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Abstract: On this paper the one-dimensional Schrödinger equation for the double cosine and sine- squared potential is 

considered. Here, we construct the first order Darboux transformation and the real valued condition of transformed potential 

for two corresponding equations. In that case we obtain the transformed of potential and wave function and finally, investigate 

the supersymmetry aspect of such corresponding equation. Also we show that the first order equation is satisfied by 

commutative and anti-commutative algebra with the � constant condition at different limit for the �. 
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1. Introduction 

There are several methods to study for the integrability 

model. One of the methods that we focus here is Darboux 

transformation. It is well known that the Darboux 

transformation [1] is one of the major tools for the analysis of 

physical systems and for finding new solvable systems, using 

a linear differential operator, Darboux construct solutions of 

one ordinary differential equation in terms of another 

ordinary differential equation. It has been shown that the 

transformation method is useful in finding soliton solutions 

of the integrable systems [2-4] and constructing 

supersymmetric quantum mechanical systems [5-7]. Also, 

more general solvable cases were obtained by means of 

factorization methods [8] and via lie algebraic approaches [9-

13]. Darboux transformation is known as one of the most 

powerful methods for finding solvable Schrödinger equations 

with constant mass, in the context of which it is also called 

supersymmetric factorization method [14]. On the other hand 

during the past few years there has been great interest in 

studying class of trigonometric potentials [15]. The solution 

of such equation may be found by mapping it into a 

Schrödinger-like equation. So, we take advantage from 

Darboux transformation and obtain the generalized form of 

double-cosine and sine-squared potential. The Darboux 

transformation has been extensively used in quantum 

mechanics in the search of isospectral potential for exactly 

Schrödinger equations of constant mass and position - 

dependent mass [16-21]. So, we take advantage from such 

transformation and obtain the effective potential, modified 

wave function and shape invariance condition and generators 

of supersymmetry algebra for the two corresponding 

potential. So, this paper is organized as follows: So, we first 

introduce the one-dimensional Schrödinger equation for the 

double-cosine and sine -squared potential and apply such 

transformation to these equations. In that case, we show that 

the corresponding potential change to new form of potential. 

Finally, we study the supersymmetry version and shape 

invariance condition for transformed double-cosine and sine-

squared potential. 

2. Double-Cosine Potential 

First of all we are going to consider a single particle in 

double-cosine potential which is given by [22], 

���� = ��� cos��� + �
 cos�2�� 	0 < � < 2�∞	� < 0	���	� > 2�      (1) 
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Where Schrödinger like equation will be as, 

�− ����� + �� cos��� + �
 cos�2���ψ�x� = Eψ�x�, ψ�0� = ψ�2π� = 0                                       (2) 

The maximum of the potential (1) occurs within the given interval between � = 0 and � = 2� and has the value of �#$� =�� + �
, while the minimum occurs at	� = �	 with the value of �#$� = �
 − ��. Clearly, if �� = 0 and �
 > 0, the problem 

corresponds to Mathieus equation [23]. Assume the general solution of the differential equation (2) is satisfied the boundary 

conditions takes the form %��� = sin	()
* +���. In that case, we use such condition and make the second order equation (2) in 

terms of +��), which is given by, 

+,,��� + -./ (�
* +,��� − ��0 + �� cos��� + 2�
-.1
��� − �
 − 2� +��� = 0	                                 (3) 

Now we choose the following variable, 

+��� = 3�4 (− 56
 * 7�8�, 8 = -.1 (�
*                                                                (4) 

And we obtain, �1 − 8
�7,,�8� + :8;1 + 4���1 − 8
�=>7,�8� − ?1 − 2�� + 4�
 − 42 − 4���
 + 8�
�8
�1 − 8
�A7�8� = 0       (5) 

So, the exact solution for the 2B and �
 are, 

7B��� = 1	, 2B = �0− 56
 + �
	, �
 = − �C��
                                                       (6) 

In order to change the equation (2) in form of known polynomial we need to choose the following variable, 7�8� = D�8�E�8�                                                                              (7) 

So, one can rewrite the equation (5) as, 

�1 − 8
�E,,�8� + �2�1 − 8
� FGF + 8;1 + 4���1 − 8
�=� E,�8� + ��1 − 8
� FGGF + 8;1 + 4���1 − 8
�= FGF − H1 − 2�� + 4�
 −42 − 4���
 + 8�
�8
�1 − 8
�I� E�8� = 0                                                 (8) 

Here, we consider the following associated - Legendre differential equation [24-26], 

�1 − 8
�E,,J,#K,L �8� − ?� − M + �� + M + 2�8AE,J,#K,L �8� + ���� + M + � + 1� − #�KNLN#�N#�KOL�P�OP� � EJ,#K,L�8� = 0     (9) 

Also, we compare the equations (8) and (9) to each other and obtain the wave function u(y) and g(y) as, 

D�8� = 3O56P� (�NP�OP*QRST �1 − 8
�SUQUVT                                                                 (10) 

So, the general form of 7�8� and 7��� functions will be following, 

7�8� = 3O56P� W1 + 81 − 8X
QRST �1 − 8
�SUQR6T EJ,#K,L	, 8 = -.1 (�2*, 

7��� = 3O56YZ[�(\�* ]�NYZ[(\�*�OYZ[(\�*^
(QRST * 1_� (�
*(SUQUV� * EJ,#K,L���                                                (11) 

Also, we take advantage from comparing (8) and (9) and obtain the ��, 2 and +���; 
�� = �0 (a − � − M + b
*,                                                                        (12) 

2 = �0 c�M − ��
 − (� + M + d0* − �b
 (a − � − M + b
*
 − ��� + M + � + 1� + a (� + M +a + �
*e          (13) 

And, 
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+��� = 3O6�56W�N
YZ[�(\�*X ]�NYZ[(\�*�OYZ[(\�*^
(QRST * 1_� (�
*(SUQUV� * EJ,#K,L���                                               (14) 

3. Trigonometric Sine-Squared Potential 

The second example, we consider here is one-dimensional 

Schrödinger equation for the trigonometric sine-squared 

potential, which is given by, 

�− ����� + �B1_�
 (�$*� f��� = 2f���            (15) 

Where, f ()$
 * = f (O)$
 *. 

This boundary condition leads us to consider following 

change of variable, 

f��� = -.1 (�$* +���                      (16) 

So, one can rewrite equation (15) as, 

+,,��� = 
$ /�� (�
* +,��� + � �$� − 2 + �B1_�
 (�$*� +���  (17) 

By putting � = �	gh-1_��8� in (17), one can obtain, 

+,,�8� = bP�OP� +,�8� + ( i�OP� − j*+�8�           (18) 

Where k = 1 + j − �
  and j = �B�
 . By choosing 

suitable variable and same as previous case we have, +�8� = D�8�E�8�                           (19) 

We substitute equation (19) in (18), we obtain following 

equation, 

�1 − 8
�E,,�8� + �2�1 − 8
� FGF − 38� E,�8� + ��1 − 8
� FGGF − 38 FGF − k + j�1 − 8
�� E�8� = 0               (20) 

Here, we compare equation (9) and (20) to each other, one 

can arrive the following expression for D�8�, +�8� and +��� 
respectively, 

D�8� = (�NP�OP*QRST �1 − 8
�SUQR6T                     (21) 

+�8� = W1 + 81 − 8X
QRST �1 − 8
�SUQR6T 4J,#K,L �8�	, 8 = 1_� �� 

And, 

+��� = m�N[nJ(\o*�O[nJ(\o*p
QRST -.1 (�$*SUQR6� 4J,#K,L ���        (22) 

On the other hand this comparing gives us opportunity to 

obtain the energy spectrum and wave function which are 

given by, 

2 = ℏ�
r$� ?��� + M + �� + 1A                 (23) 

And, 

f��� = -.1 (�$* m�N[nJ(\o*�O[nJ(\o*p
QRST -.1 (�$*SUQR6� 4J,#K,L ���  (24) 

The corresponding energy spectrum always is positive, so 

we have stable system. 

4. Darboux Transformation and  

Double-Cosine Potential 

Now we are going to apply the Darboux transformation to 

corresponding example such as double-cosine and 

trigonometric sine-squared potential. So, we simplify the 

equation (5) as, 

s7PP + t7P − �7 = 0                      (25) 

Where 	s and t and � are respectively, s = �1 − 8
�	, t = 8 + 4��8�1 − 8
� � = 1 − 2�� + 4�
 − 42 − 4���
 + 8�
�8
�1 − 8
�  (26) 

In here we introduce the new variable as u  which play 

important role in Darboux transformation. So, we can write 

the above equation with η variable which is given by, _7v + u7 = 0	, u = swPP + twP − �              (27) 

The Darboux transformation help us to write the equation 

(25) and (27) as a new form with different potential as, _7xv + û7 = 0	, û = swPP + twP − �z               (28) 

Where � ≠ �z , implying 7�8� ≠ 7x�8�.	 We introduce 

transformation operator ∆ as, ∆�_w + u� = �_w + û�Δ                      (29) 

Which are called Darboux transformation operator for the 

Hamiltonian η and û, respectively. 

The operator ∆  transforms any solution+�8�  into a new 

solution, +��8� = Δ+�8�                           (30) 

Let Darboux transformation operator be the form of a 

linear, first- order differential operator, Δ = g + �wP                            (31) 

Where we take special case as g	 = 	�. In order to find g 

or �, we consider the explicit form of ∆ and ∆z  in form of the 

Darboux transformation and apply it to the solution 7�8�, so  
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∆�_wv + u�7�8� = �_wv + û�Δ7�8�            (32) 

Making linear independence of 7�8�  and its partial 

derivatives, we collect their respective coefficients and equal 

them to zero, from which one can obtain the following value 

for the functions g and �z . 

2s = �+�P�	 ⇒ 	� = O�P �1 − 8
�            (33) 

So, the Darboux transformation operator will be as, 

∆= O�P �1 − 8
�;1 + wP=	.h	∆= −-./ (�
* �1_� (�
* − 2 ����                                         (34) 

The relation between � and �z  will be as, 

�z = � + 
P� − 2 �NP�P + 4�� − 8
�16�� + 1�                                                    (35) 

Now, we achieve the generalized form of wave function which is corresponding to usual wave function +���� as, 

+��8, /� = ∆+�8, /� = −18 �1 − 8
�;1 + wP=+�8, /�, 8 = 1_� (�2* 

+���, /� =
YZ[�(\�*[nJ(\�* �]1 + �
�� sin�2�� − LOK[nJ(\�* + KNLNb0 -./ (�
*^ +��, /� + 3O6�56W�N
YZ[�(\�*X �]�NYZ[(\�*�OYZ[(\�*^

QRST 1_� (�
*SUQUV� 4,J,#K,L �����    (36) 

5. Darboux Transformation and 

Trigonometric Sine-Squared Potential 

The one-dimensional Schrödinger equation for the 

trigonometric sine-squared potential is given by, 

f,,�8� = bP�OP� f,�8� + ( i�OP� − j*f�8�           (37) 

Thus, the trigonometric sine-squared potential equation 

(37) is, �1 − 8
�fPP − 38fP − ;k − j�1 − 8
�=f = 0       (38) 

By taking s = �1 − 8
�	, t = −38	 and the potential � = k − j�1 − 8
�, we can rewrite the above equation as, swPP + twP − � = 0                     (39) 

And _fv + uf = 0	, u = swPP + twP − �             (40) 

In order to have same equation as (38) and (40) with 

different of potential, we have to write following equation, _f�v + ûf = 0	, û = swPP + twP − �z                (41) 

Where � ≠ �z  and this implyf ≠ f�. In order to obtain the 

modified potential �z  and corresponding wave function for 

equation (41), we introduce operator �  which are called 

Darboux transformation. The general form of such Durboux 

transformation will be as, ∆= g + �wP                                  (42) 

For simplicity we suppose g	 = 	�. By using the following 

property of Darboux transformation, ∆�_wv + u� = �_wv + û�                    (43) 

One can obtain the generalized form of wave function 

which is corresponding to usual wave function f	 as, 

f��8, /� = Δf�8, /� = ;1 + wP=f�8, /�, 8 = 1_� �� 

f���, /� = c1 − KNLN�
 Wv$J\oYZ[\oX + LOKYZ[\oe f��, /� + � c�N[nJ\o�O[nJ\oe(
QRST * -.1 (�$*(SUQR6� * E,J,#K,L ���                                (44) 

In order to obtain the parameter g, we need to use the equation (38) and (43) in following expression, ∆;_wv + swPP + twP − �=f = ;_wv + swPP + twP − �z=∆f                                                 (45) 

Making linear independence of f  and its partial 

derivatives, we collect their respective coefficients and equal 

them to zero, so we can obtain A as, 

g = �√s = ��1 − 8
                      (46) 

And the modified potential is given by, 

�z = �
� − �
2 + 2/��
 �$ + 21_� �$               (47) 

Where f�8, /� = 3O���ℏ f�8�. 
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6. Supersymmetry and Darboux 

Transformation 

In what follows, we will prove that the formalism of 

supersymmetry for our generalized trigonometric Double-

Cosine potential equation is equivalent to the Darboux 

transformation. So, here we introduce the following self- 

adjoint operator, �_wv + ��∗ = _� + �                           (48) 

Taking the operation of conjugation on Darboux 

transformation (21), we obtain, �_�v + u�Δ∗ = Δ∗�_wv + û�                     (49) 

Where the operator Δ∗ ad joint to Δ = O�P �1 − 8
�;1 + wP= 
in double-cosine system is given by, 

Δ∗ = O�P �1 − 8
�;1 − wP=                     (50) 

Eqs. (29) and (30) can be rewritten by single matrix 

equation, 

c_wv + u 00 _wv + ûe c++�e = 0                 (51) 

We assume that � = �_�7�u, û� and s = ;+, +�=� , so the 

above equation can be written as ?_wv + �As = 0                            (52) 

Two supercharge operator �  and �∗  are defined by 

following matrices, 

� = �0 0∆ 0�	 , �∗ = �0 ∆∗0 0 �                  (53) 

Where ∆ and ∆∗  are the operator given by Eqs. (36) and 

(50), respectively. One can show that the Hamiltonian H 

satisfies the following expressions, H�, �I = H�∗, �∗I = 0 ?�, _wv + �A = ?_wv + �,�A ?�∗, _wv + �A = ?_wv + �,�∗A                    (54) 

Considering the complementing relations of the 

supersymmetry algebra; the anti-commutators H�, �I  and H�∗, �∗I. We obtain the operators � = �∗� and �z = ��∗ and 

consider the relations of them with our Hamiltonian u and û 

So, one obtain the � and �z  as follow, � = |�|
:s;1 − wPP= − �s�P;wP + 1=>          (55) 

And 

�z = |�|
 �s;1 − wPP= − �s�P;wP + 1= − �
 �s�PP + ��
��  (56) 

Where, the index 8 will be derivative with respect to8. In 

order to have shape invariance and supersymmetric algebra 

we need to obtain, �z − �. If such value be constant and zero 

there is some supersymmetry partner for such systems. 

Otherwise we need to apply some condition in �z − � to have 

constant value. So, we will arrive at following equation for 

the �z − �  

�z − � = |�|
 �1 + 1_� (�
*�                      (57) 

By using the condition Ψ�0� = Ψ�2�� = 0  and, � ∈?0,2�A the value of �z − � be zero or function of �, and we 

have supersymmetry for the Double-Cosine potential in case 

of � constant. So, in generally we can say that there is shape 

invariance for usual and generalized potential in above 

mentioned condition. The shape invariance for the potential 

is �z = � + -.�1/��/. 
In second example we consider sine-squared potential, so ∆ and ∆∗ will be as, 

∆= ��1 − 8
;1 + wP=                       (58) 

And 

∆∗= ��1 − 8
;1 − wP=                     (59) 

For the sine-squared potential also we consider 

information from previous section such as equations (51-54) 

and � = �∗� and �z = ��∗ , one can obtain �  and �z  as(55) 

and (56). 

Otherwise we need to apply some condition in �z − � to 

have constant value. So, one can obtain the following 

equation for the�z − � 

�z − � = |�|
 (1 − P�OP�*                    (60) 

We mention here that if we want to supersymmetry algebra 

we need to have also the following commutation relation, and 

also anti-commutation relation between � and	�N. H�, �NI = �	, H�, �I = H�N, �NI = 0          (61) 

If we look at the equation (61) we need to apply the 

condition �z − �  be zero or constant, in the corresponding 

condition �z − � be zero or function of � (� is constant). So, 

we have supersymmetry system, and it means that two 

potentials are satisfied by the shape invariance condition. 

7. Conclusion 

In this paper, the Double-Cosine potential equation was 

studied. The first-order Darboux transformation applied to 

the corresponding equation. In order to relate between 

supersymmetry and Darboux transformation we discussed the 

supersymmetry algebra and its commutation and anti-

commutation relations. It shown that for the satisfying such 

anti-commutation supercharges the �z − � must be constant. 

Also, we applied this condition on the �z − � and shown that 

in the interval ?0,2�A , �  must be constant. This condition 

completely guarantees relation between supersymmetry and 

Darboux transformation. This result play important role for 
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any solvable, non-solvable and quasi-solvable systems. 
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