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Abstract: FEM is a valuable approximation tool for the solution of Partial Differential Equations when the analytical 

solutions are difficult or impossible to obtain due to complicated geometry or boundary conditions. The Project work involved 

collecting facts related to WG and DG-FEMs. WG-FEM is a numerical method that was first proposed and analyzed by Wang 

and Ye (2013) for general second-order elliptic BVPs on triangular and rectangular meshes. DG-FEMs as developed by 

Cockburn et al. (1970) uses a discontinuous function space to approximate the exact solution of the equations. The comparison 

and numerical examples demonstrated that WG-FEMs are viable and hold some advantages over DG-FEMs, due to their 

properties. Numerical examples demonstrated that WGM generates a smaller linear system to solve than the DGMs. WG-FEM 

have less unknowns, no need for choosing penalty factor and normal flux is continuous across element interfaces compared to 

DG-FEMs and the implementation of WG-FEMs is easier than that of DG-FEMs based on error and convergence rate. The 

computations were done by hand and with the help of MATLAB 2021Rb. 
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1. Introduction 

1.1. Background of the Study 

Many problems in science and engineering can be reduced 

to the problem of solving differential equations. Only a few of 

these equations can be solved by analytical methods which are 

also complicated requiring use of advanced mathematical 

techniques. In most of these cases, it is easier to develop 

approximate solutions by numerical methods. The term Finite 

Element Method (FEM) was first coined by clough in 1960. 

After then, in the 1960s and 1970s mathematicians founded a 

theoretical basis for finite elements. In the late 1960s and early 

1970s, the FEM was applied to a wide variety of engineering 

problems. Most of the real problems are defined on domains 

that are geometrically complex, may have different boundary 

conditions on different portions of the boundary. In simple 

terms, FEM is a method for dividing up a very complicated 

problem in to small element that can be solved in relation to 

each other. The advantages of dividing a big element in to 

small ones allow that every small has a simpler shape, which 

leads to a good approximate for the analysis. 

The basic idea of FEM is to approximate the solution of a 

given differential equation with a set of algebraically simple 

function. In mathematics, in the area of numerical analysis, 

Galerkin methods are a class of methods for converting a 

continuous operator problem (such as a differential equation) 

to a discrete problem. The GM is an old numerical technique, 

classically used to solve differential equations not ameanable 

to analytical techniques. For solving a general differential 

equation, which is based on seeking an (approximate) 

solution in a finite dimensional space, we use FEMs known 

as the G-FEM. The area of numerical analysis comprises of 

several methods, GMs are classes of methods for converting 

a differential equation to a discrete problems. It is in principle 

the same as applying the method of variation of parameters to 

a function space, by converting the equation to a weak 

formulation. 

In this Project we describe a FEM that is a combination of 

processes used in the WG and DG methods for solving 

second order Laplace /Poisson equations. There have been a 

variety of numerical methods for the model problem of WG 

and the DG-FEMs. All these numerical methods result in 

large-scale discrete linear systems, which are solved directly 
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or iteratively. 

WG-FEMs are numerical methods for solving PDEs that 

were first introduced by Wang and Ye [1] for solving general 

second order elliptic PDEs. WG refers to general FEMs for 

PDEs in which differential operators are approximated by 

weak forms through the usual integration by parts. In this 

Project we are concerned with computation and numerical 

accuracy issues for the WG method that was recently 

introduced [2]. They rely (depend) on numerical concepts 

such as weak functions, the weak gradient operator, discrete 

weak functions, and discrete weak gradients. There are two 

basic ways to construct DG methods for an elliptic problems. 

The first way is to add a penalty term into the bilinear form, 

penalizing the interelement discontinuity. This was followed 

up a few years later by Baker [4] who proposed the first 

modern DGM for elliptic problems, later followed by 

Wheeler et al. [3]. We have shown that how WG-FEMs and 

DG-FEMs compared for solving second-order elliptic BVPs 

using MATLAB based on convergence and error. 

1.2. Statement of the Problem 

In engineering situations today it is necessary to obtain 

approximate numerical solutions to problems due to the 

unavailability of exact closed-form solutions [5]. This project 

focused on a comparative study of the WG and DG-FEMs. 

The comparison has been made by tables and graphs using 

MATLAB. 

We consider a self-adjoint linear partial differential 

operator of second-order which is applied to a scalar real 

valued function �, and the BVPs for the general second-order 

elliptic equation 

��� = �, ���	
 ∈ Ω� = 0, ���	
 ∈ �Ω                         (1) 

where, L is the elliptic operator given by 

L����x� = −∑ ���� �������� ��!" + ∑ $� �%��& + '��
� = ��
�(�)*(�,�)*   

The coefficient functions ����
�  are assumed to be a sufficient smooth satisfying ����
� = ����
�  for all +, , = 1,………………… , /, 
 ∈ Ω and Ω is a polygonal or polyhedral domain in ℝ1�2 = 2,3�. (Partial differential operator (1) 

is the elliptic equaiton typed by the Poisson’s operator is 

L����x� = −∆u�x� = −∑ ���� ���� ��!"(�,�)* u�x� + ∑ $� �%��& + '��
� = ��
�(�)*                               (2) 

The essence of the Project is focused on the second-order 

elliptic equation by considering the above equation (1) with 

the boundary condition of Dirichlet problem. 

We compared WG and DG-FEMs using boundary value 

problem (BVP) for second-order elliptic equations directly: 

�−∇. �∇u� = f, x ∈ Ω	� = 0, 
 ∈ Γ = �Ω                              (3) 

All these FEMs are based on variational (weak) 

formulation: seek � ∈ ;<*�Ω� such that ∀> ∈ ;<*�Ω� 

? ∇�. ∇>2
 = ? �>2
	@@  

Finite Elements Methods: 

WG-FEM: - weak continuity and aproximation ∇A  by 

weak gradients may good features. 

Discrete weak gradient + stabilization in the solution � to 

enforce weak continuities. 

DG-FEM: BC ⊄ ;<*�Ω� , non-conforming FEM, penalty 

factor, no continuity/jump. 

1.3. Objectives 

The main objective of this Project is deal a Comparative 

study on the Weak Galerkin and Discontinuous Galerkin 

Finite Element Methods for solving second-order elliptic 

PDEs. 

Hence, this project study is intended to explore the 

following specific objective: 

1. To explain detail study of WG-FEMs and DG-FEMs. 

2. To solve second-order PDEs of elliptic boundary value 

problem with the two methods. 

3. To compare implementation issues, convergence and 

error of the methods. 

2. Literature Review 

Nowadays, FEMs are widely used in almost every field of 

engineering and industrial analysis. Since Courant R. [18] 

formulated the essence of what is now called a finite element 

in 1943, this method has been getting more and more 

attractive with the development of computers and is now 

recognized as one of the most versatile and powerful 

methods for approximating the solutions of BVPs, especially 

for problems over complicated domains. Among the different 

FEMs, the conforming FEM with continuous, piecewise 

polynomial approximating spaces, has long been employed to 

approximate solutions for PDEs. Within the past few 

decades, however, a number of researchers have investigated 

GMs based on fully discontinuous approximating spaces, 

such as the DG methods and the WG methods. 

Today it has become a powerful tool for solving partial 

differential equations. By FEM, we denote a family of 

approaches developed to compute an approximate solution to 

PDEs. 

In the FEM, the domain of integration is subdivided into a 

number of smaller regions called elements and over each of 

these elements the continuous function is approximation by a 

suitable piecewise polynomial. Its development can be traced 
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back to the work by Alexander Hrennikoff (1941) and 

Richard Courant (1942). Hrennikoff's work discretizes the 

domain by using a lattice analogy while Courant's approach 

divides the domain into finite triangular subregions for 

solution of second order elliptic PDEs that arise from the 

problem of torsion of a cylinder. The FEM is a good choice 

for solving partial differential equations over complex 

domains (like cars and oil pipelines), when the domain 

changes (as during a solid state reaction with a moving 

boundary), when the desired precision varies over the entire 

domain, or when the solution lacks smoothness. FEM 

algorithms are implemented in Finite Element Analysis and 

engineering problems are solved using software like 

MATLAB. One of the approximation methods GM, invented 

by Russian Mathematician Boris Grigoryevich in (1915). 

The work by Boris Grigoryevich [X] on the approximate 

solution of differential equations appears in the literature for 

the first time in 1915. The GM can be used to approximate 

the solution to ODEs, PDEs and integral equations. Deriving 

the governing dynamics of physical processes is a 

complicated task in itself; finding exact solutions to the 

governing partial differential equations is usually even more 

formidable. 

Two such methods, the WG and the DG-FEMs, are 

typically used in the literature and are referred to as classical 

variational methods. According to Reddy (1993), when solving 

a DE by a variational method, the equation is first put into a 

weighted-integral form, and then the approximate solution 

within the domain of interest is assumed to be a linear 

combination �∑ E�F�� � of appropriately chosen approximation 

functions F�  and undetermined coefficients, E� . The 

coefficients E�are determined such that the integral statement 

of the original system dynamics is satisfied. Various 

variational methods, like WGM and DGM differ in the choice 

of integral form, or approximating functions. Many researchers 

have been using FEMs for the solutions of PDEs since Gerisch 

et al. (1956) have used high-order linearly implicit two-step 

peer - finite element methods for time independent PDEs 

successfully. Since the WGM is a brand new method, we 

would like to comment on its relation with some existing 

methods in literature. Due to the “discontinuous” nature of the 

functions in the WG-FEM space, it is sensible to make 

comparisons with methods employing discontinuous functions, 

such as DGM. WG refers to general FEMs for partial 

differential equations in which differential operators are 

approximated by weak forms through the usual integration by 

parts. Several variations of DGMs for second order elliptic 

boundary value problems have been proposed during recent 

years, which exhibit special convergence, conservation, error 

estimates and local approximation properties attractive for 

parallel adaptive approximations. A comprehensive account of 

several types of DGMs can be found in the volume edited by 

Cockburn et al. [17]. 

Two commonly used DG schemes are investigated: the 

original average flux proposed by Bassi and Rebay [7]. 

Several variations of DGMs for second order elliptic 

boundary value problems have been proposed during recent 

years, which exhibit special convergence, conservation and 

local approximation properties attractive for parallel adaptive 

hp-approximations. 

Numerical treatment of WG and DG-FEMs 

Iterative solvers like WG and DG are among the methods 

used numerically to solve elliptic BVPs. G-FEM was 

developed as a result of efforts to achieve this best of both 

worlds combination. In practical cases we often apply 

approximation. When referring to a GM, we also need to give 

the name along with typical approximation methods used, 

such as DG, WG or Ritz-G. 

In applied mathematics, DG methods form a class of 

numerical methods for solving differential equations. The name 

of DG appears to have started to be used in the early 1980's, and 

to the authors knowledge the name first appears in a paper by 

Delfour and Trochu in 1978. Viewed from the current ideas it is 

the opinion of the authors that it represents a method of linking 

separate domains in which finite element, series, or whatever 

other current procedures of solution is used for approximation. 

We provide a common framework for the understanding, 

comparison, and analysis of several DGMs that have been 

proposed for the numerical treatment of elliptic problems. In this 

Project we analyze a DG-FEMs recently introduced by Bassi 

and Rebay [7] for the approximation of elliptic problems. Here 

test problems were selected for comparing the WG and 

DG-FEMs. The problem is the Laplace equation (Poisson’s 

equation), which is obviously an elliptic equation, but has the 

advantages of sharing a number of properties with a simple 

parabolic equation, an analytical solution, and a focus on spatial 

error, not temporal error. 

3. Materials and Methods 

The Project work involved collecting facts related to Weak 

Galerkin and Discontinuous Galerkin Finite Element 

Methods. Sources in the web and libraries were used to 

collect all the pieces of information about comparison of 

Weak Galerkin and Discontinuous Galerkin Finite Element 

Method together with the methods and recorded 

subsequently. The overall procedure of this project was: 

1. The collected material and the techniques or methods 

that relates with Weak Galerkin and Discontinuous 

Galerkin Finite Element Method were examined. 

2. Important preliminary concepts and facts were 

discussed to make the high light concept of Weak 

Galerkin Finite Element Methods and Discontinuous 

Galerkin Finite Element Method clearly and simply. 

3. Symbolic softwares, presented MATLAB suitably to 

ease the computations by the methods. 

4. The collected information (definition, examples, and 

solution methods) have been taken and organized in 

proper manner and examined in detail. 

4. Basic Preliminaries 

4.1. Finite Element Method 

It is of interest to solve linear second-order elliptic 
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boundary value problem and assume that � is a solution of 

our original boundary value problem, so that −�GG + H�
��G + I�
�� = ��
�,	for � < 
 < $        (4) ���� = K, ��$� = L, 

where �, $, K and L are given constants H, I and � are given 

functions. Partition the domain M = ��, $� into / parts as: � = 
< < 
* < ⋯ < 
(O* < 
( < 
(P* = $, 

Then try to find numerical solutions on the grid: �� ≈ ��
�� for , = 0, 1, …………/, / + 1. 
From the boundary conditions, we have �< = K, �(P* = L. 

Thus the unknowns are '*, 'R, …… '(. The FEM relies on 

an integral relation derived from the differential equations. 

Let S  be a differentiable function of 
 satisfying S��� =	S�$� = 0, we can multiply the differential equation of an 

arbitrary test function S, obtaining 

−�GG�
�S�
�2
 + H�
��G�
�S�
�2
 + I�
���
�S�
�2
 = ��
�S�
�2
, 
and integrating differential equation of � we get: 

⟹ −? �GGH�
�S�
�2
 + ?H�
���
�S�
�2
 = ?��
�S�
�2
U
V

U
V

U
V  

We use integration by parts for the term involving �GG, we 

obtain 

W �−SG�G + H�
�S�G + I�
�S� − ��
�S�2
 = 0UV ,       (5) 

For + = 0,……………………… . , /  set ℎ� = 
�P* − 
�  is 

the length of element ,. 
Now, we consider the basis functions F��
� defined as the 

continuous piecewise linear function satisfying F�Y
�Z =1, 	F��
[� = 0 if \ ≠ ,. 
More precisely, we have 

φ��
� = _̀̂
_a
 − 
�O*ℎ� , +�
�O* ≤ 
 ≤ 
�
�P* − 

�P* − 
� , +�
� ≤ 
 ≤ 
�P*0, �cℎd�e+fd.

 

The piecewise linear function obtained by connecting �
� , ��� by line segments is 

�(�
� = g ��F�
(P*
�)< �
� 

�(�
� = �<F<�
� + �*F*�
� + ⋯+ �(P*F(�
�       (6) 

The stiffness matrix for above equation can be given and 

these equations can be written as 

g �[���
(P*
�)< = $[ 

where, �[� = W �−F[G �
�F�G�
� + H�
�F[�
�F�G�
� +UVI�
�F[�
� − F��
��2
 = 0 

The load vector is 

$[ = ? F[G �
���
�2
.U
V  

This gives a tridiagonal matrix h and a load vector b such 

that 

h = i�** �*R 0 0�R* �RR �Rj 00 0 �(,(P* �((k, $ = l$* − �(($R*⋮�(O*
n  

For \ = 1, 2, ……………… , /.  If |, − \| > 1,  we observe 

that F[  and F�  are non-zero only on intervals that do not 

overlap. This leads to �[� = 0 if |, − \| > 1. 
Therefore, we have matrix-vector equation including 

boundary condititon 

q
rs

�** �*R�R* �RR
⋮⋯ ⋮…

⋱
⋯ ⋱�(,(P* �(O*,(�(( u

vw
q
rs

'*'R⋮⋮'(u
vw =

q
rrs

$* − �*< … . . �<$R⋮⋮
$( − �(,(P* ……�(P* u

vvw  

The linear system has a symmetric (tri-diagonal) matrix and can be solved using standard numerical linear algebra 

techniques. 

Example 4.1: Solve the boundary value problem defined by �GG�
� − 3��
� + 
R = 0,	                                                                        (7) 

Over 
 ∈ Ω = 0,… . . ,1 with boundary conditions ��0� = ��1� = 0 and using piecewise linear trial functions. 



 International Journal of Systems Science and Applied Mathematics 2022; 7(2): 23-38 27 

 

Solution 

Let the trial function be the linear function ��
� = '*
 + 'R. Multiplying the differential equation (7) by a test function >�
� 

and integrating over the domain gives the weak formulation of the problem 

W ��GG�
�>�
�@ − 3��
�>�
� + 
R>�
�2
� = 0                                                          (8) 

Because > also has to fulfill the boundary condtions, integration by parts of (8) yields: 

W −� xy� 1%1� 1z1� − 3��
�>�
� + 
R>�
�2
 + W >� xy� �
� 1%1� 2
                                                 (9) 

Or ∑ W �−� xy� 1%1� 1z1� − 3��
�>�
� + 
R>�
�2
 + W >� xy� �
� 1%1� 2
	(�)* � 

where, / is the number of elements. In our case we divide the 

domain into / equal subdomins. 

The above is the /  equations we need to solve for the 

unknown �� at the internal nodes. 

Let us denote the basis function by F. Then we can define 

discretized � and > as: �C�
� = ∑ ��F��
�, >C�
� = ∑ >�F��
�(�)*(�)*   

Because in the weak formulation the functions only have 

to be differentiable once, we can use picewise linear basis 

functions: 

F��
� = ^̀
a{|{ |y} ,�∈�� xyO� �	{ xy|{} ,�∈�� ,� xy�0, �cℎd�e+fd.   

Rewriting the triangle ��
� interms of unknown values at 

nodes results in ��
� = F*���
� + FR��P*�
� 

where, F*�
� = � xyO�C  and FR�
� = �O� |yC . where, ℎ  is the 

length of each element. 

We have as unknowns ~�*, �R, ……… , �(�  and basis 

function is given by ~F<, F*, ……… ,F(, F(P*�,	 write in 

matrix form 

gh����
(
�,� = ��, + = 1, … . . , / 

which we write as AU=F and h�� = W 1� 1� 1�!1� 2
*<  and �� = W 1F�2
*<  1ℎ � 2 0−1 2� ��*�*� = ℎ �11� 
Solving the system of linear equations result in: 

��*�*� = �2ℎR3ℎj� 
Let / = 2 then ℎ = *( = 

*R = 0.5 

 

We derive a linear system of equations for the coefficients 

by substituting the approximate solution �* = 0.125, �R =0.1875 

i.e., ��*�*� = � 0.1250.1875� = i 1 8�3 16� k 
Approximate solution is a linear combination of trial 

functions �C�
� = ∑ ��F��
�(�)*  

In order to obtain a GM approximation to the solution of 

the proceeding BVP, written �C as �C�
� = ∑ ��F��
�R�)*                  (10) 

Error: the exact solution of �4.8� is ��
� = 2
 − 
R 2�  

Those from (7), �C�
� = *� φ*�
� − �R φR�
�. 

The following graph briefly demonstrated that from 

example 4.1 if FEM partitioned number of element into �/ = 9�. 

Then, MATLAB presented for FEM approximate 

numerical solutions to BVPs. 

 

Figure 1. FEM solutions using ODEs for 9 elements. 

The citation of FEM can be found at: 

(http://www.mathworks.ch/ch/help/pde/ug/basics-of-the-

finite-element-method.html). 
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4.2. Galerkin Methods 

In this section we will discuss the procedures and methods 

for solving the one dimensional elliptic equation given by −�′′�
� 	= 	��
�, 
Subject to the conditions given in 0 ≤ 
 ≤ ℎ, u (0) = �<, u 

(h) = �C 

We illustrate the FE method for the one dimension two-

point boundary value problem −�′′�
� 	= 	��
�, 0	 < 
 < 	1, ��0� = 	0, ��1� = 	0 

in the Galerkin approach as follows. 

First construct a variational or weak formulation, by 

multiplying both sides of the differential equation by a test 

function >�
�  satisfying the boundary conditions >�1� =0, >�0� = 0 to get −�′′> = �> 

and then integrating from 0 to 1 (using integration by parts): thus 

W �−�′′>�2
 = −�′>|10*< + W �G>G2
*<   

= W �G>G2
*<   

→ ? �G>G2
*
< 	= ? �>2
*

< , the	weak	form 

Then generate mesh, e.g., a uniform Cartesian mesh	
� =+ℎ , 	+ = 0,1, … , / , where ℎ = *( , defining the intervals 

[
�O*, 
� ], 	+ = 1,2, … , / . Construct a set of basis functions 

based on the mesh, such as the piecewise linear functions 

(+ = 1, 2, … , / − 1). 

φ�(
) = ��O� |yC 	+�	
�O* ≤ 
 < 
�� xyO�C 	+�	
� ≤ 
 ≤ 
�P*0	otherwise   

often called the hat functions. The approximate finite element 

solution by the linear combination of basis functions is 

�C(
) = g '�φ�(
)(O*
�)* , 

where the coefficients '� are the unknowns to be determined. 

Or the matrix – vector form; 

���
���
� �Yφ*, φ*Z �Yφ*, φRZ … �Yφ*, φ(O*Z�YφR, φ*Z �YφR, φRZ … �YφR, φ(O*Z...�YφR, φ(O*Z

...�YφR, φ(O*Z
...… �Yφ(O*, φ(O*Z�  

   
¡
���
�� '*'R...'(O*�  

 ¡ 	= 	
���
�� Y�, φ*ZY�, φRZ...Y�, φ(O*Z� 

  ¡  
Where 

� ¢φ� , φ�£ = W φ	′�*< φ	′�2
, Y�, φ�Z = W 	�φ�*< 2
 

The term a (u,v) is called a bilinear form since it is linear with each variable, and (f, v) is called a linear form. If φ� are the 

hat functions, then in particular we get 

��
���
���
��
� RC O*CO*C RC O*C

O*C
RC O*C. . .. . .. . .O*C RC O*CO*C RC � 

   
   
  
¡

��
���
� '*'R'j...'(OR'(O*� 

   
¡
 = 

���
���
���
� W 	�φ**< 2
W 	�φR*< 2
W 	�φj*< 2
...W 	�φ(OR*< 2
W 	�φ(O**< 2
�  

   
   
¡
  

Finally solve the linear system of equations for the coefficients and hence obtain the approximate solution 

�C(
) = 	g '�φ�(
)�  

Example 4.2. Let us consider the simple differential equation problems 

1�%1�� = 
 + 1, 0 < 	
	 < 1                                                                        (11) 
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Boundary condition �(0) = 0 and �(1) = 0 

Solution:-(using Galerkin Method) 

Take the weak form 

⟹ ? �G>G2
 = ? (
 + 1)>2
,*
<

*
<  

Let / = 4 then ℎ = *( = 
*� = 0.25 

In matrix representation 

l�Yφ*, φ*Z �Yφ* , φRZ �Yφ* ,φjZ�YφR, φ*Z �YφR ,φRZ �YφR, φjZ�Yφj, φ*Z �Yφj ,φRZ �Yφj, φjZn i'*'R'jk =
��
��
��
�? 	(
 + 1)φ**

< 2

? 	(
 + 1)φR*
< 2


? 	(
 + 1)φj*
< 2
� 

  
  
¡
 

���
���
� 8
−4

−4
8

0
−4

0 −4 8 �  
   
¡

���
���
�'*
'R
'j� 

   
 ¡ =

���
���
2348−85488948 �  

  ¡ 

Using Gauss elimination i.e., 

We have been the triangular system. This triangular system 

can be solved now by the back substitution. We obtain that 

	'* = − *¤� ≈ −0.01563, 'R = − R�*�R 	≈ −0.15105 and 'j = ¥jR ≈ 0.15625. 

Obtain the approximation solution �C(
) = ∑ '�φ�(
)	j�)*                     (12) 

Error: -The exact solution of (4.10) is 

�(
) = 16 
j + 12
R − 23
 

Those from (8) 

�C(
) = − 164 φ*(
) − 29192 φR(
) + 532 φj(
) 

The approximate and exact solution of Galerkin Method 

citation can be found at: 

(http://www4.ncsu.edu/~zhilin./TEACHIM/MA587/chap6.

pdf) 

Table 1. Numerical result for example 4.2. ¦  §(¦)  §¨(¦)  |§ − §¨|  
0.2 -0.112006 -0.0125 0.099506 
0.4 -0.17599 -0.096875 0.079115 

0.6 -0.184 -0.08854 0.09545 

0.8 -0.12006 0.125 0.24506 

The comparison between the approximate solution and 

exact solution is illustrated in the above table 2. Approximate 

solution according to the GM as a function of coordinate 

�C�
� = − 164 φ*�
� − 29192 φR�
� + 532 φj�
� 

5. Discussion of Weak Galerkin and 

Discontinuous Galerkin Finite 

Element Methods 

5.1. WG-FEMs 

The WG-FEMs were first developed based on discrete 

weak gradients, which approximate the weak gradient 

operator. The key WG-FEM is to define the weak derivative 

operators from integration by parts, such as: weak gradient �∇A� , weak divergence �∇A�  and weak Laplacian �∆A� . 

Related notation, definitions and the concept of weak 

gradient and its approximations result in discrete weak 

gradients, which will play an important role in the WG-FEMs 

for solving elliptic BVPs. 

WG-FEM is making use of discontinuous basis functions 

for approximation. It divides a function >  to the following 

two parts: 

Define weak function > = ~><, >U� such that 

> = �><, +/©<>U , �/�K 

Although a WG finite element space can be constructed 

for any combination of H, «, �, good approximate solutions to 

PDEs. 

Define weak Galerkin finite scheme with homogeneous 

boundary value BU = ~> = ~><, >U�: ><|­ ∈ ®��©�, >U ∈ ®̄ �d�, d ⊂ �©, >U = 0	on�Ω� 
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Properties of of WG-FEMs 

For the WG-FEMs to work well, two properties should be 

satisfied using definition WG finite element spaces 

1. For any > ∈ BC  and any © ∈ ±C , if ∇A,1> = 0  on © , 

then there must be ><  =constant on ©<  and >U  = 

constant on �K. 

2. For � ∈ �R(Ω) , \ ≥ 1 , let ∇A� = BC(«, �)  be an 

interpolation of projection of � . should be a good 

approximation of ∇A. 

WG-FEM for Second-order Elliptic BVPs: For simplicity, we 

demonstrate the idea of optimality for polynomials by using a 

linear second-order elliptic equation as our model problem that 

seeks an unknown function �(
) = �(
, ³) satisfying: 

´−∇. (�∇�) = �	in	Ω� = 0	on	�Ω                  (13) 

where, Ω  is apolytopal domain in ℝ1(2 = 2,3) , �  is 

symmetric matrix-valued function in Ω and ∇� denotes weak 

gradient operator of the function. 

Therefore, WG method that that uses discontinuous 

elements and has a formulation: (�∇A�C, ∇A>) = (�, >), ∀> ∈ BC                 (14) 

The primal formulation of WG is obtained by adding 

discrete weak gradient with stabilization (to ensure a weak 

continuous of �C). 

Now, we can write the WG formulation for equation (13) 

as follows: find �C = {�<, �U} ∈ BC  and WG-FEMs 

satisfying: (�∇A�C, ∇A>) + f(�C, >) = (�, >), ∀> ∈ BC          (15) 

where, f(�C, >) = ∑ ℎ­O*〈�< − �U , 	>< − >U〉¸­­ , f(. , . )  is stabilizer (enforcing weak continuity) and 

measures the discontinuity of the finite element solution. 

To compute WG using (16), we get 

(�∇A�C, ∇A>) = g (�∇A�C, ∇A>)©­  

Then, a WG-FEM approximation is defined as �C ={�<, �U} ∈ BC such that (�∇A�C, ∇A>) = 〈�, ><〉, ∀> = {><, >U} ∈ BC<     (16) 

The weak formulation for our second-order elliptic BVP is 

given: find �C ∈ BC such that 

�C|d = ∇A>for d ∈ �Ω, and �(�¹º , >) = ∑ (∇A�¹º , ∇A>)©­ + ∑ ℎO*〈�< − �U , >< − >U〉»» = (�, >), ∀> = {><, >U} ∈ BC                       (17) 

Let {F<,�(
), + = 1, 2, … . , ¼<}  and {FU,�(
), + = 1, 2, … . , ¼U}  be basis of functions in V¾  associated with +¿C  interior and 

boundary edges, respectively. 

i.e., V¾ = fH�/ÀF<,�(
), FU,�(
)Á, + = 1, 2, … . , ¼<, + = 1, 2, … . , ¼U .	Then �C = {�<, �U} ∈ BC can be expressed as 

�C = ∑ �<,�F<,� + ∑ �U,�FU,�ÂÃ�)*ÂÄ�)*                                                                      (18) 

We define the vector representation of �C as � = ��<�U� , �< = l �<,*�<,R⋮�<,¼<
n , �U = l �U,*�U,R⋮�U , ¼U

n 

The numerical approximate solution for WG method is given by solving the linear system of (17) as follows: 

Å�(∇AF<,�, ∇AF<,�)© �(∇AF<,�, ∇AF<,�)©�(∇AF<,�, ∇AF<,�)© �(∇AF<,�, ∇AF<,�)©Æ ��<�U� = Å〈�(�(
, ³), F<,*〉〈�(�(
, ³), F<,R〉Æ 
Solution:- (using WG-FEM) 

The goal of this section is to numerically verify the convergence theory for the WG-FEM (17) through in example (5.1). In 

particular, the following issues shall be examined: rate of convergence and accuracy for WG solutions on triangular meshes. 

Let �(
, ³) = 
(1 − 
)³(1 − ³) = (
 − 
R)(³ − ³R), then ∇� = Y(1 − 2
)(³ − ³R), (
 − 
R)(1 − 2³)Z �∇A� = (
³(1 − 2
)(³ − ³R), (
 − 
R)(1 − 2³)) 

When we choose © = 1, (∇A . >, �)|­ = (1, 1) = � ∈ ®<(©), © ∈ ±C. We have 

�2 = (∇A. �, 1)­ = −(�, ∇.1)­ + g〈À{�}Á, /〉» 
j

�)* = 0 + ? 02f»y
+ 1 2� ? 12f»�

− 1 2� ? 12f»Ç
= 0 

We derive a linear system of WG equation for the coefficients by substitution the approximation solution is 
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∇A�¹º(
, ³) = g = '�∇AF�,�(
, ³) = '*∇ÈF�,�(
, ³) + 'R∇ÈF�,�(
, ³)(
�)* + 'j∇ÈF�,�(
, ³) 

∇A�¹º(
, ³) = (2
 − 
R)(2³ − 3³R)                                                                 (19) 

To compute the error and convergence rates using the following norms: 

‖∇A�¹º − ∇�‖ = ¢∑ W |∇A�¹º − ∇�|RÊ­∈Ë} 2
2³£* R�
                                                 (20) 

Table 2 clearly suggests that the following rates of convergence hold for smooth solution problems: ‖� − �¹º‖�R�Ω� =O�ℎÌP*�, where � is the number of degrees of freedom. The error of the computed solution and rates of 

convergence for WG and DG method of the above equation is obtained here based on MATLAB. 

Table 2 Comparison of convergence for WG-FEM ®<®< and WG-FEM ®*®* for a Degenerate Elliptic Problem. 

Mesh size Í = Î�̈ = ¨OÎ 
WG-FEM ÏÎÏÎ WG-FEM ÏÐÏÐ ‖ÑÒ§ÓÔ − Ñ§‖ÕÖ-error ‖ÑÒ§ÓÔ − Ñ§‖ÕÖ-error 1 8�   1.46-03 2.01e-03 1 16�   3.74e-03 9.30e-04 1 32�   9.47e-05 4.02e-04 1 64�   2.39e-05 1.70e-04 1 128�   6.04e-06 7.17e-04 

O�ℎÌ�, � = 1.98e+00 1.21+00 

 

Discussion and results 

The PDE under consideration is thus elliptic, but some 

degeneracy near the origin. The coloumn corresponging to 

WG-FEM ®*®*  refers to the computational results 

obtained from the numerical scheme (15) with piecewise 

linear functions on each element and its edges. The 

coloumn corresponding to WG-FEM ®<®<  refers to the 

computational results obtained from the numerical scheme 

(15) with piecewise constants. The computational results 

indicate that the WG-FEM scheme (15) presented and 

analyzed in the table 2. Here, WG-FEM ®*®* refers high 

optimal order of convergence in �R -error than WG-FEM ®<®<. 

Example 5.2: using WG-FEMs, show that the discrete 

weak gradient ∇A . v  is the same as the �R  projection (an 

estimate) of the continuous divergence ∇. v for a piecewise 

smooth vector-valued function v. 
Solution: 

Let K is a triangular element ∆hØE  whose nodes are h�0,0�, Ø�1,1�, E�0, 1�, and hØÙÙÙÙ = d*, ØEÙÙÙÙ = dR, EhÙÙÙÙ = dj. 
We have 

VR = �∇A. �, 1�­ = −��, ∇.1�­ + ∑ 〈À~��Á, /〉» j�)* = 0 + W 02f»y + 1 2� W 12f»� − 1 2� W 12f»Ç = 0  

Advantage and Disadvantage of the WG-FEM 

WG methods use discontinuous approximations. The WG 

methods keep the advantages: 

1. The finite element partition can be of polytopal (the 

simultaneous use of two or more keys relating 

composition) type; 

2. The WG methodology provide a general framework for 

deriving new methods and simplifying the exisiting 

methods; 

3. and minimize the disadvantages. 

4. Simple formulations. 

5. Comparable number of unknowns to the continuous 

FEMs if implemented appropriately. 

The disadvantage of WG-FEMs is: 

Difficult to construct high order continuous elements. 

5.2. DG-FEMs 

5.2.1. DG-FEM for Second-Order Elliptic BVPs 

In this section, we discuss the DG-FEMs for 

approximating the solutions of second-order linear elliptic 

boundary value problems. DG methods in mathematics form 

a class of numerical methods for solving PDEs. The most 

recent technique for the numerical solution of PDEs is the 

DGM, which uses ideas of both the finite element and finite 

volume methods. 

Properties of DG-FEMs for solving second-order elliptic 

BVPs. 

The DG-FEM is a numerical technique for solving partial 

differential equations when there are discontinuities or jumps 

in the solution or highly advective flows. According to 

Heshaven et al. 1969, the DGM has several important 

properties: 

1. The mesh does not have to be regular, hanging-nodes 

can be handled easily, 

2. Conservation laws can be achieved by the numerical 

solutions. 

The main ingredients of a DG-FEM are: 

The use of a Galerkinelement-by-elementweak 

formulation; 
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Since 1970s, there has been a substantial amount of work 

in the literature on so-called non-conforming FEM, where by BÚº ⊄ B = ;<*(Ω). 

5.2.2. The Model Problem and DG Weak Formulation 

A DG type nonconforming element method and a local 

flux matching nonconforming element method for the 

second-order elliptic BVPs. 

We consider the homogeneous Dirichlet boundary-value 

problem whose solution � satisfies 

Û−∇. Y�∇�(
)Z = �(
), 
 ∈ Ω�(
) = 0, 
 ∈ �Ω                    (21) 

where, ∇  is the standard elliptic gradient operator, 

coefficients � = �(
, ³), 
 ∈ Ω,  is a piecewise constant 

strictily scalar function, is symmetric, positive definite, 

bounded smooth matrix function and � ∈ �R(Ω). 

In order to derive the weak form for the Poisson equation 

we multiplying both sides of equations (21) by with a test 

function > = 0 on �Ω and integrating both sides, we have 

W (−∇. �∇�)>2
@ = W �>2
@                    (22) 

and decomposing (22) over ©, we obtain 

− g ?(∇. ��)>2
 =­­∈Ë}
g ? �>2
­­∈Ë}

 

The integration part gives us 

∑ W (∇. (∇a�)∇>2
­­∈Ë} − ∑ W (�∇�. /)>2f¸­ = ∑ W �>2
­­∈Ë} = W �>2f = 〈�, >〉@­∈Ë}                     (23) 

where, / denotes the outward normal to each element edge. The unit normal vector outward from ©  (respectively ©� ) is 

denoted by / (respectively /�). 
Step II: using jump and averages 

We introduce the following bilinear form Ø(. , . ) defined on ;R(±C)
;R(±C) and the linear form �(. ) defined on ;R(±C) 

such as: 

Ø(�, >) = ∑ W (∇. (∇a�)∇>2
­­∈Ë}                                                                 (24) 

and 

�(>) = ∑ W �>2
­­∈Ë} = W �>2f@                                                                 (25) 

Thus, we define the weak formulation for DG finite element discretizations for elliptic problems (21) finally can be written 

as follows: 

Ø(�Úº , >) = W �>2f@ , ∀�Úº , > ∈ BÚº                                                              (26) 

where, 

Ø(�Úº , >) = ∑ W (∇. (∇a�)∇>2
­­∈Ë} − W {/. �(∇�)}�>�2fÜ ÝÞ   

where, ℎ is a measure for the average of the size defines as ℎ = (CxPC|)R  for the two cells (meshes) ©Pand ©O given in the 

interiror faces, and Γßàá is interior faces. 

Step V: Forming and solving the linear system to obtain a DG method for numerical approximation to the primal variable. 

To form the linear system, firstly, rewrite the discrete DG scheme for the primal variable of (25) is: ØC(�Úº , >) = hC(�Úº , >) = «C(�Úº , >), ∀> ∈ BÚº                                                    (27) 

Corresponding to poisson’s parts of the problem, respectively: 

hC(�Úº , >) = ∑ W (∇. (∇a�)∇>2
­­∈Ë} , and «C(�Úº , >) = ∑ W �>2
­­∈Ë} = W �>2f@  

For a set of basis functions {F�}�)*Â  spanning the space BÚº, the discrete solution �Úº ∈ BÚº is of the form �Úº = ∑ >�F�Â�)*                              (28) 

where, > = (>*, >R, …… , >Â)Ë  is the uniform coefficients of 

vector. After substituting (27) and (28) and taking �Úº = F�, 

we get the linear system of equations 

∑ >�Â�)* hCYF� , F�Z = «CYF�Z, , = 1,… . . , ¼.  
Choosing a basis FÚº = {F*, FR, …… . . , F(}  for the DG 

approximation space BÚºand expanding the solution in this 

basis as � = ∑ ��F�(�)* , the discrete variational problem of 

(25) is equivalent to a system of linear equation h� = �	                                     (29) 
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for the coeffiecients� with ��,� = �C(F�, F�) and «� = �C(F�). 

Using this partition and imposing an ordering ±C = {±*, ……… , ±(}  on the mesh elements, the linear system (5.26) can be written in block matrix form 

q
rs

�C(F*� , F*�) �C(FR� , F*�) ⋯ �C(Fâ� , F*�)⋮ ⋱ ⋮⋮�C(F*� , Fâ� ) ⋯ ⋮… �C(Fâ� , Fâ� )u
vwq

s�*(�)⋮⋮�â(�)u
w = q

s�(F*(�))⋮⋮�(Fâ(�))u
w, ∀+, , = 1, 2, … . , ¼ 

Definition 5.1: (Convergence rate) The quantity of flux 

errors with exact solution �(�) based on the poisson model 

problem on Ω�  and its flux approximations ∇u  and ∇uãä 

based on the triangulation ±C is ‖� − �Úº‖‖∇� − a∇�Úº‖ 

Example 5.3: [Arnold and Cockburn, 2002] Compute DG 

approximations solution �Úº  of � ; compute error and 

convergence rate to the following elliptic PDEs: −∆� = 0, +/	Ω                            (30) � = 0	on �Ω, 

where, Ω = (0, 1) x (0, 1) = (0,1)R  for the above second-

order elliptic PDEs. We choose a function � in such a way 

that numerical tests, that the analytical solution takes the 

form � = 
³(1 − 
)(1 − ³),	 which corresponds to a 

homogeneous Dirichlet boundary condition. The function � = �(
, ³) is given to match the exact solution. 

Solution:- (Using DG-FEMs) 

We mean where � = 0	on �Ω  and �  is apolynomial. We 

choose polynomial of degree two, i.e,	© = 2., 

The DG-FEMs with respective solutions is �Úº  based on 

shape-regular triangulation of Ω. 

Using equation (30) and we will formulate the given PDE 

as a variational BVP by multiplying by a test function > ∈ B 

and apply greeen’s identity, we have 

�(
, ³) = 
³(1 − 
)³(1 − ³) = �(
), 
 ∈ Ω = (0,1)R ⇒ æ−∇. Y�∇�(
, ³)Z − �(
, ³)ç>2
2³ = 0, ∀	> ∈ B	      (31) 

Given, �(
, ³) = 
³(1 − 
)³(1 − ³) = (
³ − 
³R)(1 − ³), we get ∇� = ((³ − 2
³)(1 − ³), (−
³ + 
R³)) 

Substitute �(
, ³), ∇�	in equation (32) then we have 

W (−∇. �∇�)>2
2³ =@ W �(
, ³)>(
, ³)2
2³@                                                          (32) 

Integration by parts using jump and averages and using by green’s formula, we get 

∑ W (∇. (�∇�)∇>2
2³@­∈Ë} = W {/. �(∇�)}Ü ÝÞ �>� = ∑ W �>2
Ê­∈Ë}                                  (33) 

where, �Ω is the boundary of Ω integrated counter clock wise. 

let è ∈ ΩC  be an interior edge shared by two elements d* and dR. By convenction for mesh data structure, the unit normal 

vector / points to d* and dR,	and since, using è = H��Úº� we obtain, ��Úº� = �Úº|d* − �Úº|dR. 

where as, {�∇�Úº . /} = *R �|d*. ∇�Úº . / + *R �|d*. ∇�Úº . /                                                               (34) 

The stiffness matrix h is given from equation (33) for 

h�� = W æ�(F�GF�G + F�GF�G)ç2
2³@} + W {/. �(∇�)�>�}2f¸@                                                     (35) 

and the load vector �� is 

�� = W �F�2
2³¸@                                                                                       (36) 

Using partition and imposing an ordering a triangulation ±C = {±*, ±R, ±j	} on the mesh elements, the linear – can be written 

in block matrix form 

é�(F*� , F*�) �(FR� , F*�) �(Fj� , F*�)�(F*� , FR�) �(FR� , FR�) �(Fj� , FR�)�(F*� , Fj�) �(FR� , Fj�) �(Fj� , Fj�)êëK*KRKjì = é�(F*�)�(FR�)�(Fj�)ê                                                     (37) 
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The rest of calculations are similar, and the result is the following stiffness matrix: 

h = i 2 1 0−1 2 −10 0 2 k 
Continuing in this manner, we find � = 	 í îCÇRℎj3ℎjï and 

we can now solve hK = � to obtain K = iK*KRKjk = i0.013240.027120.01132k 
So, the numerical approximate solution of DG method �Úº is �Úº(
, ³) = ∑ K�F�(
, ³)j�)* = K*∇F*(
, ³) + KR∇FR(
, ³) + Kj∇Fj(
, ³)                                (38) 

�Úº(
, ³) = 0.01324¢1 ℎ� , 1 ℎ� £ + 0.02712¢1 ℎ� , 0£ + 0.01132(1 ℎ� , 1 ℎ� ) 

From the above, we obtain ∇�Úº(
, ³) = ((³ − 2
³)(1 − ³), (−
³ + 
R³)     (39) 

The DG-FEMs with respective solutions is �Úº  based on 

shape-regular triangulation of Ω. Inorder to evaluate the �R-

norm of approximate solution � ∈ BÚº , which are 

respectively defined as follows 

‖� − �Úº‖�R(Ω) = ¢W (�(
, ³) − �Úº(
, ³))R@ 2Ω£* R�
  

Here, MATLAB is given for the �R -norm of error to 

approximate solution ‖� − �Úº‖�R(Ω. 

Table 3. Numerical error and convergence order of DG-FEM for domain ð = (0, 1)R. 

Mesh 

(h) 

DG-FEMs  ‖§ − §ñÔ‖ÕÖ =O(¨Ö)  Ñ§ñÔ(¦, ò)  ‖Ñ§ − Ñ§ñÔ‖  

1 0.0186579226 0.150872 0.1074034465 
2 0.0057148929 0.682464 0.0588911882 

3 0.0015087244 0.959512 0.0301758912 

4 0.000382464 0.740651 0.0115826243 
5 0.000959512 0.3074065 0.00763263 

6 0.0000240008 0.2074065 0.003803128 

The order of convergence is the ratio of two meshes with 

respect to the largest edge length. Since the mesh is 

decreasing 1 2�  each time, the order of convergence 

converges to 2. 

Advantage and Disadvantage of the DG-FEMs 

The DG methods have the following main advantages: 

1. like any finite element method, the maximum order of 

accuracy a DG method can attain solely depends on the 

regularity of the exact solution; 

2. DG methods of arbitrarily high order of accuracy can be 

obtained by suitably choosing the degree of the 

approximating polynomials; 

The disadvantage of DGM is: 

1. No connection among functions on individual elements; 

2. DG-FEM does not require continuity of the solution 

along edges; 

3. DG-FEM is not well suited for problems with direction 

(global statement); 

4. Unknown inside elements; 

5.3. Illustrative Examples for WG and DG-FEMs 

Example 5.5: Wang and Ye, (2012); Arnold and Brezzi, 

[11] consider a simple two dimensional Poisson equation 

with homogeneous boundary. Compute the following 

degenerate elliptic problem for WG and DG approximations 

solution �Úº  and �¹º  of �  and estimate the error ‖� −�Úº‖�Rand ‖� − �¹º‖�R =O(ℎR) to the following second-

order elliptic PDEs: 

�−∇(�∇�) = �(
, ³), +/	Ω, a = xy�(
, ³) = 0, �/	�Ω	                 (40) 

where Ω = (0, 1)x(0, 1) = (0,1)R for the above second-order 

elliptic PDEs. We choose a function �  in such a way that 

numerical tests, that the analytical/exact solution takes the 

form �(
, ³) = 
(1 − 
)³(1 − ³),	which corresponds to a 

homogeneous Dirichlet boundary condition. The function � = �(
, ³) is given to match the exact solution. 

Solution: (Using DG-FEMs) 

Using equation (40) and we will formulate the given PDE 

as a variational BVP by multiplying by a test function > ∈ B 

and apply greeen’s identity, we have −∇. (�∇�) = 
(1 − 
)³(1 − ³) = �(
), 
 ∈ Ω = (0,1)R ⇒ æ−∇. Y�∇�(
, ³)Z − �(
, ³)ç>2
2³ = 0, ∀	> ∈ B                                                      (41) 

From, �(
, ³) = 
(1 − 
)³(1 − ³) = (
 − 
R)(³ − ³R), we get ∇� = Y(1 − 2
)(³ − ³R), (
 − 
R)(1 − 2³)Z a∇� = 
³∇� = (
³(1 − 2
)(³ − ³R), (
 − 
R)(1 − 2³)) 
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Substitute �(
, ³), ∇�	and �∇� in equation (41), then we have ⇒ æ−∇. Y(
³(1 − 2
)(³ − ³R), (
 − 
R)(1 − 2³))Z − (
 − 
R)(³ − ³R)ç>2
2³ = 0                     (42) 

Integrating over the domain Ω = (0,1)R, we obtain 

W æ−∇. Y(
³(1 − 2
)(³ − ³R), (
 − 
R)(1 − 2³))Z − (
 − 
R)(³ − ³R)ç>2
2³ = 0@                      (43) 

In order to get everything in terms of first derivative using product rule for differentiation to show that >. ∇. (�∇�) = ∇. (>�∇u) − a∇u. ∇v 

which can be inserted into equation (43) to give 

?�(a∇u). ∇v − �>�2
2³ − ? ∇. (>�∇u)2
2³@ = 0@  

⇒ W æY(
³(1 − 2
)(³ − ³R), (
 − 
R)(1 − 2³)Z. ∇v − (
 − 
R)(³ − ³R)>ç2
2³ = 0@                      (44) 

where, �Ω is the boundary of Ω integrated counter clock wise (ccw) 

Then, we have �Úº = ∑ ��F�(
, ³)(�)* such that �� = �ô� at the nodes on ΩC and 

W ��(¸%}¸� . ¸z}¸� + ¸%}¸õ . ¸z}¸õ )� 2
2³@} + W {/. �(∇�)�>�}2f¸@ 	= W ��>2
2³@} +                              (45) 

To compute its numerical flux �Úº = −�|d*∇�Úº, which is a constant vector on each triangular element. 

letè ∈ ΩC be an interior edge shared by two elements d* and dR. By convenction for mesh data structure, the unit normal vector / points to d* and dR,	and since, using è = H��Úº� we obtain, ��Úº� = �Úº|d* − �Úº|dR. 

where as, 

{�∇�Úº . /} = 12 �|d*. ∇�Úº . / + 12 �|d*. ∇�Úº . / 

The area of the triangle |d�(
, ³)| = *R |2dch�(
)| 
The stiffness matrix h is given from equation (33) 

h�� = W æ�(F�GF�G + F�GF�G)ç2
2³@} + W {/. �(∇�)�>�}2f¸@                                                  (46) 

and the load vector �� is 

�� = W �F�2
2³¸@                                                                                  (47) 

So, the solution of DG method is 

�Úº(
, ³) = gK�F�
j

�)* = K*∇F*(
, ³) + KR∇FR(
, ³) + Kj∇Fj(
, ³) 

�Úº(
, ³) = ∑ K�∇F�(
, ³)j�)* = K*∇F*(
, ³) + KR∇FR(
, ³) + Kj∇Fj(
, ³)                              (48) 

�Úº(
, ³) = 0.015904¢0, 1 ℎ� £ + 0.027344 − ¢1 ℎ� , 0£ + 0.02064(−1 ℎ� , 1 ℎ� ) 

Then, we substitute mesh size for ℎ = 1 /�  in equation (48),  to get numerical approximate solution of DG method �Úºbased 

on shape-regular triangulation domain Ω = (0, 1)Ras follows: 

For ℎ = 1,�Úº(
, ³) = 0.50872, for ℎ = 2,�Úº(
, ³) = 0.2353 ⟹ ∇�Úº(
, ³) = Y(1 − 2
)(³ − ³R), (
 − 
R)(1 − 2³)Z =                                       (49) 

and ∇� = Y(1 − 2
)(³ − ³R), (
 − 
R)(1 − 2³)Z 

Since, the mesh size is denoted ℎ = 1 /� . 
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For fixed /,	||	�(
, ³) − �Úº(
, ³)||, ℎ = 1 /� = 2, 4, 6, 8, 16, 32, 64 since, the error of the DG-FEM from error is: d: = � −�Úº and we solve edge-based �R-norm of the error based on MATLAB as follows 

‖� − �Úº‖�R = ¢W (�(
, ³) − �Úº(
, ³))R*< 2
£* R�
  

Solution: (using WG-FEMs) 

The goal of this section is to numerically verify the convergence theory for the WG-FEM (5.5) through in example (5.58). 

In particular, the following issues shall be examined: rate of convergence and accuracy for WG solutions on triangular meshes. 

Let �(
, ³) = 
(1 − 
)³(1 − ³) = (
 − 
R)(³ − ³R), then ∇�¹º = Y(1 − 2
)(³ − ³R), (
 − 
R)(1 − 2³)Z �∇A�¹º = (
³(1 − 2
)(³ − ³R), (
 − 
R)(1 − 2³)) 

 

Figure 2. Numerical solution of the homogeneous Dirichlet problem for the Laplace operator and surface plot of the approximate solution �Úº. 

 

Figure 3. Uniform triangular mesh for 2-D Laplace equation of example (5.58) for ð = (0,1)R. ∇A�¹º(
, ³) = ∑ = '�∇AF� = '*∇ÈF�,�(
, ³), +'R∇ÈF�,�(
, ³)(�)* + ∇ÈF�,�(
, ³                            (50) 

The error of the computed solution and rates of convergence for WG and DG method of the above equation is obtained 

below based on MATLAB. 
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Table 4. Comparison of convergence for WG-FEM ®*®*, WG-FEM ®<®< and ö÷ − �øù®* schemes for a Degenerate Elliptic Problem. 

Mesh size Í = Î�̈ = ¨OÎ 
WG-FEM ÏÎÏÎ WG-FEM ÏÐÏÐ DG-FEM ÏÎ ‖ÑÒ§ÓÔ − Ñ§‖ÕÖ-error ‖ÑÒ§ÓÔ − Ñ§‖ÕÖ-error ||ú − úûü||ýÖ 1 8�  1.46-03 2.01e-03 6.29e-03 1 16�  3.74e-03 9.30e-04 2.92e-03 1 32�  9.47e-05 4.02e-04 1.32e-03 1 64�  2.39e-05 1.70e-04 5.89e-04 1 128�  6.04e-06 7.17e-04 2.64e-04 

O(ℎÌ), � = 1.98e+00 1.21+00 1.15e+00 

 

Discussion and Result. 

The three methods were chosen for comparison because 

they have the same rate of convergence in theory when the 

error is measured between the Finite Element solutions and a 

certain interpolation of the exact solution. The column 

corresponding to DG-FEM ®*  refers to the computational 

results obtained from the numerical scheme of with 

piecewise linear functions on each element and its edges. It 

must exchange information with all nighbouring triangles 

through jumps and averages on edges. Therefore, the 

computational results indicate that the WG-FEM scheme 

presented and has better optimal order of convergence in �R. 
6. Summary, Conclusions and 

Recommendations 

6.1. Summary 

In this Project, we have conducted a comparative study on 

the newly introduced WG-FEMs; the widely accepted 

DG-FEMs. Compared to DG-FEMs, WG- FEMs are easier to 

use and performs better with respect to continuous normal 

flux across element interfaces, less unknowns, and no need 

for choosing penalty factors. The main objective of this 

project is to deal with a Comparative study on the WG and 

DG-FEMs for solving second-order elliptic boundary value 

problems. This Project presents the basic understanding of 

FEM and the methodology to solve any problem of 

differential equation. 

The WG-FEMs represent advanced methodology for 

handling discontinuous functions in finite element procedure. 

The WG methodology provides a general framework for 

deriving new methods and simplifying the existing methods. 

6.2. Conclusions 

In this Project, we present the numerical comparison of 

WG and DG methods for a model second-order elliptic 

problems. The main features of the WG-FEMs compared to 

DG-FEMs have been clearly observed. Such as WG-FEMs 

have less unknowns, no need for choosing penalty factor and 

normal flux is continuous across element interfaces. We have 

developed a MATLAB code that includes WG-FEMs and DG 

FEMs with post-processing. 

The WG-FEMs are known as lacking of ‘‘local 

conservation’’, even though they are conceptually simple and 

have relatively less unknowns. The DG-FEMs are locally 

conservative but there is no continuity in the DG flux. 

As to implementation, the weak formulation of the DGM 

involves jumps of the primal variable and averages of the 

flux on mesh edges. One motivation for using DG 

discretization is that for deterministic elliptic problems with 

discontinuous coefficients, the DG solution is more accurate 

on a fixed mesh than the classical finite element solution. 

Therefore, DG methods emerge as a very attractive class of 

arbitrary order methods for the numerical solution of various 

classes of PDE problems where classical FEM are not 

applicable. 

6.3. Recommendations 

Based on the comparative study on the Weak Galerkin 

Finite Element Methods and Discontinuous Galerkin Finite 

Element Methods the following basic recommendations 

suggested: 

1. The effectiveness of the program Laplace to deal with 

solutions to other second-order elliptic BVPs than, 

hyperbolic problems needs to be validated to compare 

the WG-FEMs with DG-FEMs. 

2. A comparative study on the WG, DG and mixed FEM is 

best and optimal to solve more PDEs applications using 

MATLAB based on error and convergence rates. 

3. In addition, we would like to try higher-order 

elements in both FEMs. Because of comparison of 

these WG-FEMs and DG-FEMs approaches using 

higher order elements would be interesting because 

the disadvantages associated with the DG-FEMs 

(specifically, the larger number of degrees of 

freedom) would be minimized with the higher order 

elements. 
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