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Abstract: The compound Poisson risk model is a probabilistic model commonly used to evaluate the financial risk of an
insurance company. This model assumes that claims arrive according to a Poisson process and that claim sizes follow an
independent probability distribution. This paper presents an extension of this model, incorporating a dividend payment strategy
with a constant threshold b. This extension allows for a better representation of the reality of insurance companies, which
typically pay dividends to their shareholders. The traditional assumption of independence between claim sizes and interclaim
intervals is also relaxed in this extension. This relaxation allows for recognition of the potential dependence between these
variables, which can have a significant impact on the company’s ruin probability. The Spearman copula is used to model the
dependent structure between claim sizes and interclaim intervals. The Spearman copula is a function that measures the degree
of dependence between two variables. It is used in many fields, including insurance, finance, and statistics. The study focuses
on the Laplace transform of the adjusted penalty function. The adjusted penalty function is a function that allows for the
determination of the company’s ruin probability. The results of the study show that the dependence between claim sizes and
interclaim intervals can have a significant impact on the company’s ruin probability. In particular, positive dependence between
these variables can increase the ruin probability.

Keywords: Gerber-Shiu Functions, Dependency, Integro-differential Equation, Laplace Transformation, Probability of Ruin

1. Introduction

Mathematical models continue to be developed every day in
response to a better understanding of risks and their evolution
with the simplifying assumption of independence between the
random variables involved in risk modellinge (See for example
references [10, 15, 18]). However, in certain practical contexts,
this assumption should be relaxed because it is unsuitable and

too restrictive. For example, in flood damage insurance, the
occurrence of several floods in a short period of time can
generate large amounts of damage and therefore large amounts
of claims. In earthquake insurance, the opposite is true,
because in a high-risk area, the longer the time between two
earthquakes, the greater the impact of the second earthquake
due to the accumulation of energy.

To compensate for this inadequacy due to the simplifying
assumption of independence between the random variables
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involved in risk modelling, in many works, dependence
between certain random variables is incorporated into the risk
model, in particular the variables amount of claims and time
between claims, thanks to the Farlie Gumbel Morgenstern
copula see for example references [4, 5, 9, 11, 16]. Although
this copula is commonly used in the literature, it has certain
limitations. It fails to model tail dependencies (see references
[2, 3]).

To remedy the inadequacy of the Farlie Gumbel
Morgenstern copula, this article proposes a composite Poisson
risk model that takes account of the reality of insurance
companies. This model includes the dependence between
the variables claim amounts and inter-claim periods via the
Spearman copula, as well as a strategy of paying dividends to
shareholders with a constant threshold b. In the risk model with
a constant threshold dividend payment b, when the surplus
process reaches the constant threshold barrier b set, bonuses
are paid in full to shareholder. Denoting by Ub (t) the surplus
process in the presence of the dividend barrier of level b (with
Ub (0) = u), the model follows the following dynamics:

dUb (t) =

{
cdt− dS (t) if Ub (t) < b,
−dS (t) if Ub (t) = b

(t ≥ 0) (1)

where:
1. Ub (t) is the surplus process in the presence of a

threshold dividend barrier b (with Ub (0) = u the initial
surplus and 0 < u ≤ b);

2. c is the constant rate of premium received by the insurer
per unit time;

3. S (t) =
N(t)∑
i=1

Xi is the aggregate Poisson loss process

composed of:
a. {N (t) , t ≥ 0} the total number of claims

recorded up to time t which follows a Poisson
process of intensity λ ¿ 0; (Note that S (t) = 0 if
N (t) = 0);

b. {Xi, i ≥ 1} a sequence of random variables
representing the individual amounts of claims
with common density function f and distribution
function F and assumed to have an exponential
distribution with parameter β.

4. The inter-claim times {Vi, i ≥ 1} form a sequence of
random variables with exponential law of parameter

λ, probability density function k (t) =λe−λt and
distribution function K (t) = 1− e−λt;

The aim of this work is to determine the probability of ruin
in the risk model defined by the relation (1). To achieve this,
the rest of the article is structured as follows: In section (2),
In section (1) and present the tail dependency structure. In
section (3), wwe determine the integro-differential equation
satisfied by the Gerber Shiu function in the risk model defined
by relation (1), then The next step involves determining the
Laplace transform of the Gerber Shiu function, which proves
highly suitable for risk quantification. This is followed by
the derivation of the probability of ruin within the risk model
defined by relation (1).

2. Preliminaries

2.1. Probability of Ruin

The insurer’s probability of ruin is the probability of ruin
occurring either over a finite horizon or over an infinite
horizon. In the latter case, it is referred to as the ultimate
probability of risk.

Let τ be the moment of ruin of the insurance company. τ is
defined by:

τ = inf {t ≥ 0, Ub (t) < 0} . (2)

In the scenario where the probability of ruin remains
invariably zero, the convention dictates assigning τ = ∞.
Under this condition, the following inequality holds

Ub (t) ≥ 0,∀t ≥ 0.

The probability of ultimate ruin is defined by:

ψb (u) = P [τ <∞|Ub (0) = u ] (3)

2.2. Gerber-Shiu Discounted Penalty Function

The Gerber-Shiu expected penalty function, or Gerber-Shiu
function, first appeared in 1998 in the work of Gerber and Shiu.
Today, this function is of great research interest. Its analysis
remains a central issue in both insurance and finance, as it is a
valuable tool not only for studying the probability of ruin, but
also for calculating pension and reinsurance premiums, pricing
options, etc. It is defined by:

φb (u) = E
[
e−δτw

(
Ub
(
τ−
)
, |Ub (τ)|

)
1{τ<∞} |Ub (0) = u

]
(4)

where:
1. τ is the instant of ruin defined by the relation (2);
2. τ− is the instant just before ruin;
3. δ is a force of interest;
4. The penalty function w (x, y) is a positive function of

the surplus just before ruin Ub (τ
−) and the deficit at

ruin |Ub (τ)|, ∀ x, y ≥ 0;
5. 1 is the indicator function which is 1 if event A occurs

and 0 otherwise.

2.3. Dependency Model Based on Spearman’s Copula

Copulas, introduced by Abe Sklar in 1959, are an innovative
and relevant tool for introducing dependency between several
random variables to introduce dependence between several
random variables. Given the marginal distribution functions
of several random variables, copulas can be used to establish



International Journal of Systems Science and Applied Mathematics 2024; 9(1): 1-8 3

their joint distribution function. Copulas are now a basic tool
for modelling multivariate distributions in finance, insurance
and hydrology. Reference works on copula theory include Joe
(see [7]) and Nelsen (see [6]). In this paper, the dependence
structure is provided by the Spearman copula. It is defined for
any (u, v) ∈ [0, 1]

2 and α ∈ [0, 1] by:

Cα (u, v) = (1− α)CI (u, v) + αCM (u, v) , (5)

Where:
CI (u, v) = uv; CM (u, v) = min (u, v); α is the

dependence parameter.
Spearman’s copula allows for introducing positive

dependence as well as tail dependencies in many situations.
It also encompasses independence when α = 0. Using the
formula (5), the joint distribution function of the random
vector representing claim amounts and inter-arrival times
(X,V ) is given by (see [3]):

FX,V (x, t) = Cα (FX (x) , FV (t)) = (1− α)FI (x, t) + αFM (x, t) , (6)

where FX , FV are the marginal distributions of the random variables X and V .
To preclude ruin as a certain event, the following net profit condition is assumed:

E (cW −X) > 0. (7)

The relationship (7) is equivalent to c > β
λ .

In the risk model defined by the equation (1), the Gerber-Shiu function φb (u) takes the following form (see reference [2] or
[3]):

φb (u) = (1− α) (Ib,1 (u) + Ib,2 (u)) + α (Ib,3 (u) + Ib,4 (u)) , (8)

where

Ib,1 (u) =

∫ b−u
c

0

∫ u+ct

0

e−δtφb (u+ ct− x) dFI (x, t) +
∫ b−u

c

0

∫ ∞
u+ct

e−δtw (u+ ct, x− u− ct) dFI (x, t) ,

Ib,2 (u) =

∫ ∞
b−u
c

∫ b

0

e−δtφb (b− x) dFI (x, t) +
∫ ∞
b−u
c

∫ ∞
b

e−δtw (b, x− b) dFI (x, t) .

Ib,3 (u) =

∫ b−u
c

0

∫ u+ct

0

e−δtφb (u+ ct− x) dFM (x, t) +

∫ b−u
c

0

∫ ∞
u+ct

e−δtw (u+ ct, x− u− ct) dFM (x, t) ,

Ib,4 (u) =

∫ ∞
b−u
c

∫ b

0

e−δtφb (b− x) dFM (x, t) +

∫ ∞
b−u
c

∫ ∞
b

e−δtw (b, x− b) dFM (x, t) .

Indeed, in order to derive the integro-differential equation
satisfied by the Gerber-Shiu function φb (u) in the risk model
defined by equation (1), the following approach has been
adopted:

1. The first claim occurs at time t before the surplus
process reaches the barrier b, (t < b−u

c ). Its amount,
x, satisfies x < u+ ct.

2. The first claim occurs at time t before the surplus
process has reached the barrier b, (t < b−u

c ). Its amount,
x, satisfies u+ ct < x.

3. The first claim occurs at time t after the surplus process
has reached the barrier b, (t > b−u

c ). Its amount, x,
satisfies x < b.

4. The first claim occurs at time t after the surplus process
has reached the barrier b, (t > b−u

c ). Its amount, x,
satisfies x > b.

By conditioning on the time and the amount of the first claim
and taking into account the various preceding scenarios, it can
be shown that:

Ib,1 (u) =

∫ b−u
c

0

∫ u+ct

0

e−δtφb (u+ ct− x) dFI (x, t) +
∫ b−u

c

0

∫ ∞
u+ct

e−δtw (u+ ct, x− u− ct) dFI (x, t) ,

Ib,2 (u) =

∫ ∞
b−u
c

∫ b

0

e−δtφb (b− x) dFI (x, t) +
∫ ∞
b−u
c

∫ ∞
b

e−δtw (b, x− b) dFI (x, t) .

By defining Ib (u) = Ib,1 (u) + Ib,2 (u), t can be shown that:

Ib (u) = λ

∫ b−u
c

0

∫ u+ct

0

e−(δ+λ)tφb (u+ ct− x) fX (x) dxdt+ λ

∫ b−u
c

0

∫ ∞
u+ct

e−δτw (u+ ct, x− u− ct) fX (x) dxdt

+λ

∫ ∞
b−u
c

∫ b

0

e−(δ+λ)tφb (b− x) fX (x) dxdt+ λ

∫ ∞
b−u
c

∫ ∞
b

e−δτw (b, x− b) fX (x) dxdt (9)
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The notation of equation (9) can be simplified by introducing:

ω (u) =

∫ ∞
u

w (u, x− u) fX (x) dx; (10)

σb (u) =

∫ u

0

φb (u− x) fX (x) dx+ ω (u) (11)

The equation (9) becomes:

Ib (u) = λ

∫ b−u
c

0

e−(δ+λ)tσb (u+ ct) dt+ λ

∫ ∞
b−u
c

e−(δ+λ)tσb (b) dt (12)

By setting s = u+ ct, equation (12) becomes:

Ib (u) =
λ

c

[∫ b−u
c

u

e−(δ+λ)
s−u
c σb (s) ds +

∫ ∞
b−u
c

e−(δ+λ)
s−u
c σb (b) ds

]
(13)

The equation (13) can be expressed simply as:

Ib (u) =
λ

c

∫ ∞
u

e−(
δ+λ
c )(s−u)σb (s ∧ b) ds, (14)

where s ∧ b = min (s, b).
Now, let’s determine the integrals Ib,3 (u) and Ib,4 (u).

The support of copulaCM isD =
{
(u, v) ∈ [0, 1]

2
: u = v

}
.

On the domain [0, 1]
2 \D, ∂

2CM
∂u∂v = 0.

On D, CM follows a uniform distribution.
As the dependence structure between the claim amounts

and inter-arrival times is described by copula CM , they
are monotonic, and almost surely there exists an increasing
function l such that X = l(V ) (see Nelsen 2006, page 27).
It follows that (see [3]):

l (t) =
λ

β
t (15)

The joint distribution FX,V (x, t) of the random vector
(X,V ) is singular, with its support being the domain

D′ =

{
(x, t) : x =

λ

β
t

}
. (16)

Its distribution is G(t) = FM (l (t) , t) = 1 − e−λt on the
domain D′ =

{
(x, t) : x = λ

β t
}

.
The integral Ib,3 (u) becomes:

Ib,3 (u) =

∫ b−u
c

0

∫ u+ct

0

e−δtφb (u+ ct− x) dFM (x, t) +

∫ b−u
c

0

∫ ∞
u+ct

e−δtw (u+ ct, x− u− ct) dFM (x, t)

=

∫
K

e−δtφb

(
u+ ct− λ

β
t

)
dG (t) +

∫
J

e−δtφb

(
u+ ct− λ

β
t

)
dG (t) (17)

where K =
{
t ∈ R+ : 0 ≤ t ≤ b−u

c , 0 ≤ x = λ
β t ≤ u+ ct

}
=
[
0, b−uc

]
,car c > λ

β (solvency condition: E [cV −X] > 0) and
u ≥ 0.

And K =
{
t ∈ R+ : 0 ≤ t ≤ b−u

c , x = λ
β t ≥ u+ ct

}
= ∅,as c > λ

β and u ≥ 0.

Using equation (15), the integral Ib,3 (u) can be expressed as:

Ib,3 (u) = λ

∫ b−u
c

0

e−(δ+λ)tφb

(
u+ ct− λ

β
t

)
dt. (18)

By analogy, it can be shown that:

Ib,4 (u) =

∫ ∞
b−u
c

∫ b

0

e−δtφb (b− x) dFM (x, t) +

∫ ∞
b−u
c

∫ ∞
b

e−δtw (b, x− b) dFM (x, t)

=

∫
K′
e−δtφb (b− x) dG (t) +

∫
J′
e−δtw (b, x− b) dG (t) , (19)
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where K ′ =
{
t ∈ R+ : t ≥ b−u

c , 0 ≤ x = λ
β t ≤ b

}
=
[
b−u
c ; bβλ

]
, as c > λ

β (solvency condition: E [cV −X] > 0) and u ≥ 0.

And,
J ′ =

{
t ∈ R+ : t ≥ b−u

c , x = λ
β t ≥ u+ ct

}
=
[
bβ
λ ,+∞

[
,as c > λ

β and u ≥ 0.

The equation (19) takes the form

Ib,4 (u) =

∫ bβ
λ

b−u
c

e−δtφb

(
b− λ

β
t

)
dG (t) +

∫ ∞
bβ
λ

e−δtw

(
b,
λ

β
t− b

)
dG (t)

= λ

∫ bβ
λ

b−u
c

e−(δ+λ)tφb

(
b− λ

β
t

)
dt+ λ

∫ ∞
bβ
λ

e−(δ+λ)tw

(
b,
λ

β
t− b

)
dt (20)

Let’s define Ĩb (u) = Ib,3 (u) + Ib,4 (u) . By using equations (18) and (20), It can be shown that:

Ĩb (u) = λ

∫ b−u
c

0

e−(δ+λ)tφb

(
u+ ct− λ

β
t

)
dt+ λ

∫ bβ
λ

b−u
c

e−(δ+λ)tφb (b− x) dt

+λ

∫ ∞
bβ
λ

e−(δ+λ)tw

(
b,
λ

β
t− b

)
dt (21)

The equation (21) can be expressed as:

Ĩb (u) = λ

∫ bβ
λ

0

e−(δ+λ)tφb ((u+ ct) ∧ b) dt+ λ

∫ ∞
bβ
λ

e−(δ+λ)tw

(
b,
λ

β
t− b

)
dt (22)

By making a change of variable in each of the integrals in equation (22) s = u+ ct and s = λ
β t− b, it can be shown that::

Ĩb (u) =
λ

c

∫ u+ bβc
λ

u

e−(
δ+λ
c )(s−u)φb (s ∧ b) ds+ β

∫ ∞
0

e−
β
λ (δ+λ)(s+b)w (b, s) ds (23)

From equations (8), (14) and (23), the Gerber-Shiu function φb (u) can be expressed as:

φb (u) = (1− α)
(
λ

c

∫ ∞
u

e−(
δ+λ
c )(s−u)σb (s ∧ b) ds

)
+ α

(
λ

c

∫ u+ bβc
λ

u

e−(
δ+λ
c )(s−u)φb (s ∧ b) ds

+ β

∫ ∞
0

e−
β
λ (δ+λ)(s+b)w (b, s) ds

)
(24)

3. Main Results
This section presents the main results.
Theorem 3.1. The ultimate probability of ruin ψb (u) has the expression:

ψb (u) =
λ

cβ
(1− α) e−

(cβ−λ)+λα
c u, 0 ≤ u ≤ b. (25)

To prove the theorem, consider the following lemma.
Henceforth, the Laplace transform of a function f(x) will be denoted as

f̂(s) =

∫ ∞
0

e−sxf (x) dx

Lemma 3.1. The Laplace transform of the ultimate probability of failure has the expression:

ψ̂b (s) =
cs (s+ β)ψb (0) + λα (s+ β) e−bβ (ψb (b)− 1)− λ (1− α) s

s2 (cs+ cβ − λ (1− α))
(26)



6 Kiswendsida Mahamoudou Ouedraogo et al.: Improving Risk Assessment and Pricing with Dividend Barriers and
Dependence Modelling: An Extension of the Cramer-Lundberg Model with Spearman Copulas

For the proof of the lemma (3.1), consider the following lemma.
Let D = d

du (·) and I denote the differentiation and identity operators respectively.
Lemma 3.2. The Gerber-Shiu function φ (u) satisfies the following integral-differential equation:

(
D−δ + λ− λα

c
I
)
φb (u) = −λ

c
(1− α)σb (u) +

λα

c
e−(

δ+λ
λ )bβcφb (b)

−αβ
(
δ + λ

c

)∫ ∞
0

e−
β
λ (δ+λ)(s+b)w (b, s) ds, (27)

Proof [Proof of the lemma (3.2)] Let us derive the function φb (u) in the relation (24) with respect to u.

φ′b (u) =
λ

c
(1− α)

(
δ + λ

c

)∫ ∞
u

e−(
δ+λ
c )(s−u)σb (s ∧ b) ds+

λα

c

(
δ + λ

c

)∫ u+ bβc
λ

u

e−(
δ+λ
c )(s−u)φb (s ∧ b) ds

−λ
c
(1− α)σb (u)−

λα

c
φb (u) +

λα

c
e−(

δ+λ
λ )bβcφb (b) (28)

Using the formulas (24) and (28), let’s calculate: g (u) =
(
D− δ+λ−λαc I

)
φb (u) .

g (u) = −λ
c
(1− α)σb (u) +

λα

c
e−(

δ+λ
λ )bβφb (b)− βα

(
δ + λ

c

)∫ ∞
0

e−
β
λ (δ+λ)(s+b)w (b, s) ds (29)

This gives the formula (27).
Consider the following result.
Lemma 3.3. The Gerber-Shiu function φb(u) has the Laplace transform φ̂b (s) defined by:

φ̂b (s)=
φb (0) +

λα
sc e
−( δ+λλ )bβφb (b)− β

(
δ+λ
sc

) ∫∞
0
e−

β
λ (δ+λ)(s+b)w (b, s) ds− λ

c (1− α) ω̂ (s)

s− δ+λ−λα
c + λβ(1−α)

c(s+β)

(30)

Proof [Proof of the lemma (3.3)] Let’s apply the Laplace transformation to both members of the integro-differential equation
(27), it can be shown that:∫ ∞

0

e−su
(
D−δ + λ− λα

c
I
)
φb (u) du = sφ̂b (s)− φb (0)−

δ + λ− λα
c

φ̂b (s) (31)

and

∫ ∞
0

e−su
[
−λ
c
(1− α)σb (u) +

λα

c
e−(

δ+λ
λ )bβφb (b)− βα

(
δ + λ

c

)∫ ∞
0

e−
β
λ (δ+λ)(s+b)w (b, s) ds

]
du

= −λ
c
(1− α) σ̂b (s) +

λα

sc
e−(

δ+λ
λ )bβcφb (b)− βα

(
δ + λ

sc

)∫ ∞
0

e−
β
λ (δ+λ)(s+b)w (b, s) ds. (32)

From the formula (10), it can be shown that σb (u) =
∫ u
0
φb (u− x) fX (x) dx + ω (u) = fX ∗ φb (u) + ω (u) and therefore

σ̂b (s) = f̂X (s) φ̂b (s) + ω̂ (s) = β
s+β φ̂b (s) + ω̂ (s) .

From the formulas (31) and (32), the following formula is derived:

φ̂b (s) =
φb (0) +

λα
sc e
−( δ+λλ )bβφb (b)− αβ

(
δ+λ
sc

) ∫∞
0
e−

β
λ (δ+λ)(s+b)w (b, s) ds− λ

c (1− α) ω̂ (s)

s− δ+λ−λα
c + λβ(1−α)

c(s+β)

.

The probability of ruin, denoted as ψ,, is obtained when the
force of interest δ = 0 nd the penalty function w(x, y) =
1. The Gerber-Shiu function φb (u) then reduces to the
ultimate probability of ruin ψb (u).

Proof [Proof of the lemma (3.1)] Substituting ω̂ (s) by

1
s+β and substituting

∫∞
0
e−

β
λ (δ+λ)(s+b)ds by e−

β
λ

(δ+λ)b

β
λ (δ+λ)

in the
formula (30), it can be shown that:
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ψ̂b (s) =
ψb (0) +

λα
sc e
−bβ (ψb (b)− 1)− λ(1−α)

c(s+β)

s− λ(1−α)
c + λβ(1−α)

c(s+β)

. (33)

Mutiplying the numerator and denominator in the formula
(33) buy cs (s+ β) gives the formula (26).

Proof [Proof of the theorem (3.1)] Examination of formula
(26) reveals a denominator that is evidently a polynomial of
degree 3 in s, indicating the presence of poles.

R0 = 0,

R1 = − (cβ − λ) + λα

c
. (34)

Its numerator is a polynomial of degree 2 in s.
Decomposing ψ̂b (s) into simple elements gives:

ψ̂b (s) =
A

s
+
B

s2
+

C

s−R1
. (35)

The formula (35) is equivalent to

ψ̂b (s) =
c (A+ C) s2 + c (B −AR1) s− cBR1

s2 (cs+ cβ − λ (1− α))
. (36)

By identifying the formulas (26) and (36), the following
formulas are obtained:

A+ C = ψb (0) (37)

B −AR1 = βψb (0) +
λα

c
e−bβ (ψb (b)− 1)

−λ
c
(1− α) (38)

B =
αβλ

cR1
e−bβ (1− ψb (b)) (39)

By inverting the Laplace transform of the formula (35) it can
be shown that:

ψb (u) = A+Bu+ CeR1u (40)

Since lim
u→+∞

ψb (u) = 0 (see [19]) and R1 < 0, it can be

shown that

A = 0 (41)
B = 0 (42)

From the formulas (39) and (42), it can be shown that

ψb (b) = 1. (43)

From the formulas (38), (39) and (42), it can be shown that

A =
λ

cR1
(1− α)− β

R1
ψb (0) . (44)

From the formulas (41) and (44), it can be shown that

ψb (0) =
λ

cβ
(1− α) (45)

From the formulas (37), (41) and (45), it can be shown that

C =
λ

cβ
(1− α) (46)

From the formulas (40),(42), (46) and (41) ψb (u)can be
written as:

ψb (u) =
λ

cβ
(1− α) eR1u. (47)

The derivation of formula (3.1) proceeds from the
application of formulas (34) and (47).

Example 3.1. With parameters fixed at c = 0.5; λ = 0.3;
β = 1; and b = 10, MATLAB is employed to generate curves
depicting probabilities of failure corresponding to diverse
values of the dependency parameter α.

Figure 1. Curve of ψb(u) as a function of u for various values of α.

The probability of ruin ψb (u) is the decreasing function of
the dependence parameter α.

4. Conclusion

This article investigates the Gerber-Shiu penalty function
within the framework of a compound fish-risk model
employing a shareholder dividend strategy, a constant
threshold (b), and a Spearman’s copula-based dependence
between claim amounts and inter-claim times. The probability
of ultimate ruin is a special case within this context. An
integral-differential equation for the Gerber-Shiu function and
its Laplace transform has been established. Through this
analysis, the Laplace transform of the probability of ruin
and an explicit formula for the probabilities of ruin were
subsequently derived.
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[3] Delwendé Abdoul-Kabir Kafando, Victorien Konané,
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