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Abstract: In this paper, we are concerned with one-dimensional Timoshenko model for a beam with nonlinear damping and 

source terms. Under suitable conditions on the initial data, the theorem of global existence is proved by potential well method 

combined Galerkin procedure, and decay estimates of the energy is established by means of Nakao’s inequality. 

Keywords: Timoshenko System, Source Term, Damping Term, Global Existence, Stability 

 

1. Introduction 

In this paper, we study the semilinear Timoshenko system 

1

1
( ) ( , ),

p

tt xx x t t
u u k u v u u f u v

−− + + + =          (1) 

1

2
( ) ( , ),

q

tt x x t t
v k u v v v f u v

−− + + =             (2) 

in (0,1) (0, )× ∞ , under the following boundary conditions 

(0, ) (1, ) 0, 0,u t u t t= = ≥                     (3) 

(0, ) (1, ) 0, 0,v t v t t= = ≥                       (4) 

and initial conditions 

0 1( ,0) ( ), ( ,0) ( ), 0,1 ,tu x u x u x u x in= = （ ）         (5) 

0 1( ,0) ( ), ( ,0) ( ), 0,1tv x v x v x v x in= = （ ）.        (6) 

The function u  is the rotation angle of a filament of the 

beam and v  is the transverse displacement of the beam, k  is 

a strict positive constant. The nonlinear function 1( )f u v,  and 

2 ( )f u v,  act as strong source terms, 1p q, ≥ . For the 

corresponding linearized system of (1)-(2)  

( ) 0,tt xx xu u k u v− + + =                            (7) 

( ) 0,tt x xv k u v− + =                           (8) 

which is given by Timoshenko [1] as a simple model 

describing vibration of a beam, this model for Timoshenko 

beams have attracted vast interest during the last thirty years. 

Systems (7)-(8) has been studied by many authors and results 

concerning existence and asymptotic behavior have been 

established. The stabilization of the Timoshenko system has 

been studied with different type of dampings, we refer the 

reader to [2, 3, 4, 5, 6, 7] and their references. 

 Let us mention some known results for semilinear 

Timoshenko system. Parente et.al [9] treated the existence 

and uniqueness for the problem 

( ) ( ) 0,tt xx xu u k u v f u− + + + =                (9) 

( ) ( ) 0,tt x xv k u v g v− + + =                  (10) 

with differential boundary conditions, where f g,  are 

Lipschitz continuous functions. Araruna et.al [10] 

investigated the existence and uniqueness of strong and weak 

solution of the one-dimensional Timoshenko model (9)-(10) 

for beams with a nonlinear external forces and a boundary 

damping mechanics. They also proved that the energy of 

solution decays exponentially. Chueshov and Lasiecka [11] 

studied the existence of a compact global attractor for (9)-

(10) with nonlinearities of f and g  being locally Lipschitz 

in the 2-dimensional case. Gorgi and Vegni [12] gave the 

uniform energy estimate and the estimate of an absorbing set 
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for the Timoshenko beam with memory and Dirichlet 

boundary condition. Messaoudi and Soufyane [8, 13] 

established a general decay result for a nonlinear Timoshenko 

system with a boundary control of memory type 

1 1

1

( ) ( ) ( , ),
n

tt

i i

v
x u u u x f u v

x
ρ α β α

=

∂= ∆ + − −
∂∑       (11) 

2 2

1

( ) ( ) ( , ),
n

tt

i i

u
x v v x f u v

x
ρ α α

=

∂= ∆ + −
∂∑           (12) 

However, there has been less focus on the Timoshenko 

system with nonlinear source terms. Recently, Pei et al. [14, 

15] studied the global well-posedness and long-term behavior 

of the Reissner Mindlin-Timoshenko plate systems, focusing 

on the interplay between nonlinear viscous damping and 

source terms, by the potential well framework [16, 17]. To 

the best of our knowledge, the system of nonlinear 

Timoshenko equation have not been well studied. 

We also mention that for one equation boundary value 

problem with nonlinear damping and source terms at first 

time investigated by Lions, J.-L [22]. The problem for the 

linear and semilinear system of equations of hyperbolic-

elliptic type, including property of changing time direction in 

general form PDE investigated at first time by M. A. 

Nurmammadov [23-25] which is system equations contains 

partition part all classical and semilinear systems, 

degenerating elliptic, degenerating hyperbolic, mixed and 

composite type differential equations. In this case he 

considered new boundary value problems. 

In this paper, we consider the problem (1)-(6). We give an 

equivalent inequality between 2 2|| || || ||x xu k u v+ +  and the 

standard norm on the function space 1 1

0 0H H× , then we obtain 

local existence of solution of problem (1)-(6) following very 

carefully the techniques used in [19]. Following the 

equivalent inequality, we introduce the stable set, then we get 

global existence of solution for problem (1)-(6) by potential 

well method combined Galerkin procedure, and decay 

estimates of the energy functions are established by means of 

Nakao’s inequality [18]. 

2. Preliminaries 

Throughout this paper, we denote (0 1)pL ,  and 1

0 (0,1)H  by 

pL  and 1

0H , respectively. || ⋅ ||  and 
p|| ⋅ ||  denote the usual 2L  

norm and pL  norm, respectively. And let us define 
1

0
( , ) ( ) ( )x x dxϕ ψ ϕ ψ= ∫  as the usual 2L  inner product. The 

standard duality between 1( ) 'H  and 1H  will be denote also 

by ( )⋅,⋅ . For 1

0Hϕ ∈ , it is well-known that the norm 
xϕ  is 

the equivalent of the 1

0H  norm 
1
2

1
0

2 2
|| || (|| || || || )xH

ϕ ϕ ϕ= +  (see 

[22,25]). Let V denotes the following Hilbert space 
1 1

0 0V H H= × ,  and endowed with the following norms 

2 2 2|| || || || || v || ,V x xuΦ = +  for ( , )u v VΦ = ∈ . Throughout this 

paper, 1 2, , ,C C C ⋯  are positive generic constants, which may 

be different in various occurrences. In addition, we denote 

*C  is the Poincare constants, that is 

1

* 0|| || || ||, , 2 .s xu C u for u H s≤ ∈ ≤ ≤ +∞          (13) 

Concerning the nonlinear functions 1( , )f u v  and 2 ( , )f u v , 

we assume that 

2( 1) 2

1
( , ) ( ) ,f u v a u v u v b u u v

ρ ρ ρ+ += + + +         (14) 

2( 1) 2

2
( , ) ( ) ,f u v a u v u v b v v u

ρ ρ ρ+ += + + +         (15) 

where , 0a b >  and 0ρ ≥  are constants. It is easy to see that 

2

1 2( , ) ( , ) 2( 2) ( , ), ( , ) ,uf u v vf u v F u v u v Rρ+ = + ∀ ∈  (16) 

where 
2( 2) 21

2( 2)
( , ) [ | | | | ].F u v a u v b uv

ρ ρ
ρ

+ +
+= + +  Moreover, 

a quick computation will show that there exist two positive 

constants 
0

C  and 
1

C  such that the following inequality holds 

(see [19, 20]) 

2( 2) 2( 2) 2( 2) 2( 2)

0 1(| | | | ) 2( 2) ( , ) (| | | | ).C u v F u v C u vρ ρ ρ ρρ+ + + ++ ≤ + ≤ +                                  (17) 

Now, we give the following lemmas which will be used 

later. By a simple computation, we have the following result: 

Lemma 2.1 For 1

0( , )u v H∈ , there exist positive constants 

1 2
0, 0α α> >  such that the inequality holds 

2 2 2 2 2 2

1 2( ) ( )x x x x x xu k u v u v u k u vα α+ + ≤ + ≤ + +   (18) 

where 12
2 1{1 2 ) } {(1 2 ) 2 }

k
max C max kC kα α −

∗ ∗= + , , = + , . 

Lemma 2.2 [18] Let ( )tϕ  be nonincreasing and 

nonnegative function defined on [0 ) 1T,∞ , > , satisfying 

1

0( ) ( ( ) ( 1)) [0 )t w t t tαϕ ϕ ϕ+ ≤ − + , ∈ ,∞ ,
 

where 
0

w  is a positive constant, α  is a nonnegative 

constant. Then we have for each [0 )t ∈ ,∞ ,  

1

1
2

[ 1]

1

0

( ) (0) 0

( ) ( (0) [ 1] ) 0

w t
t e

t w t
α

ϕ ϕ α

ϕ ϕ α α

+− −

−− − +

≤ , = ,

≤ + − , > ,
 

where [ 1] { 1 0}t max t+− = − ,  and 0

0
1 1

w

w
w ln −= . 

Now, we state the local existence of the problem (1)-(6) 

and the proof follows very carefully the techniques used in 

[19]. 

Theorem 2.3 (Local existence) Assume that the 

assumptions (14)-(17) hold. Suppose further that 

1 0p q ρ, > , > , then for any initial data 1

0 0 0u v H, ∈  and 

2

1 1u v L, ∈ , there exists a local weak solution ( )u v,  of 
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problem (1)-(6) defined in 0[0 ]T,  for some 0 0T >  and 

satisfies the energy identity. 

1 1

1 1
0

( ) (|| ( ) || || ( ) || ) (0)
t

p q

s p s qE t u s v s ds E
+ +
+ ++ + = ,∫          (19) 

where ( )E t  is defined by  

12 2 2 2

0

1 1
( ) ( ) ( )

2 2 2
t t x x

k
E t u v u u v F u v dx= + + + + − , ,∫    (20) 

and 

12 22 2

1 1 0 0 0 0 0
0

1 1
(0) ( ) ( )

2 2 2
x x

k
E u v u u v F u v dx= + + + + − , .∫                                      (21)

3. Global Existence and Decay of 

Solution 

In this section, we discuss the global existence and decay 

of the solution for problem (1)-(6). In order to do so, let us 

introduce the functions 

12 2

0

1
( ) ( ( ) ( )) ( ) ( )

2
x xJ t J u t v t u k u v F u v dx= , = + + − , ,∫     (22) 

12 2

0
( ) ( ( ) ( )) 2( 2) ( )x xI t I u t v t u k u v F u v dxρ= , = + + − + , .∫   (23) 

It follows from Theorem 2.3 that  

1 1

1 1
( )

p qd
t tdt p q

E t u v
+ +

+ +
= − − ,                    (24) 

then the energy function ( )E t  is a nonincreasing function. 

Now, we define 

1 1

0 0{( ) ( ) 0} {(0 0)}W u v H H I u v= , ∈ × , , > ∪ , .      (25) 

Lemma 3.1 There exist 0η >  such that for any 

1 1

0 0( )u v H H, ∈ × , the following inequality holds, 

2( 2) 2 2 2 2 22 2 2

22( 2) 2
2 ( ) ( )x x x xu v uv u u u k u v

ρ ρ ρ ρ ρ
ρ ρ

η ηα+ + + + +
+ +

+ + ≤ + ≤ + + .                                    (26) 

Proof A combination of the following inequality [20]  

2( 2) 2( 2) 2 2 2

2( 2) 2( 2)
2 ( )x xu v uv u u

ρ ρ ρ
ρ ρ

η+ + +
+ +

+ + ≤ + ,  

with Lemma 2.1 yields (26). 

Lemma 3.2 Let 0 0( )u v W, ∈  and 2 2

1 1( )u v L L, ∈ × , such 

that  

     
2( 2)2 1

2 1
( (0)) 1E

ρρ ρ
ρβ ηα ++ +

+= < ,                  (27) 

then ( )u v W, ∈  for each 0t > . 

Proof Since (0) 0I > , then it follows from the continuity 

of ( )u t  that ( ) 0I t >  for some interval near 0t = . Let mT  be 

the maximum time ( possible mT T= ) when ( ) 0I t >  on 

[0 ]mT, . This implies that for all [0 ]mt T∈ , . 

2 2 2 21 11

2( 2) 2( 2) 2( 2)
( ) ( ) ( ) ( )x x x xJ t u k u v I t u k u v

ρ ρ
ρ ρ ρ

+ +
+ + += + + + ≥ + + .                                   (28) 

Hence, we get 

2 2 2( 2) 2( 2) 2( 2)

1 1 1
( ) ( ) (0)x xu k u v J t E t E

ρ ρ ρ
ρ ρ ρ

+ + +
+ + ++ + ≤ ≤ ≤ .   (29) 

By recalling (2.4), (2.5) and (3.5), we have 

1 2 22 2

2
0

2( 2) ( ) ( )x xF u v dx u k u vρ ρρ ηα + ++ , ≤ + +∫
2 22( 2)2 1

2 1
( (0)) ( )x xE u k u v

ρρ ρ
ρηα ++ +

+≤ + +
2 2

[0 ]
x x m

u k u v on t T< + + , ∈ , .                  (30) 

Therefore, we conclude that ( ) 0I t >  for all [0 ]
m

t T∈ , . By 

repeating the procedure, 
m

T  is extended to T . The proof of 

Lemma 3.2 is completed. 

Also, the following inequality is easily obtained 

2( 2)2 1
2 1

2 2 1

1 ( (0))
( )x x E

u k u v I tρρ ρ
ρηα ++ +

+−
+ + ≤ .        (31) 

Theorem 3.3 Suppose that (14)-(17) hold. If 
0 0

( )u v W, ∈  

satisfying (27), then the solution of problem (1)- (6) is global. 

Proof It is sufficient to show that 
2 2 2 2

t t x x
u v u k u v+ + + +  is bounded for bounded t . To 

achieve this, we use the fact that ( )E t  is a nonincreasing 

function and ( ) 0I t >  by Lemma 3.2, to obtain  

2 2 2 211

2 2( 2)
(0) ( ) ( ) ( )t t x xE E t u v u k u v

ρ
ρ

+
+> ≥ + + + +  

Therefore, 

2 2 2 2
(0)

t t x x
u v u k u v CE+ + + + < ,  



4 Qingying Hu et al.:  Existence and Stability of Solutions for Semilinear Timoshenko System with Damping and Source Terms  

 

where 
2( 2)

1
{2 }C max

ρ
ρ

+
+= , . Then by Theorem 2.3, we have the 

global existence result. 

Theorem 3.4 Let the assumptions of Theorem 3.3 hold, 

thus we have the following decay estimates 

1

1

[ 1]

2

( ) (0) 1

( ) [ (0) [ 1] ] 1

w t
E t E e if p q

E t E w t if p qαα

+− −

− +

≤ , = = ,

≤ + − , , > ,
 

where 1 2w w α, ,  are positive constants.  

Proof By integrating (24) over [ 1]( 0)t t t, + > , we have 

1 1 1 1 1

1 21 1
( ) ( 1) ( ( ) ( ) ) ( 1) ( ) ( )

t p q p q

s sp qt
E t E t u s v s ds E t D t D t

+ + + + +
+ +

= + + + = + + + .∫                            (32) 

By virtue of (32) and Hölder inequality, we observe that 

1 1
2 2

1
0

( ) ( )
t

s
t

u s dxds CD t
+

| | ≤ ,∫ ∫            (33) 

1 1
2 2

2
0

( ) ( )
t

s
t

v s dxds CD t
+

| | ≤ .∫ ∫            (34) 

Hence, from (3.12) and (3.13), there exist 1
1 4

[ ]t t t∈ , +  and 
3

2 4
[ 1]t t t∈ + , +  such that 

1 2( ) ( ) ( ) ( ) 1 2t i t iu t CD t v t CD t i≤ , ≤ , = , .     (35) 

Multiplying equation (1) by u , equation (2) by v , then 

adding them and integrating it over 1 2[0 1] [ ]t t, × , , we get  

2 2 2

1 1 1

1 1
1 1

0 0
( ) ( ) ( )

t t t
p q

tt tt t t t t
t t t

I t dt uu vv dxdt u u u v v v dxdt
− −≤ − + − | | + | | .∫ ∫ ∫ ∫ ∫                        (36) 

Integrating by parts and using Cauchy-Schwartz inequality 

in the first term of the right hand side of (36), we obtain  

2

1 1 1

( ) || ( ) |||| ( ) || || ( ) |||| ( ) ||
m mt

t i i t i i
t

i i

I t dt u t u t v t v t
= =

≤ +∑ ∑∫
2 2

1 1

12 2 1 1

0
( ( ) ( ) ) ( )

t t
p q

t t t t t t
t t

u t v t dt u u u v v v dxdt− −+ + − | | + | | .∫ ∫ ∫   (37) 

Now we estimate the last term in the right hand side of 

(37). By using Hölder inequality and embedding theorem 

(e.g., [20-21]) and (29), we find 

2 2

1 1

1
1

1 10
| | || ||

t t
p p

t t t p pt t
u u udxdt u u dt

−
+ +

≤∫ ∫ ∫
2

1
1|| ||

t
p

t p x
t

C u u dt∗ +≤ ∫  

1 1 2
2 2

1
1 2

2( 2)

11
( ) sup ( ) || ||

t
p

t p
tt s t

C E s u dt
ρ
ρ

+
∗ ++

≤ ≤
≤ ∫  

1 1
2 2

1 2

2( 2)

11
( ) ( ) sup ( )

p

t s t

C D t E s
ρ
ρ

+
∗ +

≤ ≤
≤ .              (38) 

From (29), (30) and Poincare inequality, we have 

1
2

1 2

1( ) ( ) ( ) sup ( ) 1 2t i i
t s t

u t u t CD t E s i
≤ ≤

≤ , = , .         (39) 

Similarly, we get 

1 12 2
2 2

1 1
1 2

1
2( 2)1

1 2110
|| || ( ) ( ) sup ( )

t t
q q q

t t t q pt t t s t

v v vdxdt v v dt C D t E s
ρ
ρ

+−
+ ∗ ++ ≤ ≤

| | ≤ ≤ .∫ ∫ ∫  (40) 

1
2

1 2

2( ) ( ) ( ) sup ( ) 1 2t i i
t s t

v t v t CD t E s i
≤ ≤

≤ , = , .      (41) 

Then, by (37)- (41) and (33), (34), we have 

12
2

1
1 2

1 2( ) {( ( ) ( )) sup ( )
t

t t s t

I t dt C D t D t E s
≤ ≤

≤ +∫  

1 1
2 2

1 2

2( 2)2 2

1 2 1 21
( ) ( ) ( ) ( ( ) ( )) sup ( )}p q

t s t

D t D t C D t D t E s
ρ
ρ

+
∗ +

≤ ≤
+ + + +    (42) 

On the other hand, from (31), we obtain 

2 2 2 211 1
2 2( 2) 2( 2)

( ) ( ) ( ) ( )
t t x x

E t u v u k u v I t
ρ
ρ ρ

+
+ += + + + + +

2 21
2
( ) ( )

t t
u v CI t≤ + + ,                       (43) 

where 
2 ( 2 )2 1

2 1

1 1

2( 2)2( 2)[1 ( (0)) ]E
C ρρ ρ

ρ

ρ
ρρ ηα ++ +

+

+
++ −

= + .  Integrating (43) 

over 1 2[ ]t t, , by (33), (34) and (42), we have 

2 2 2

1 1 1

2 21
( ) ( ) ( )

2

t t t

t t
t t t

E t dt u v dt C I t dt≤ + +∫ ∫ ∫
1
2

1 2

2 21
1 2 1 2 12

( ( ) ( )) {( ( ) ( )) sup ( ) ( ( )
p

t s t

C D t D t C D t D t E s D t
≤ ≤

≤ + + + +

1
2

1 2

2 ( )) sup ( )}
q

t s t

D t E s
≤ ≤

+ .                   (44) 

By integrating (24) over 2[ ]t t, , we obtain  

2 1 1

2 21 1
( ) ( ) ( ( ) ( ) ) ( )

t p q

s sp qt
E t E t u s v s ds E t

+ +

+ +
= + + ≥ .∫   (45) 

Therefore, since 1
2 1 2

t t− > , integrating (45) over 1 2[ ]t t, , 

we conclude that  

2 2

1 1

1
2 22

( ) ( ) ( )
t t

t t
E t dt E t dt E t≤ ≤ ,∫ ∫  

that is, 

2

1
2( ) 2 ( )

t

t
E t E t dt≤ ∫ .                        (46) 

Since 1 2 1t t t t< , < + , and ( )E t  is nonincreasing, then by 

(32), (44) 

1 1

1 2( ) ( 1) ( ) ( )p qE t E t D t D t+ += + + + 1 1

1 2( ) ( ) ( )p qE t D t D t+ +≤ + +
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2

1

1 1

1 2
2 ( ) ( ) ( )

t
p q

t
E t dt D t D t+ +≤ + +∫

2 2 1 1

1 2 1 2( ( ) ( ) ( ) ( ))p qC D t D t D t D t+ +≤ + + +
1
2

1 2 1 2
( ( ) ( ) ( ) ( )) ( )p qC D t D t D t D t E t+ + + + .      (47) 

It follows from Young’s inequality that 

2 2 1 1 2 2

1 2 1 2 1 2( ) ( ( ) ( ) ( ) ( ) ( ) ( ))p q p qE t C D t D t D t D t D t D t+ +≤ + + + + + .  (48) 

If , then 

2 2

1 2( ) ( ( ) ( ) ( ( ) ( 1))E t C D t D t C E t E t≤ + = − + .  

If 1p q, > , then from (48), (32) and ( ) (0)E t E< , we 

arrive to 

1 2( 1) 1 2( 1

1 1 1 1

2 1 2( 1) 2 1 2( 1)

1 1 1 2 2 2

2 2 1 2( 1) 1 2( 1)

1 2 1 1 2 2

2 2

1 2

2

1

( ) ( )(1 ( ) ( )) ( )(1 ( ) ( ))

( ( ) ( ))(1 ( ) ( )))

( ( ) ( ))(1 (0) (0) (0) (0))

(

p p q q

p p q q

p p q q

p p q q

E t CD t D t D t CD t D t D t

C D t D t D t D D D t

C D t D t E E E E

C D

− − − −
+ + + +

− − − −

− − − −

≤ + + + + +

≤ + + + + +

≤ + + + + +

≤ 2

2( ) ( )t D t+ .

Let 
1 1

2 2
max{ }

p qα − −= ,  and max{ 1 1}p qβ = + , + , then we 

obtain 

1 2 2 1

1 2 1 2( ) ( ( ) ( )) ( ( ) ( ))E t C D t D t C D t D tα α β β+ +≤ + ≤ +
1 1 1 1

1 1 2 2( ( ) ( ) ( ) ( )p p q qC D t D t D t D tβ β+ − − + − −= +
1 1

1 11 1

1 2( ( ) (0) ( ) (0)
p q

p pp q
C D t E D t E

β β− − − −
+ ++ +≤ +

1 1

1 2( ( ) ( ) ( ( ) ( 1))p qC D t D t C E t E t+ +≤ + = − + .      (49) 

Thus, from (49) and Lemma 2.2, we complete the proof. 
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