +c, J.O5 txug (x)dt + ¢ J.oE txuy (x)dt, Q1)
uy(0)=0,  u,’(0) =0,
uy"(x) = (1 +¢ )uz”(x) +ou"(x) + ey J.O5 txug (x)dt +cy J‘OE txuy (x)dt

(22)

0(q"):

T

+¢, E txuy (x)dt, u3(0) =0,  uy'(0) = 0.



International Journal of Theoretical and Applied Mathematics 2019; 5(6): 100-112

Solving eq. (19-22) we have

uy(x) = %(x3 + 6sin(x)) ,
¢ (960+7°)
uy (x) :T,

Uy (x) = (960 + 77 )(960¢; +960¢,> +960c, +¢,* 77 )x* ,

5529600

| 921600¢, +1843200¢,> +921600¢,*
5 (x) =——————(960 + 77°)| +921600c, +1843200c;c, +921600c, .
5308416000
+1920¢,2 77 +1920¢* 10 +1920¢,c, 7T + > 11'°

The 3™ order approximate solution by OHAM is u = u, +u; +u, +u,

¢ (960 + 77 )’ 960c; +960c,>
u= l(x3 + 6sin(x)) +— ( ) P ©60+77) ! o
6 5760 5529600 +960c, +c 17"
921600c, +1843200¢,% +921600¢,” +921600c,
(960+72°)| +1843200¢,c, +921600¢, +1920¢277° +1920¢ 72 |,

+1920¢,¢,7T +¢° 1°

1
+
5308416000

103

(23)

24

(25)

(26)

27

The values of constants ¢; = -0.89060667, ¢, =—1.30668415 and c; =—0.452018363 are calculated using method of least

squares.
With these constants the approximate solution (27) become

1 .
u = =0.1666667x° +g(x3 +6sin(x))
.‘/ "
081 1.... oHAM o
4./
— Exact o
0.7 /
1/.
06 R
- -
05 '/.
5 o
s P
r
04 rd
-'/‘
03 L , , , , , , .
03 04 05 06 0.7 08 09 10
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Figure 1. 2D plots of OHAM versus exact solution.

Table 1. Shows the comparison of 3™ order OHAM solution with 5" order ADM [19] and exact solution.

(28)

X Exact solutions OHAM solutions ADM absolute Errors OHAM absolute Errors
0 0 0 0 0
0.1 0.099833 0.099833 3.99167x10°° 0
0.2 0.198669 0.198669 3.19333x10° 0

0.3 0.295520 0.295520 1.07775%10™* 5.55112x107"
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X Exact solutions OHAM solutions ADM absolute Errors OHAM absolute Errors
0.4 0.389418 0.389418 2.55467x10" 0

0.5 0.479426 0.479426 4.98958x10™ 5.55112x10"7

0.6 0.564642 0.564642 8.62200x10™ 0

0.7 0.644218 0.644218 1.36914x10° 0

0.8 0.717356 0.717356 2.04373x107 0

0.9 0.783327 0.783327 2.90992x107 1.11022x107'¢

1 0.841471 0.841471 3.99167x10° 1.11022x107'¢

Problem 2

Consider the following Fredhholm integro-differential equation [19]

u"(x) = —sin(x) +cos(x) + (2 —%zj —J-OE xtu(t)dt, u(0)=-1, u'(0)=1,

Eq. (29) has the exact solution u(x) = sin(x) —cos(x) . Using the Basic Idea of OHAM we have a series of problems

uy"(x) = (2 _IET)’“ +cos(x) = sin(x), u(0) = =1, 1'(0) = 1,
n
0 = 6 [ g (0, 1,(0) =0, 10) =0,
T T
1y (x) = (1+ ¢ )" (x) + ¢, J'OZ txug (£)dt + ¢, J'OZ txuy (1)dt, 1,(0)=0, 1,/(0) =0,

Vs Vs
uy(x) = (1 ¢ )ty (x) + eyt " (x) + c3j 2 txuy (¢)dt + 02.[ 2 v, (1)t
0 0
mw

e, J'Oftxuz(t)dt, 1;(0)=0, u'(0) =0.

Solving eq. (30 - 33) we get

1t (x) =%(4x3 - 71> =12 cos(x) +12sin(x))
S S _ 3
w0 = (cl( 3840 +96077— 477 + 7°)x )
1y (%) = —;(96%1 +960¢,> +960c, +¢*7r° ) (3840 +96077- 47" +7°)
11059200
s (x) = —;(—3840 +96077-47° +71° ) (921600, +1843200¢”
10616832000

+921600¢,> +921600c, +1843200¢,c, +921600¢; +1920¢,>7° +1920¢* 1
+1920¢,¢, 7 + ¢’ 1'%,

The 3™ order approximate solution by OHAM is u = u, +u; +u, +u,

L 3 3 . 1 3
u=—(4x> = m® =12 cos(x) +12sin(x)) ———— [ ¢, (3840 + 96077- 477 + 7°)x
= () +12sin(x) = )

1

11059200
1

10616832000
+921600¢,> +921600c, +1843200¢,¢, +921600¢; +1920¢,” 71 +1920¢,* 1°

+1920¢,¢, 70 + ¢ 110)x°.

(960, +960¢,2 +960c, +¢27° ) (3840 +96077- 478 + 7 ) °

(3840 +9607-47° + 7°) (921600¢; +1843200¢,”

(29)

(30)

(€2))

(32

(33)

(34

(35)

(36)

(37)

(3%)
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The value of constants ¢; =-0.89060667, ¢, =—-1.30668415 and c; = —0.45201836 are calculated using method of least
squares.
With these constants the approximate solution (38) become

u=-0.0715339x° +é(4x3 - 7mx® =12 cos(x) +12sin(x)) . (39)

Table 2. Show the comparison of 3" order OHAM with 4" order ADM [19] solution and exact solution.

X Exact solution OHAM Solution ADM absolute Error OHAM absolute Errors
0 = -1 0 0
0.1 -0.895171 -0.895171 7.38946x107 0
0.2 -0.781397 -0.781397 5.91156x10° 0
0.3 -0.659816 -0.659816 1.99515x10° 1.11022x10'°
0.4 -0.531643 -0.531643 4.72925%10° 0
0.5 -0.398157 -0.398157 9.23682x10° 0
0.6 -0.260693 -0.260693 1.59612x10™* 5.55112x107"7
0.7 -0.120625 -0.120625 2.53458x10™ 2.77556x10"7
0.8 0.020649 0.020649 3.7834x10™ 1.38778x107"7
0.9 0.161717 0.161717 5.38691x10™ 5.55112x107"
1 0.301169 0.301169 7.38946x10™ 0
e
02 «» OCHAM o
rd
— Exact P
00 —
. /.
= e
= 02 .
.’/
-'/‘
04 | G
o
. '/
06} .~
z . , .
03 04 05 06 07 08 09 10
X

Figure 2. 2D plots of OHAM versus exact solution.

Problem 3
Taking the following Fredholm integro-differential equation [19]

1
u"(x) = —€* +§ + jxtu(t)dt, u(0)=0, u'(0)=-1, (40)
0

Eq. (40) has the exact solution u(x) =1—¢" . By using Basic idea of OHAM, we have a series of problems which are as follow

X

uy'(x)=e" —E, uy(0) =0, u,'(0)=-1, 41)
1
() = ¢, [exug (e, ,(0) =0, ' (0) =0, (42)
0
1 1
" (x) =+ c)u""(x)—¢c, vftxuo ®)dt —¢ Itxul ®dt, u,(0)=0, u,'(0)=0, (43)

0 0



106 Muhammad Akbar ef al.: Optimum Solutions of Fredholm and Volterra Integro-differential Equations

1 1
uy"(x) = (L+c)uy,"(x) + couy"(x) — ¢4 jtxuo (t)dt —c, thul (t)dt

1 0 0 (44)
—cljtxuz (0)dt, u3(0)=0, uy(0) =0.
0
Solving Eq. (41 — 44), we have
uo(x)=%(12—126x+x3), (45)
29¢,x°
w(x) == 610 , (46)
Uy (x) = (30c1x + 29(:1 S+ 3002x3) , 47
uz(x) = 324000 —=7(900¢,x> +1740¢,* x> +841¢, x* +900c,x* +1740¢,c,x> +900¢;x°) . (48)
The 3" order approximate solution by OHAM is u = u, +u, +u, +u;
29
u :L(12—12ex +x3)+ ex’ —=Z(30¢,x” +29¢,% x> +30¢,x7)
12 360 10800 49
- (49)
234000 (900¢,x> +1740¢,% x> +841¢,° x> +900c, x> +1740¢,c,x° +900¢;x°).

The approximate solution (49) contain auxiliary constants, the values of constants ¢, =—-1.35766370, ¢, =—1.37973022
and ¢; =—0.83053608 are calculated using method of least squares.
With these constants the approximate solution (49) become

u = -0.0833333x° +i(12—12e" +x3) . (50)
12
04 | ™,
~.. . CHAM
N,
06 t . — Exact
.
08 | N,
~.
« 10} .
— \..
12 ~,
<
141 .
16 .
. N
03 04 05 06 07 08 09 10
X

Figure 3. 2D plots of OHAM versus exact solution.
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Table 3. Show the comparison of 3" order OHAM solution with 4™ order ADM [19] and exact solution.
X Exact solutions OHAM solutions ADM absolute errors OHAM absolute Errors
0 0 0 0 0
0.1 -0.10517 -0.10517 2.67490x10* 1.38778x107"7
0.2 -0.22140 -0.22140 2.13992x107 8.32667x10"
0.3 -0.34985 -0.34985 7.22222x107 2.22045x107"7
0.4 -0.49182 -0.49182 1.71193x10° 0
0.5 -0.64872 -0.64872 3.34362x10°¢ 1.11022x107"
0.6 -0.82211 -0.82211 5.77778x10°° 0
0.7 -1.01375 -1.01375 9.17490x10°® 2.22045x107"7
0.8 -1.22554 -1.22554 1.36955%10° 0
0.9 -1.45960 -1.45960 1.95000%10° 0
1 -1.71828 -1.71828 2.67490x10° 0
Problem 4
Consider the following Volterra integro-differential equation of the form
u"(x)=1 +x+J'(x —t)u(t)dt, u(0)=1, u'(0) =1, (51)
0
Eq. (51) has exact solution #(x) =e" . By using the Basic Idea of OHAM, we have a series of problems
uy"(x) =1+x, uy(0)=1, u,'(0)=1, (52)
w/() = ¢, [ (= +x)uo (O, ,(0) =0, u/(0) =0, (53)
0
()= (14 )" () = e [ (=t +x)up (Ot =, [ (=1 +x)u (0, 1,(0) =0, 1y(0) =0, (54)
0 0
uy"'(x) = (L+ ¢y (x) + cuy "' (x) — ¢4 j(—t + x) uy (Hdt — czj(—t + x) u (t)dt
) 0 0 (55)
—clj(—t +x)uy (D)t 15(0) =0, 1;'(0) =0,
0
Solving egs. (52 — 55), we have
— 1 2 3
uo(x)—g 6+6x+3x" +x7 ], (55)
1 4 5 6 7
u (x) =——(210¢;x™ —42¢;x° = Tc;x° —¢x'), 56
() =5 (21003 42607 =T — ) (56)
1
1y (x) = —————(~1663200¢,x* =1663200¢,”x* =1663200c,x* —332640¢,x’
39916800
=332640¢,”x° —332640c,x° —55440¢,x° —55440¢,>x® —55440¢,x° —7920¢,x’ (57)

=7920¢,>x” =7920c,x” +990c,*x® +110¢,2x” +11¢,2x'" +¢,*x'),
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1
1307674368000
—54486432000¢,”x* —54486432000¢,x* —108972864000¢,c,x* —54486432000¢;x"

—10897286400¢,x” —21794572800¢,’ x> — 54486432000¢,x* —10897286400¢, x°
—21794572800¢,%x” —10897286400c,x° —1816214400¢,x° —3632428800¢,* x°
-1816214400¢,> x® —1816214400¢,x° —3632428800¢,c,x® —1816214400¢;x°
-259459200¢,x” —518918400¢,%x” —259459200¢,’x” —259459200¢,x’
—518918400¢,c,x” —259459200¢;x” +64864800¢,°x* +64864800¢,x*
+64864800c,c,x" +7207200¢,*x° +7207200¢,’x° +7207200¢,c,x° x°
+720720¢,° %' +720720¢,*x'° +720720¢,¢,x'° +65520¢,*x" ! +65520¢,° x"!

+ 65520(:1(:2x11 - 2730(:13x12 - 210(:13x13 - 15(:13x14 - cl3x15 ).

uy(x) = (—54486432000¢,x* —108972864000¢, x*

The 3" order approximate solution by OHAM is u = u, +u; +u, +u;

u =%(6+6x+3x2 +x3)+ ! 0 (—210c1x4 —4201x5 —7clx6 —clx7)

+—————(—1663200¢,x* —=1663200¢,*x* —=1663200¢,x* —332640¢,x°
39916800

-332640¢,%x° —332640c,x° —55440¢,x® - 55440¢,>x® — 55440¢,x° —7920¢,x”
=7920¢,2x” =7920c,x" +990¢,2x® +110¢,2x" +11¢°x"" +¢*x'")
1

+
1307674368000
—54486432000¢,°x* —54486432000c,x* —108972864000¢,c,x* —54486432000¢,x"

-10897286400¢,x° —21794572800¢,>x" — 54486432000c,x* —10897286400¢, x°
-21794572800¢,%x” =10897286400c,x° —1816214400¢,x° —3632428800¢,* x°
-1816214400¢,>x® —1816214400¢,x° —3632428800¢,c,x® —1816214400¢,x°
—259459200¢,x” —518918400¢,%x” —259459200¢,”x” —259459200c,x
—518918400¢,c,x” —259459200c;x” +64864800¢,°x* +64864800¢, x®
+64864800¢,c,x" +7207200¢,*x° +7207200¢,*x” +7207200¢,c,x° x°
+720720¢,%x"" +720720¢,*x'® +720720¢,¢,x'° +65520¢, 2 x" ! +65520¢,° x"!

+ 655200102x11 - 2730013x12 - 210013x13 - 15013x14 - cl3x15 ).

(—54486432000¢,x* —108972864000¢, x*

(58)

(59)

The approximate solution (59) contain auxiliary constants, the value of constants ¢, =—1.0000215, ¢, =0 and ¢, =0 are

calculated using method of least squares.
With these constants the approximate solution (59) become

u= %(6 +6x+3x% + x3) + 140 (210.0045x* +42.0009x° +7.0002x° +1.00002x")

50

+———(-35.7551x* =7.1510x° —=1.1918x° —0.17026x" +990.0426x®
39916800

1
1307674368000
+0.8393x% +0.1199x” —1394.4790x® —154.9421x° —15.4942x'% —1.4086x""

+2730.1760x'2 +210.0135x" +15.0009x™* +1.00006x").

+110.0047x° +11.0005x'" +1.00004x'") + (25.1806x* +5.0361x°

(60)
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Table 4. Show the comparison of 3" order OHAM solution and exact solution.
X Exact OHAM Absolute errors
0 1 1 0
0.1 1.10517 1.10517 4.44089x10™°
0.2 1.22140 1.22140 0
0.3 1.34986 1.34986 0
0.4 1.49182 1.49182 0
0.5 1.64872 1.64872 2.22045%101°
0.6 1.82212 1.82212 4.44089x10°
0.7 2.01375 2.01375 4.44089x10™°
0.8 2.22554 2.22554 2.22045%x10™
0.9 2.45960 2.45960 1.50990x 10
1 2.71828 2.71828 5.68434x10"
26| |-+++ OHAM R
. 7
— Exact .
24 e
-./
22 e
»< " ’./'
= 20 . pd
-
18 e
a= /' .
16 o
. '/ '
-
14 P .
03 04 05 06 07 08 09 10
X
Figure 4. 2D plots of OHAM versus exact solution.
Problem 5
Consider the following Volterra integro-differential equation of the form
X
u’(x)=2+ju(t)dt, u(0)=2, (61)
0
Eq. (61) has exact solution u(x) =2e" . By using the basic idea of OHAM, we have a series of problems
uy'(x) =2, uy(0)=2, (62)
X
w/(0) = ¢, fuy()dr, 10 =0, (©3)
0
X X
() = (14 &)y () =, fug Ot = fu 0O, 1,(0) =0, (64)
0 0
X X X
' (x) = (L ¢ )ity (x) + eyt (x) = ¢, juz (0)dt -, [u, (H)dt - ¢ J' uo(O)dt,  u3(0)=0, (65)
0 0 0
Solving Egs. (62 — 65), we have
1y (x) :2(1+x), (66)
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1
u(x) = g(—3c1x2 - c1x3 ) , (67)
U,y (x) = %(—60(:@2 -60c,> x> —60c,x> =20¢;x° =20¢,°x” =20¢,x” +5¢°x* +¢°x° ) , (68)

1

Uy (x) = M(—zszoqxz =5040¢,2x* —2520¢,*x* —2520¢,x* = 5040¢,c,x* —2520c;x”
—840c¢,x”° —1680¢,” x> —840¢,’ x* —840¢,x* =1680¢,c,x* —840c;x” +420¢, x* (69)
+420(213x4 + 4206‘16‘2)(4 + 846‘12x5 + 84(:13x5 + 84clczx5 - 7(:13366 - cl3x7 ).

The 3" order approximate solution by OHAM is u = u, +u, +u, +u,

1 1
u=2 (1 + x) +§(—3c1x2 - c1x3) + %(—600@2 - 60012x2 - 6002x2 - 20qx3 - 20c12x3

1
2520
-5040¢,¢, x> —2520c,x* —840c¢, x> —=1680c¢,>x> —840¢,> x> —840c, x> —1680¢,c,x°

1C2 3 | | | 2 1€ (70)

=20c,x> +5¢,°x* +¢2x°) + (=2520¢,x* =5040¢,>x* —2520¢,” x* —2520¢,x”

—840c,x° +420¢,2x* +420¢ x* +420c,c,x* +84cx° +84c] % +84¢ic,x° =T x®
- x7).

The estimate solution (70) contain auxiliary constants, the value of constants ¢, =—1.01277013, ¢, =0.00018746 and

c; =—0.00000875 are calculated using method of least squares.

With these constants the approximate solution (70) become

1 1
u=2(1+x) +§(3.O383x2 +1.0128+*) +5(—0.7872x2 -0.2624x +5.1285x* +1.0257x°)
(71)
1
* 250 (0.9227x* +0.3076x° —5.5810x* =1.1162x° +7.2716x° +1.0388x").
[ 7
50 [ Fxact
v
45 /
v
= /
s 40+ P
o'/'
351 o
n./
n./.
30+ o
. ‘/
/. A A A A A
03 04 05 06 0.7 08 09 10
X
Figure 5. 2D plots of OHAM versus exact solution.
Table 5. Show the comparison of 3" order OHAM solution and exact solution.

X Exact OHAM Absolute errors
0 2 2 0
0.1 2.21034 2.21034 1.54105x107

0.2 2.44281 2.44281 5.52394x10”




International Journal of Theoretical and Applied Mathematics 2019; 5(6): 100-112

111

X Exact OHAM Absolute errors
0.3 2.69972 2.69972 1.00035%1077
0.4 2.98365 2.98365 1.25368x10°
0.5 3.29744 3.29744 1.15329%x10°
0.6 3.64424 3.64424 7.54767x107
0.7 4.02751 4.02751 3.75290%107
0.8 445108 445108 4.51330%x107
0.9 491921 491921 1.06711x107
1 5.43656 5.43656 9.77423x107

4. Results and Discussions

Table 1 show the comparison of 3™ order OHAM solutions
with 5™ order ADM solutions for problem 1. Tables (2 — 3)
show the comparison of 3™ order OHAM solutions with 4"
order ADM solutions for problem (2 — 3), respectively.
Tables (4 — 5) show the absolute errors of 3™ order OHAM
solution for problems (4 - 5), respectively. Figures (1 — 5)
show the 2D plots of exact solution versus approximate
solution by OHAM for problems (1 — 5), respectively. The
consistency and effectiveness of OHAM has been cleared
from all these solved problems.

5. Conclusion

The intent of this attempt is to check the ability of OHAM
for solving Fredholm type integro-differential equations and
Volterra type integro-differential equations. OHAM gave
straight forward approximate solution for these integro-
differential eqautions which has close resemblance with the
exist solution. From above results and discussions, it is clear
that OHAM is more reliable, precise and converges faster to
exact solution than ADM. The accuracy of proposed method
can further be improved by taking higher order
approximations.

Finally, it should be added that the presented technique has
the potential to be practical in solving linear and non-linear
fractional order integro-differentail equations.
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