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Abstract: This study compares the restricted and unrestricted methods of bootstrap data generating processes (DGPs) on 

statistical inference. It used hypothetical datasets simulated from normal distribution with different ability levels. Data were 

analyzed using different bootstrap DGPs. In practice, it is advisable to use the restricted parametric bootstrap DGP models and 

thereafter, check the kernel density of the empirical distributions that are close to normal (at least not too skewed). In fact, 

21600 scenarios were replicated 200 times using bootstrap DGPs and kernel density methods. This analysis was carried out 

using R-statistical package. The results show that in a situation where the distribution of a test is skewed, all the scores need to 

be taken into account, no matter how small the sample size and the bootstrap level are. Across all the conditions considered, 

models HR5UR and HPN5UR yielded much larger bias and standard error while the smallest bias values were associated with 

models HR5R (0.0619) and HPN5R (0.0624). The result confirms the fact that bootstrap DGPs are very vital in statistical 

inference. 
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1. Introduction 

The recent increase in computer performance has made it 

possible to base many statistical inferences on simulated or 

bootstrapped distributed rather than on distributions obtained 

from asymptotic theory. Even though, bootstrap is not 

simulation, but in practice only trivial cases of bootstrap do 

not require simulation. In this paper a model is said to be 

unrestricted when it is not transformed otherwise it is a 

restricted model. This paper aims at examining the impact of 

residual and parametric bootstrap DGP procedure in terms of 

their ability level, bootstrap level, sample size, standard 

errors and bias on the statistical inference. The objective 

would be achieved by analytically examining the theorized 

relationships to see if they hold in the simulated datasets 

from the normal distribution. To achieve this objective which 

this paper has set for itself, the next section theoretically 

reviews bootstrap, the third section describes the method to 

be adopted in data analysis. In the fourth section data is 

analyzed using bootstrap DGPs and kernel density methods 

added by the R-statistical package. The paper is concluded in 

the fifth section. Finally, references and appendix were 

included. 

2. Theoretical Overview 

The continuing development of bootstrap methods has 

been motivated by the increasing progress in computational 

speed and efficiency. According to [1], [2], [3], the major 

aim of bootstrap testing is the characterization of a test 

statistic of interest with an unknown distribution under the 

null hypothesis using information in the data set that is being 

analyzed. [4], viewed bootstrap as a technique for estimating 

standard errors. His idea was to use simulation, based on a 

nonparametric estimate of the underlying error distribution. 

The model was fitted by three-stage least squares and applied 

to an econometric model describing the demand for capital, 

labor, energy, and materials. He concluded that the 

coefficient estimates and the estimated standard errors 

performed very well. 

According to [5], [2], there are many bootstrap methods 

that can be used for econometric analysis. In certain 

circumstances, such as regression models with independent 
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and identically distributed error terms, appropriately chosen 

bootstrap methods generally work very well. A large number 

of bootstrap methods are useful in econometrics. 

Applications to bias, standard error and hypothesis testing are 

emphasized, and simulation results are presented for many 

illustrative cases as included in [6-20], [2], [21], [22]. 

Consider 

yt=X tβ+µt; E (µt/Xt)=0, E (µSµt=0) ∀ s≠ t, µt~NID (0; σ
2
) (1) 

The corresponding dependent variables from the bootstrap 

methods are given by; 

yb=Xβ*+µt                                      (2) 

where the dependent variable, yt is a linear combination of 

the parameters, n is the number of observations, β* is the 

bootstrap k-vector, β is a k-vector, and the 1×k vector of 

regressors Xt, treated as fixed and µ is an n×1 vector of 

independent identically distributed errors with mean 0 and 

variance σ
2
. For each vector yb the estimator is recomputed 

and the sampling distribution of the estimator is estimated by 

the assumed distribution and empirical distribution 

respectively. 

There are many ways to specify bootstrap data generating 

processes (DGPs) for the model (2). According to [23], some 

require very strong assumptions about the error terms �� , 

whereas others require much weaker ones. Two types of 

bootstrap DGP for regression models (2) when the data is 

independently and identically distributed (iid) are; 

(i) The residual bootstrap 

��
∗ = ��	
 + ��

∗, 	��
∗~�����̂��                 (3) 

(ii) The parametric bootstrap DGP 

��
∗ = ��	
 + ��

∗, 	��
∗~����0, ���	             (4) 

Here it is assumed that the errors are normally distributed, 

the usual ordinary least square (OLS) estimate of the error 

variance for the residual bootstrap DGP. Similar methods can 

be used with any model estimated by maximum likelihood 

(for 4), but their validity generally depends on the strong 

assumptions inherent in maximum likelihood estimation, 

thereafter, the transformations of the models. There are also 

frequency domain approaches to bootstrapping econometrics, 

regression, time series, design of experiments, etc. [6], [24], 

[25], [26], and [27]. Other author that contributed immensely 

in bootstrap are [28], [1], [13], [29] and [30]; who treated 

computing leaf rectangularity index: theory and applications, 

parametric bootstrap methods for parameter estimation in 

SLR models, bootstrapping normal and binomial 

distributions, bootstrap confidence regions for 

multidimensional scaling solution and selection of A-B 

procedure for bootstrap level respectively. 

3. Research Methodology 

Secondary data sets are analyzed using bootstrap DGPs 

and kernel density methods. This analysis was carried out by 

the R-statistical package with several assessment conditions. 

They bias and standard error are computed as shown below; 

3.1. Bias in Bootstrapped Regression Models 

The algorithm for estimating standard errors from 

regression models as suggested by [7]. 

The bias of ��(b)=s (x) as an estimate of � is defined to be 

difference between the expectection of �� and the value of the 

parameter �. 

biasF=biasF (��, � )=EF[s (X)]–t (F) 

where; 

��=s (X) and �=t (F)                       (5) 

3.2. Standard Error in Bootstrapped Regression Models 

Bootstrap can be apply to more general regression models 

and save time from taking many samples from the population 

to make statistical inference. [7], suggested bootstrap 

algorithm for estimating standard errors from regression 

models as shown below; 

a. Select B independent bootstrap samples x*
1
, x*

2
,…, x*

B
 

each consisting of n data values drawn with replacement 

from x, for estimating a standard error, the number B will 

ordinarily be in the range 25–200. 

b. Evaluate the bootstrap replication corresponding to each 

bootstrap sample, 

��*(b)=s (x*
b
) b=1, 2, …, B.                    (6) 

c. The bootstrap estimate of standard error is the standard 

deviation of the bootstrap (B) replications: 

������� = �∑  ��!∗�� − ��. �$�	/�& − 1�(
�)* +�      (7) 

where, 

s(.) = ∑ 	��!∗��/&(
�)* . 

4. Data Analysis and Interpretation of 

the Result 

4.1. Data Analysis 

Each of the forms of the bootstrap methods were 

represented by using at least one functional model each from 

hypothetical data sets of a particular bootstrap DGP method 

to illustrate how others were estimated before tabulation; 

Using (1) to estimate original hypothetical data sets with 

fixed sample size is as follows; 

A. Original Hypothetical Model (H5): 

HYPt=bo+b1A+b2B+µt                          (8) 

Original Hypothetical Model (H5), B=1999, N (1, 0.25), 

n1=1000 

HYPt=34.14231687 b1+0.05696246 b2                 (9) 
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Standard error (0.00494) (0.02791) 

Bias (0.07031) (0.0333) 

RMSE (0.00221) 

B. The unrestricted residual bootstrap DGP; 

��
∗ = ��	
 + ��

∗, 	��
∗~�����̂��                   (10) 

The unrestricted residual bootstrap DGP when applied on 

the hypothetical data sets with fixed sample size is as 

follows; 

Hypothetical Model (HR5UR): 

HYPt=bo+b1A+b2B+µt                        (11) 

Under several assessment conditions; B=99, N (0, 1), 

n1=1000 we have: 

HYPt=34.1342316 b1+0.06562462 b2           (12) 

Standard error (0.00500) (0.05180) 

Bias (0.08755) (0.03280) 

RMSE (0.00243) 

C. The restricted (transformed) residual bootstrap DGP 

using the battle transformations in section 2; 

��
∗ = ,�	
 + ��

∗, 	��
∗~�����̂��                 (13) 

where ,�	 represents the transformation in the equation. 

Transformed Residual Model (HR5R), 

HYPt=bo+b1A+b2B+µt                     (14) 

Under several assessment conditions; B=99, N (0, 1), 

n1=1000 we have: 

HYPt=34.12231687 b1+0.05696246 b2           (15) 

Standard error (0.00486) (0.04852) 

Bias (0.0719) (0.03231) 

RMSE (0.0019) 

D. The unrestricted Parametric bootstrap DGP with 

nuisance parameter 

��
∗ = ��	
 + ��

∗, 	��
∗~����0, ���               (16) 

Hypothetical Model (HPN5UR): 

HYPt=bo+b1A+b2B+µt                        (17) 

Under several assessment conditions; B=499, N (0, 1), 

n1=1000 we have: 

HYPt=34.24231667 b1+0.05356962 b2         (18) 

Standard error (0.00392) (0.04302) 

Bias (0.0800) (0.033609) 

RMSE (0.0030) 

E. The restricted (Transformed) Parametric bootstrap DGP 

with nuisance parameter 

��
∗ = ,�	
 + ��

∗, 	��
∗~����0, ��� 

where ,�	 represents the transformation in the equation. (19) 

Hypothetical Model (HPN5UR): 

HYPt=bo+b1A+b2B+µt                     (20) 

Under several assessment conditions; B=499, N (0, 1), 

n1=1000 we have: 

HYPt=34.21131652 b1+0.05126522 b2               (21) 

Standard error (0.00478) (0.02030) 

Bias (0.0624) (0.0107) 

RMSE (0.0021) 

It is pertinent to note that equations (9), (12), (15), (18), 

and (21) represent the original SLR hypothetical data set 

before restrictions and different bootstrap DGPs were 

applied. 

4.2. Interpretation of the Result 

In this study, five groups of models were selected to 

represent the hypothetical data sets on restricted and 

unrestricted bootstrap DGPs. Thereafter more than 200 trials 

were carried out within each bootstrap level (B). The 

selection was based on the fact that as n (number of trials) 

increase, the models maintain the same pattern, and unless 

there is change in the pattern another model will not be 

selected. The five equations above represent each of the 

groups of models selected; results presented in table (H5, 

through HPN5UR). It is also important to note that in this 

study the logarithm of the data sets was used among the three 

(3) transformations because it came out with minimum bias 

and standard error. 

This will enable determine the present the effects of the 

factors of sample size and bootstrap level on a hypothetical 

data sets. Extreme values in the ranges stated above were 

truncated and very low estimates were also observed, results 

in these ranges are presented in order to demonstrate the 

trends and the performance at the lower ends of the 

distributions for each bootstrap model. The bootstrap models 

when bootstrap DGP models with Uncorrelated Error Term 

from the forms: N (0, 1), N (0, 0.9), and N (1, 0.25) 

distributions. 

The conditional bias for the bootstrap models from 

hypothetical data sets was considered, in fact, only the 

correlation between original values and restricted 

(transformed) values. Although the magnitude of bias varied 

across the bootstrap models, the pattern of relative effects of 

these factors was generally consistent within each bootstrap 

model. It can be seen that sample size and bootstrap level had 

large effects on bias of the SLR, group proficiency level had 

relatively small effects under some conditions. Estimation bias 

decreases as the sample size and bootstrap levels increases. 

Across all the conditions considered, models HR5UR and 

HPN5UR yielded much larger bias and standard error while 

the smallest bias, standard error and RMSE values were 

associated with models HR5R and HPN5R when compared 

to H5 functional model. Therefore, for the bootstrap models, 

the pattern was clear that lower sample sizes and unrestricted 

models were associated with larger bias while higher sample 

sizes, restricted (transformed) were related to lower bias. 

This is not surprising, because the fitted distribution with the 



 International Journal of Theoretical and Applied Mathematics 2016; 2(2): 121-126 124 

 

higher sample sizes even when bootstrapped was more 

similar to the distribution of the original data. For the three 

different sample sizes and the three different ability levels, 

the largest (bias and standard error) estimate were always 

associated with model HPN5UR while the smallest bias was 

from model HR5R. They model HR5R can also be used at 

that stage to predict and forecast. 

5. Major Findings and Conclusion 

Among all the conditions considered, models HR5UR and 

HPN5UR yielded much larger bias and standard error than 

the other models at almost all the estimates. It was also 

observed from the results that the parametric bootstrap 

functional DGP models when transformed with a higher 

sample size and higher bootstrap level generally yielded 

smaller total errors in estimating the standard error and bias. 

Though, parametric bootstrap DGP (residual and parametric) 

models were similar in standard error estimates across most 

of the estimated values, especially when the sample size was 

equal to or larger than 200. The study therefore concludes 

that the pattern (restricted and unrestricted) parametric 

bootstrap models was clear, that is, the lower sample sizes 

and unrestricted models were associated with larger bias and 

standard error, vice versa. 

Appendix 

Table A1. Bias of SLR across all Models in a Hypothetical data set. 

Bootstrap level Ability Level Sample Size H5 HR5UR HR5R HPN5UR HPN5R 

B=99 

N (0, 1) 

200 0.0390 0.1051 0.0448 0.0301 0.0249 

1000 0.0209 0.0547 0.0100 0.0124 0.0110 

10000 0.0312 0.0115 0.0029 0.0071 0.0057 

N (0, 0.9) 

200 0.0341 0.1048 0.0429 0.0283 0.0238 

1000 0.0557 0.0510 0.0071 0.0530 0.0240 

10000 0.0319 0.0296 0.0028 0.0305 0.0124 

N (1, 0.25) 

200 0.0207 0.1071 0.1013 0.1037 0.0242 

1000 0.0551 0.0514 0.0533 0.0098 0.0056 

10000 0.0321 0.0297 0.0304 0.0065 0.0028 

B=499 

N (0, 1) 

200 0.0419 0.0901 0.0795 0.0450 0.0237 

1000 0.0463 0.0221 0.0103 0.0217 0.0106 

10000 0.0271 0.0238 0.0031 0.0129 0.0066 

N (0, 0.9) 

200 0.0331 0.0880 0.0797 0.0451 0.0246 

1000 0.0450 0.0238 0.0067 0.0218 0.0097 

10000 0.0266 0.0236 0.0030 0.0079 0.0137 

N (1, 0.25) 

200 0.0227 0.0878 0.0831 0.0477 0.0268 

1000 0.0451 0.0416 0.0060 0.0240 0.0099 

10000 0.0266 0.0239 0.0244 0.0062 0.0030 

B=1999 

N (0, 1)  

200 0.0200 0.0548 0.0184 0.0122 0.0067 

1000 0.0041 0.0429 0.0036 0.0096 0.0087 

10000 0.0014 0.0231 0.0056 0.0031 0.0020 

N (0, 0.9) 
200 0.0592 0.0130 0.0165 0.0174 0.0066 

1000 0.0317 0.0062 0.0093 0.0094 0.0036 

N (0, 1) 

10000 0.0016 0.0154 0.0054 0.0055 0.0022 

200 0.0587 0.0533 0.0182 0.0168 0.0069 

1000 0.0427 0.0318 0.0028 0.0055 0.0040 

10000 0.0241 0.0174 0.0011 0.0029 0.0054 

Note. The bold is the smallest value in each row. The number 5 in the model name represents the 5 functional models in this study. 

Table A2. Standard Error of SLR across all Models in a hypothetical data set. 

Bootstrap Level Ability Level Sample Size H5 HR5UR HR5R HPN5UR HPN5R 

B=99 

N (0, 1) 

200 0.1184 0.0340 0.0479 0.0567 0.0571 

1000 0.0407 0.0115 0.0168 0.0167 0.0115 

10000 0.0150 0.0058 0.0058 0.0064 0.0052 

N (0, 0.9) 

200 0.1197 0.0339 0.0475 0.0471 0.0522 

1000 0.0111 0.0146 0.0142 0.0169 0.0173 

10000 0.0056 0.0061 0.0065 0.0066 0.0050 

N (1, 0.25) 

200 0.1188 0.0343 0.0398 0.0485 0.0485 

1000 0.0425 0.0162 0.0174 0.0172 0.0110 

10000 0.0170 0.0050 0.0049 0.0065 0.0067 

B=499 
N (0, 1) 

200 0.2403 0.0540 0.0627 0.1136 0.1228 

1000 0.0890 0.0185 0.0283 0.0337 0.0372 

10000 0.0347 0.0089 0.0104 0.0112 0.0081 

N (0, 0.9) 200 0.2350 0.0955 0.1037 0.1107 0.0537 
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Bootstrap Level Ability Level Sample Size H5 HR5UR HR5R HPN5UR HPN5R 

1000 0.0869 0.0186 0.0194 0.0214 0.0294 

10000 0.0344 0.0080 0.0083 0.0088 0.0130 

N (1, 0.25) 

200 0.2252 0.0543 0.1013 0.0982 0.1104 

1000 0.0858 0.0186 0.0286 0.0331 0.0375 

10000 0.0343 0.0080 0.0105 0.0120 0.0133 

B=1999 

N (0, 1) 

200 0.2360 0.0641 0.1201 0.1265 0.0556 

1000 0.0893 0.0299 0.0320 0.0317 0.0194 

10000 0.0360 0.0115 0.0133 0.0135 0.0088 

N (0, 0.9) 

200 0.2313 0.0968 0.1022 0.1037 0.0560 

1000 0.0196 0.0231 0.0301 0.0363 0.0378 

10000 0.0352 0.0087 0.0114 0.0120 0.0116 

N (1, 0.25) 

200 0.0570 0.0692 0.0956 0.1184 0.1265 

1000 0.0873 0.0196 0.0307 0.0372 0.0399 

10000 0.0349 0.0088 0.0115 0.0127 0.0118 

Note. The bold is the smallest value in each row. The number 5 in the model name represents the 5 functional models in this study. 
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