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Abstract: This paper presents the comparison of three different and unique finite difference schemes used for finding the 

solutions of parabolic partial differential equations (PPDE). Knowing fully that the efficiency of a numerical schemes depends 

solely on their stability therefore, the schemes were compared based on their stability using von Newmann method. The 

implicit scheme and Dufort-Frankel schemes using von Newmann stability method are unconditionally stable, while the explicit 

scheme is conditionally stable. The schemes were also applied to solve a one dimensional parabolic partial differential equations 

(heat equation) numerically and their results compared for best in efficiency. The numerical experiments as seen in the tables 

presented and also the percentage errors, which proves that the implicit scheme is good compare to the other two schemes. 

Also, the implementation of the implicit scheme is faster than that of the explicit and Dufort-Frankel schemes. The results 

obtained in work also compliment and agrees with the results in literature. 
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1. Introduction 

The time-dependent diffusion equation of the form 

��
�� �

���
���		                                (1) 

describing a damp diffusion in time is considered and it is 

called a second order parabolic partial differential equation. 

If the equation (1) above is given the following initial and 

boundary conditions 

� � ��	
	                                (2) 

and 

��0, 

 � 0 � ���, 

	                         (3) 

respectively, the equation (1)-(3) becomes an initial-

boundary value problem and the solution can be obtained 

using numerical methods. Numerical methods is a method of 

obtaining an approximate solution to partial differential 

equations whose solution cannot be obtain analytically. There 

are different types of numerical methods but for the purpose 

of this work, we shall consider the explicit (FTCS); Implicit 

(BTCS) and Du Fort-Frankel schemes. The efficiency of the 

numerical schemes depends solely on their stability. Lot of 

researchers have worked on finite difference methods for 

parabolic partial differential equations, among them are; 

Crank J and Philis N. [2] worked on practical method for  

evaluating numerical of solution of partial differential 

equation of heat conduction type. Recktenwald G. W [4] 

discussed the three finite difference methods (FTCS; BTCS 

and Crank-Nicolson methods) to solve one dimensional 

boundary problem. Karatay I. and Bayramoglu. S [5] 

obtained the solution of time fractional heat equation using 

Crank-Nicolson method. Aswin V. S et al [6] described three 

different numerical schemes to approximate the solution of 

the convection-diffusion equation. Azad T. M. A. K and 

Andallah I. S. [7] studied stability analysis for two standard 

finite difference schemes, forward time and centered space 

and centered space (FTBSCS) and forward time and centered 
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space (FTCS) for convection-diffusion equation. Olusegun 

O. A et al [9] solved the one dimensional heat equation using 

the explicit scheme. Adak M. and Mandal N. R [13] solved 

the transient heat equation with convection boundary 

condition using explicit finite difference scheme. Adak. M 

[14] studied the effect of explicit and implicit schemes on 

one dimensional diffusion equation with dirichlet boundary 

condition. There are also some interesting texts for the 

subject, they are Williams F. Ames [10], Smith G. D [11] and 

Grewal B. S [12]. 

The main objectives of this paper is to compare the 

stability of the schemes using von Newmann method. Also, 

their results when applied to a parabolic equations are also 

compared. 

2. Problem Definition and Methodology 

The one dimensional heat equation (1) – (3) of length � 

rod is considered, where � �	 temperature, 
	 = time, 	  = 

length and � � 	 ��� is the thermal diffusivity, also � = thermal 

conductivity, c = heat capacity and � �	density. 

For the derivation of the scheme, we shall use the 

following derivative in [3, 11], 
��
�� �	 ��,����	��	��� + �(�
) forward difference in time; 

��
�� =	 ��,��	��	����� + �(�
) Backward difference in time; 

��
�� =	 ��,����	��	����� + �(�
 ) central difference in time; 

���
��� =	 ��,��,��	 ��	�!	����,�(��) + �(�
)  central difference in 

space. 

All derivatives in the equation (1) are approximated using 

Taylor’s series expansion. 

2.1. The Explicit Scheme 

The explicit scheme is derived from equation (1) by 

replacing the first order derivative and second order 

derivative by forward difference in time and central 

difference in space respectively. The derivation is shown 

below: 

��,����	��,�
�� = " ����,�� ��,�!	����,�	

(�#)�                     (4) 

�$,%!& =	�$,% +	 '��
(�#�) 	(�$�&,% − 2�$,% +	�$!&,%)          (5) 

Let * = 	 '��
(�#�),	then equation (5) becomes 

�$,%!& =	*�$�&,% + (1 − 2*)�$,% +	*�$!&,% 	           (6) 

2.1.1. Local Truncation Error 

The local Truncation error of the explicit scheme has it 

principal part as 

(& �
���
�#� −	 && ℎ 

�-�
�#-)$,%  

Therefore, its local truncation error is �(�) + �(ℎ ). 

2.1.2. Stability Condition (Using von Newman Method) 

von Newman stability method is the most widely used 

procedure for determining the stability of finite difference 

approximation (Lapidus Leon). The method introduces an 

initial line of errors as represented by Fourier series and 

consider the growth of these error as 	  increases. The 

stability of the explicit method using von Newmann method 

is shown as follows; the explicit scheme is given by 

�$,%!& = *�$�&,% + (1 − 2*)�$,% +	*�$!&,% 
the equation above in error form is written as 

/$,%!& =	*/$�&,% + (1 − 2*)/$,% +	*/$!&,%             (7) 

let 

/$,% =	01230$45� =	670$45�  where 67 = 0123           (8) 

substituting equation (8) into equation (7) gives 

67!&0$45� = *670$4(5�&)� + (1 − 2*)670$45� + *670$4(5!&)� (9) 

using simple mathematical principle and on cancelation of 

common terms, equation (9) yields 

6 = *0$45� + (1 + 2*) + *0�$4� 

which can be written as 

6 = (1 − 2*) + *(0$4� +	0�$4�)                (10) 

using the following trigonometry identities 

1 − 89:;� = 2:<= >4� ?  

and 

289:;� = 	 0$4� +	0�$4�                       (11) 

on substituting (11) into (10) we have 

6 = (1 − 2*) + *(289:;�) 
which can be written as 

1 − 2*(1 − 89:;�)                           (12) 

using equation (11) in (12) we get 

1 − 2* @2:<= >4� ?A  

from whence, 

6 = 1 − 4*:<= >4� ?  

The necessary and sufficient condition for the error to 

bounded, keeping to numerical stability is 

|6| ≤ 1 

therefore, the condition for stability of the explicit scheme 

will be 
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|6| � 	 E1 − 4*:<= >4� ?E 	≤ 1                  (13) 

considering equation (13) we have that 

4*:<= >4� ? 	≤ 2                             (14) 

since the term 4*:<= >4� ?  has its range in F0, 1G  that is 

positive, the worst case is when :<= >4� ? = 1,	such that the 

equation (14) becomes 

* = 	 &                                      (15) 

similarly, the second part of equation (13) gives 

4*:<= @;�2 A 	≥ 0 

from where 

*	 ≥ 0                                     (16) 

combining equation (15) and (16) gives 0	 ≤ *	 ≤ 	 & . This 

shows that the explicit scheme is conditionally stable. 

2.2. Dufort-Frankel Scheme 

The derivation of the Dufort-Frankel approximation is 

simply by replacing the first and second order derivatives in 

equation (1) by central difference in time and central 

difference in space, resulting to the following 

��,����	��,���
 �� = " ����,�� ��,�!	����,�

(��) 	             (17) 

also �$,%  on the R. H. S is replaced with time average of 

previous and current time values that is (I − 1)	"=J	(I + 1) 
to get 

��,����	��,���
 �� =	 '

(�#)� [�$�&,%	 − 2>��,���!	��,��� ? +	�$!&,%G (18) 

which can be wriiten as 

�$,%!& −	�$,%�& =	  '��(�#)� 	(�$�&,% −	�$,%�& −	�$,%!&	+ �$!&,%) (19) 

Which further gives 

�$,%!& + 2*�$,%!& = 	�$,%�& − 2*�$,%�& + 2*�$�&,% + 2*�$!&,%  (20) 

where * = 	 '��
(�#)� equation (20) can be written as 

(1 + 2*)�$,%!& = (1 − 2*)�$,%�& + 2*(�$�&,% +	�$!&,%) (21) 

Equation (21) is called the Dufort-Frankel finite difference 

approximation. It can also be written more explicitly as 

�$!&,% =	 (&� 2)(&! 2) �$,%�& + >  2
&! 2? (�$�&,% +	�$!&,%)	      (22) 

2.2.1. Local Truncation Error 

The local truncation error of the Dufort-Frankel scheme 

has it principal part as 2ℎ(− ��
& 

�-�
�#- +	3�K

�L�
�#L +	

3�
��

���
�#L)$.% with 

it local truncation error as 

�(ℎ + � + 3�
��)  

2.2.2. Stability Condition (Using von Newmann) 

The Dufort-Frankel scheme is given by equation (21), 

rewriting equation (21) in error form gives; 

(1 + 2*)/$,%!& = (1 − 2*)/$,%�& + 2*(/$�&,% + /$!&,%) (23) 

using the same procedure as in the stability criterion for the 

explicit scheme, we have 

(1 + 2*)67!&0$45� =
(1 − 2*)67�&0$45� + 2*(670$4(5�&)� + 670$4(5!&)) (24) 

in equation (24), we have substituted equation (8) into (22). 

On cancelation of common terms we get 

(1 + 2*)6 = (1 − 2*)6�& + 2*(0�$4� + 0$4�)        (25) 

using trigonometric identities we get 

(1 + 2*)6 = (1 − 2*)6�& + 2*(289:;�)          (26) 

solving further we get 

6 (1 + 2*) = (1 − 2*) + 2*6(289:;�)           (27) 

solving equation (27) and using the fact that 89: ;� = 1 −
:<= ;�, we get 

6 =  2�M54�±OP2�(&�5$Q�4�)!&�P2�
&! 2   

Which gives 

6 =  2�M54�±OP2�5$Q�4�
&! 2                         (28) 

Considering the term in square root for the following 

* ≤ &
 , *	 ≥ 	 & , |2*:<=;�| ≤ 1	"=J	|2:<=;�| ≥ 1 , we have 

that the Dufort-Frankel approximation is unconditionally stable. 

2.3. Implicit Scheme (BTCS) 

The implicit scheme is derived by replacing the first order 

derivative by forward difference and the second order 

derivative by central difference with the I + 1. The procedure 

is as follows: 

��,������,�
�� = " ����,���� ��,���!����,���

(�#)�   

�$,%!& − �$,% =	 '��
(R#)� (�$�&,%!& − 2�$,%!& + �$!&,%!&  

let * = '��
(�#)� we have 

−�$,% = *�$�&,%!& − (1 + 2*)�$,%!& + �$!&,%!&        (29) 

Equation (29) is the implicit approximation. The equation 

leas to a tridiagonal system. 
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2.3.1. Local Truncation Error 

The local truncation error of the implicit scheme is given 

by ���, ℎ ). 
2.3.2. Stability Condition (Using von Newmann) 

The stability of theimplicit scheme using von Newmann 

method is given by 

6 = &
&!P25$Q�ST�

                                 (30) 

for all * > 0,	 and all ; . It is observed that 0 < 6 ≤ 1. 
Showing that the scheme is unconditionally stable. 

3. Numerical Examples 

This section presents some numerical examples on the 

comparison of the finite difference schemes. 

Example 1. 

Consider the following mathematical model 

��
�� =

���
�#�, 	[0,1G                             (31) 

subject to the initial condition 

�(	, 100) = 100                         (32) 

and boundary conditions 

�(0, 
) = 0 = �(1, 
), 
 > 0                  (33) 

of the temperature distribution in a rod of length � = 1W 

with its end point at 0X. 

and initial point at 100XY. Given that the analytical solution 

of the model is 

�(	, 
) = PXX
Z ∑ &

Q
\�]X :<==^	/	_(−= ^ 
)        (34) 

If �	 = 0.1  and * = &
 , then the problem using explicit, 

Dufort-Frankel and Implicit schemes and compare the 

numerical solutions with the exact solutions at 	 = 0.4. 

Solution: 

Solving first with the explicit scheme, we use equation (6) 

to obtain the values for 1 ≤ < ≤ 9 and the various steps from 

0 ≤ I ≤ 9  and the results are presented in the following 

table, see [1] for few steps on the solvings. 

Table 1. Result of example 1 using explicit scheme. 

a  b  cb,d]e  cb,d]f  cb,d]g  cb,d]h  cb,d]i  cb,d]j  cb,d]k  cb,d]l  cb,d]m  

0.1 1 50.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 50.0000 

0.2 2 50.0000 75.0000 100.0000 100.0000 100.0000 100.0000 100.0000 75.0000 50.0000 

0.3 3 37.5000 75.0000 87.5000 100.0000 100.0000 100.0000 87.5000 75.0000 37.5000 
0.4 4 37.5000 62.5000 87.5000 93.7500 100.0000 93.7500 87.5000 62.5000 37.5000 

0.5 5 31.2500 62.5000 78.1250 93.7500 93.7500 93.7500 78.1250 62.5000 31.2500 
0.6 6 31.2500 54.6875 78.1250 85.9300 93.7500 85.9300 78.1250 54.6975 31.3500 

0.7 7 27.3438 54.6875 70.3088 85.9375 85.9300 85.9375 70.3088 54.6875 27.3438 

0.8 8 27.3438 48.8263 70.3125 78.1194 85.9375 78.1194 70.3125 48.8263 27.3438 
0.9 9 24.4132 48.8282 63.4729 78.1250 78.1194 78.1250 63.4729 48.8282 24.4132 

Table 2. Comparison of the explicit scheme with the exact solutions. 

t Dufort-Frankel Scheme Exact solutions Percentage error 

0.025 93.7500 99.9900 6.24 

0.03 93.7500 99.5300 5.81 

0.035 85.9300 97.8500 12.20 
0.04 85.9375 95.1800 9.71 

Table 3. Results of example 1 using Implicit scheme. 

a  b  cb,d]e  cb,d]f  cb,d]g  cb,d]h  cb,d]i  cb,d]j  cb,d]k  cb,d]l  cb,d]m  

0.1 1 73.2044 92.8177 98.0663 99.4475 99.7238 99.4475 98.0663 92.8177 73.2044 

0.2 2 57.7310 84.5151 94.6942 98.1289 98.9263 98.1289 94.6942 84.5151 57.7310 

0.3 3 48.0988 76.9331 90.6036 96.0927 97.5095 96.0927 90.6036 76.9331 48.0988 
0.4 4 41.6630 70.4545 86.2889 93.4940 95.5918 93.4940 86.2889 70.4545 41.6630 

0.5 5 37.0823 65.0030 82.0209 90.5028 93.0023 90.5028 82.0209 65.0030 37.0823 

0.6 6 33.6393 60.3926 77.9252 87.2663 90.1343 87.2663 77.9252 60.3926 33.6393 
0.7 7 30.9298 56.4406 74.0476 83.8992 87.0168 83.8992 74.0476 56.4406 30.9298 

0.8 8 28.7143 52.9976 70.3947 80.4862 83.7515 80.4862 70.3947 52.9976 28.7143 

0.9 9 26.8444 49.9490 66.9563 77.0870 80.4192 77.0870 66.9563 49.9490 26.8444 

 

Table 4. Comparison of the Implicit scheme with the exact solutions. 

t Implicit Scheme Exact solutions Percentage error 

0.025 99.7238 99.99 0.27 
0.03 98.9263 99.53 0.61 

0.035 97.5095 97.85 0.35 

0.04 95.5018 95.18 -0.34 

Example 2. 

Solve the following heat equation 

��
�� =

���
�#� , [0,1G                            (35) 

subject to the initial condition 

�(	, 
) = :<=^	, [0,1G                           (36) 

and boundary conditions 
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��0, 
) = 0 = �(1, 
), 
 > 0                       (37) 

Using the explicit, Dufort-Frankel and the implicit 

schemes. Carry out the computation for two levels taking 

ℎ = &
n and * = &

P 
Solution: 

from the problem above, we have that 
&
P = *, then we have 

that �&,X = √n
 	"=J	� ,X =

√n
 , on solving using equation (6), at 

< = 1, I = 0 we have that 

�&,& =	 &P p�&,X + � ,Xq = 	�&,& = 0.65  

and � ,& = 0.65 , similarly, at < = 1, I = 1 , we have �&, =
0.49	"=J	� , = 0.49 also, using Dufort-Frankel scheme, we 

have that at < = 1, I = 0, �&,& = � ,& = 0.65	"=J	"
	< = 1, I =
1 we have 

�&, = &
n >

√n
 + 0.65? = 0.5  

also, � , = 0.5, lastly, using implicit scheme, we have the 

following equations to solve 

n
 �&,& −

&
P� ,& =

√n
   

and 

�&
P �&,& + n

 � ,& −
&
P �n,& =

√n
   

4. Discussion 

Table 1 presents the results of both explicit and Dufort-

Frankel scheme, from our calculation at * = &
  in the explicit 

scheme, it results into Bender-Schmidt scheme, also, the 

Dufort-Frankel scheme also work like the explicit scheme at 

* = &
 , hence the same result is presented for the two scheme 

at * = &
 . Table 2 shows the comparison of the numerical 

solutions of the explicit schemes and the exact solutions, the 

percentage errors are also presented. Tables 3 and 4, shows 

the results of the implicit scheme and the comparison of its 

numerical solutions with the exact solutions. From tables 2 

and 4, it can be observed that the implicit scheme is good 

compare to the other two schemes. Also, the implementation 

of the implicit scheme is faster than that of the explicit and 

Dufort-Frankel schemes. 

5. Conclusion 

From the results, it is observed clearly that the implicit 

scheme is efficient and fast in implementation than the other 

two schemes. Also, the implicit scheme and Dufort-Frankel 

schemes as seen using von Newmann stability method are 

unconditionally stable, while the explicit scheme is 

conditionally stable. This can be seen in example 2, where 

both schemes perform better than the explicit scheme and also 

the implicit scheme performs better than the Dufort-Frankel 

scheme. The results of the methods agree with existing 

findings in literature, see Omowo B. J and Abhulimen C. E [3], 

Olusegun O. A, Hoe Y. S, Ogunbode E. B [9] and Adak M. 

[14] that the implicit scheme has no restriction for the value of 

its mesh ratio and that smaller time steps produces more 

accurate results. 
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