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Abstract: Outliers are observations that have extreme value relations. Herewith leverage is a measure of how an 

independent variable deviates from its mean. An observation with an extreme value on a predictor variable is a point with high 

leverage. The presence of outliers can lead to inflated error rates and substantial distortions of parameter and statistic estimates 

when using either parametric or nonparametric tests. Casual observation of the literature suggests that researchers rarely report 

checking for outliers of any sort and taking remedial measures for outliers. Outliers can have positive deleterious effects on 

statistical analyses. For instance, they serve to increase error variance and reduce the power of statistical tests; they can 

decrease normality, altering the odds of making both Type I and Type II errors for non- randomly distributed; and they can 

seriously bias or influence estimates that may be of substantive interest. These outliers are cased from incorrect recording data, 

intentional or motivated mis-reporting, sampling error and Outliers as legitimate cases sampled from the correct population. 

According to some literatures; Point outliers, Contextual Outliers and Collective Outliers are the three types of outliers. Robust 

regression estimators can be a powerful tool for detection and identifying outliers in complicated data sets. Robust regression, 

deals with the problem of outliers in a regression and produce different coefficient estimates than OLS does. 

Keywords: Break Down Point, Leverage Points, M-estimation, Outlier, Robust Regression Model 

 

1. Introduction 

“Outliers” are unusual data values that occur almost in all 

research projects involving data collection. Outliers are 

observations that have extreme value relations. The term 

outlier is defined as follows: 

1. …Data which are far away from the bulk of the data, or 

more generally, from the pattern set by the majority of 

the data. [5] 

2. …Data point that is far outside the norm for a variable 

or population. [7] 

An outlier is an observation which deviates so much from 

the other observations as to arouse suspicions that it was 

generated by a different mechanism. [10] 

Beside this it is better to point out some definition about 

terms which is going hand by hand with outlier as follows. 

Leverage is a measure of how an independent variable 

deviates from its mean. An observation with an extreme 

value on a predictor variable is a point with high leverage. 

Influence An observation is said to be in influential if 

removing that observation substantially changes the 

estimation of the coefficients. A datum that is “influential” is 

one for which the regression estimate changes considerably if 

it is removed. Rejection Point is the point beyond which the 

influence function becomes zero. That is the contribution of 

the points beyond the rejection point to the final estimate is 

comparatively legible. 

The presence of outliers can lead to inflated error rates and 

substantial distortions of parameter and statistic estimates 

when using either parametric or nonparametric tests. Casual 

observation of the literature suggests that researchers rarely 

report checking for outliers of any sort. 

Outliers can have deleterious effects on statistical analyses. 

First, they generally serve to increase error variance and 

reduce the power of statistical tests. Second, if non- 
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randomly distributed they can decrease normality (and in 

multivariate analyses, violate as assumptions of sphericity 

and multivariate normality), altering the odds of making both 

Type I and Type II errors. Third, they can seriously bias or 

influence estimates that may be of substantive interest. [1] 

There is a great deal of debate as to what to do with 

identified outliers. A thorough review of the various 

arguments is not possible here. We argue that what to do 

depends in large part on why an outlier is in the data in the 

first place. Where outliers are illegitimately included in the 

data, it is only commons ensue that those data points should 

be removed.
 
Few should dis agree with that statement. When 

the outlier is either a legitimate part of the data or the cause is 

unclear, the issue becomes make several strong points for 

removal even in these cases in order to get the most honest 

estimate of population parameters possible. 

However, not all researchers feel that way. [8] This is a 

case where researchers must use their training, intuition, 

reasoned argument, and thoughtful consideration in making 

decisions. Researchers sometimes use various “robust” 

procedures to protect their data from being distorted by the 

presence of outliers. These techniques “accommodate the 

outliers at no serious inconvenience or are robust against the 

presence of outliers.” Certain parameter estimates, especially 

the mean and Least Squares estimations, are particularly 

vulnerable to outliers, or have “low break down” values. 

For this reason, researchers turn to robust or “high break 

down” methods to provide alternative estimates for these 

important aspects of the data. The practical use of the outlier 

here considered methods is always the crucial point within 

this work. Due to this reason in this article we are emphasis 

this outlier detection using new regression model called 

Robust Regression Model. Not all outliers are illegitimate 

contaminants and not all illegitimate scores show up as 

outliers. [11] 

2. Review About Outliers 

2.1. Causes of Outliers 

Outliers from incorrect recording data: Outliers are often 

caused by human error, such as errors in data collection, 

recording or entry. Data from an interview can be recorded 

incorrectly, or mistaken upon data entry. Errors of this nature 

can often be corrected by returning to the original documents 

or even the subjects if necessary and possible and entering 

the correct value. 

Outliers from intentional or motivated mis-reporting: 

There are times when participants purposefully report 

incorrect data to experimenters or surveyors. A participant 

may make conscious effort to sabotage the research [16] or 

may be acting from other motives. Social desirability and 

self-presentation motives can be powerful. This can also 

happen for obvious reasons when data are sensitive. 

Outliers from sampling error: Another cause of outliers is 

sampling. It is possible that a few members of a sample were 

inadvertently drawn from a different population than the rest 

of the sample. For-example: in education, in advert entry 

sampling academically gifted or mentally retorted students is 

a possibility and (depending on the goal of the study) might 

provide undesirable outliers. These cases should be removed 

as they do not reflect the target population. 

Outliers as legitimate cases sampled from the correct 

population: 

It is possible that an outlier can come from the population 

being sampled legitimately through random chance, it is 

important to note that sample size plays a role in the 

probability of outlying values. Within a normally distributed 

population, it is more probable that a given data point will be 

drawn from the most densely concentrated area of the 

distribution, rather than one of the tails. [9] As a researcher 

casts a wider net and the data set becomes larger, the more 

the sample resembles the population from which it was 

drawn and thus the likelihood of outlying values become 

greater. In other words, there is only about one percentage 

chance you will get an outlying data point from a normally 

distributed population, this means that, on the average, about 

one percentage of your subjects should be three standard 

deviations from the mean. 

2.2. Types of Outliers 

Outliers can be classified in to three categories based on its 

composition and relation to rest of the data. 

 
Figure 1. Types of outlier. 

(A) Point outliers. 

(B) Contextual Outliers. 

(C) Collective Outliers: human ECG output corresponding to an Atrial 

Premature Contraction. 

Point outliers: If an individual data point can be considered 

anomalous with respect to the rest of the data, then the datum 

is termed as a point outlier. This is the simplest type of 

outlier and it is the focus of the majority of research on 

outlier detection. A data instance is an outlier due to its 

attribute values which are inconsistent with values taken by 

normal instances. 

From the above figure point o1. o2 and o3 are considered to 

outlier. 

Contextual outliers: These outliers are caused due to the 

occurrence of an individual data instance in a specific context 
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in the given data. Like point outliers, these outliers are also 

individual data instances. The difference is that a contextual 

outlier might not be an outlier in a different context. Thus 

contextual outliers are defined with respect to a context. 

contextual outliers satisfy two properties. 

The underlying data has a spatial/ sequential nature: each 

data instance is defined using two sets of attributes, with 

contextual attributes and behavioral attributes. The contextual 

attributes define the position of an instance and are used to 

determine the context (or neighborhood) for that instance. 

For example, in spatial data sets, the longitude and latitude of 

a location are the contextual attributes. 

The outlying behavior is determined using the values for 

the behavioral attributes within a specific context. A data 

instance might be a contextual outlier in a given context, but 

an identical data instance (in terms of behavioral attributes) 

could be considered normal in a different context. Contextual 

outliers have been most popularly explored in time-series 

data. 

From figure above outlier t2 in a temperature time series. 

Note that the temperature at time t1 is same as that at time t2 

but occurs in a different context and hence is not considered 

as an outlier. 

Collective outliers: If a collection of data points is 

anomalous with respect to the entire data set, it is termed as a 

collective outlier. The individual data points inside the 

collective outlier may not be outliers by themselves alone, 

but their occurrence together as a collection is anomalous. 

Collective outliers can occur only in data sets in which data 

points are somehow related. These outliers occur because a 

subset of data instances is outlying with respect to the entire 

data set. The individual data instances in a collective outlier 

are not outliers by themselves, but their occurrence together 

as a substructure is anomalous. collective outliers are 

meaningful only when the data has spatial or sequential 

nature. These outliers are either anomalous sub graphs or 

subsequences occurring in the data. 

Principal options for dealing with Outlier: 

Analyze the relevant data (i.e. removing outlier from the 

data) in order to get the most honest estimate of population 

parameters possible; [2] 

On means of accommodating outliers is the use of 

transformations. By using transformation extreme scores can 

be kept in the data set, and the relative ranking of scores 

remains yet the skew and error variance present in the 

variable can be recorded [1]. 

Use various robust procedures to protect their data from 

being distorted by the presence of outliers. 

Remark: 

Option 1 evidence of outliers may produce type I or type II 

errors. Removal of outliers may tend to have a significant 

beneficial effect on error rates. Both correlations and t-tests 

may Show significant changes in statistics as a function of 

removal of outliers. It is advisable to fit the regression model 

with and without outliers. Then check the differences. Option 

2 may not be appropriate for the model being tested or may 

affect its interpretation in undesirable ways. Taking the 

logarithms of a variable makes a distribution less skewed, but 

it also alters the relationship between the original variables in 

the model. [4] Option 3 accommodate the outliers at no 

serious inconvenience or are robust against the presence of 

outliers. [6] Certain parameter estimates, especially the mean 

and least square estimates, are particularly vulnerable to 

outliers, or have “low breakdown” values. 

Effectively working with outliers in numerical data can be 

a rather difficult and frustrating experience. Neither ignoring 

nor deleting them at will is good solutions. If you do nothing, 

you will end up with a model that describes essentially none 

of the data, neither the bulk of the data nor the outliers. 

Developing techniques to look for outliers and 

understanding how they impact data analysis are extremely 

important part of a thorough analysis, especially when 

statistical techniques are applied to the data. For example, in 

the procedure of outliers, any statistical test based on sample 

means and variances can be distorted. Estimated regression 

coefficients that minimize the sum of squares for error (SSE) 

are very sensitive to outliers. 

2.3. Outliers and OLS 

The method of Ordinary Least Squares (OLS) is the most 

frequently applied regression Technique. The application of 

this specific method requires several assumptions. Every 

researcher is aware of the fact that the OLS method performs 

poorly if these assumptions are not fulfilled. But in particular 

outlying observation observations within the data can cause 

violations of model assumptions and thereby can have huge 

impact on regression results. The intention of this article is to 

examine technically the effect of outliers on OLS Regression 

and to alternative Regression Techniques. The practical use 

of the outlier here considered methods is always the crucial 

point within this work. 

The disturbance terms should be distributed independently 

and identically (i.i.d.), this distribution should be a normal 

one. This independent distribution requires independence 

among the disturbances (non-autocorrelation) and 

independence from the regressor variables. The disturbances 

are distributed identically as they follow a normal 

distribution with a common mean (zero) and a common 

variance (homoscedasticity). Violations of these assumptions 

can cause deviations in the underlying distribution, e.g. 

hetroscedasticity among the error terms becomes visible as 

“fat tails” in the underlying distribution. Residuals, 

differences between the values predicted by the model and 

the real data that are very large can seriously distort the 

prediction. When these residuals are extremely large, they are 

called outliers. The outliers will inflate the error variance. 

They inflate the standard errors. The confidence interval 

becomes stretched. The estimation cannot become 

asymptotically consistent. 

One of the purposes of this work is it to point out the poor 

performance of OLS in the presence of outliers as a crucial 

error source in Regression Analysis. [7] 

There are several assumptions that have to be fulfilled for 

the ordinary least squares regression model to be valid. When 
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the regression model does not meet the fundamental 

assumptions, the prediction and estimation of the model may 

become biased. 

Limitations of the least squares estimator on outlier: 

Although the least squares estimator is easy to calculate, it 

is also extremely sensitive to deviations from the model 

assumptions as a normal distribution is assumed for the 

errors. Hence, observations that are quite far from the 

majority of data can dramatically affect a least squares 

regression estimate. In the context of regression such gross 

errors are called `outliers'. It is important to classify the 

different ways in which data can be outlying, as each has 

different repercussions on the least squares estimator due to 

its asymmetry. Figure 2 highlights this: whilst in Figure 2 b 

the estimated regression line has been noticeably tilted, in 

Figure 2 d, as a result of the outlier, the line is approaching 

the normal to the original estimated line. 

 

 
Figure 2. limitation of OLS. 

(a) Six data with strong linear relationship. 

(b) One datum replaced with an outlier in the y direction. 

(c) One datum replaced with an outlier in the x direction. 

(d) One datum replaced with a different sort of outlier in the x direction (a 

leverage point). 

Outliers that bias the parameter estimates are those with 

leverage called bad leverage points. 

Outliers that lie along the predicted line are those called 

good leverage points. 

When outliers inflate the error variance, they sap the 

model of power to detect the outliers. 

3. Outliers and Robust Regression Model 

As the least squares method minimizes the average value 

of the squared residuals, this large residual is taken into 

consideration and has a strong influence on this average. The 

new regression line is strongly influenced by this residual 

and the new line of best fit is different from the original one. 

The new regression line tilts the large influence of the new 

residual and changes by that its original shape. But not only 

leverage points can be regression outliers. If the x-values but 

the y-value devotes in such a way, that the observation (xi, yi) 

is a regression outlier the according observation is called a 

“vertical” outlier or “outlier in the y direction”. These 

outlying observations are influential on the least squares 

results as well, but with a less potential impact. Consequently, 

robust regression estimators can be a powerful tool for outlier 

detection in complicated data sets. [13, 14] Identifying 

multiple influential observations, even using very resistant 

regression estimators, becomes much harder due to two 

effects called `masking' and `swamping'. [15] Masking 

occurs when an outlying subset goes unnoticed because of 

the presence of another, whereas swamping refers to good 

observations being identified as outliers because of a remote 

subset of influential observations. 

Robust regression, deals with the problem of outliers in a 

regression. Robust regression uses a weighting scheme that 

causes outliers to have less impact on the estimates of 

regression coefficients. Hence, robust regression generally 

will produce different coefficient estimates than OLS does. 

3.1. Robust Regression Methods 

Least absolute residuals (LAR) regression: is one of the 

most widely used robust regression procedures. It is 

insensitive to both outlying data values and inadequacies of 

the model employed. The method of least absolute residuals 

estimates the regression coefficients by minimizing the sum 

of the absolute deviations of the Y observations from their 

means. The criterion to be minimized, denoted by L1, is 

∑ |�� � �β0 � β1
�1 ��…β
 � 1
�
 � 1�|�
� .        (1) 

This method places less emphasis on outlying observations 

than does the method of least squares. 

Iteratively Reweighted Least Squares (IRLS) robust 

regression: uses the weighted least squares procedures 

discussed in to dampen the influence of outlying observations. 

Instead of weights based on the error variances, IRLS robust 

regression uses weights based on how far outlying a case is, 

as measured by the residual for that case. The weights are 

revised with each iteration until a robust fit has been obtained. 

Least Median of Squares (LMS) regression: minimizes the 

median squared residuals [12]. Since it focuses on the median 

residual, up to half of the observations can disagree without 

masking a model that fits the rest of the data. Replaces the 

sum of squared deviations in ordinary least squares by the 

median of the squared deviations, which is a robust estimator 

of location. The criterion for this procedure is to minimize 

the median squared deviation: median {[yi-

(β0+β1xi1+β2xi2+……+βp-1xip-1)]
2
} with respect to the 

regression coefficients. Thus, this procedure leads to 

estimated regression coefficients b0, b1, b2….. bp-1 that 

minimizes the median of the squared residuals. 
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Other Robust Regression Procedures: There are many 

other robust regression procedures. Some involve trimming 

one or several of the extreme squared deviations before 

applying the least squares criterion; others are based on ranks. 

Many of the robust regression procedures require extensive 

computing. 

3.2. Estimation on Robust Regression 

Robust regression is a regression method that is used when 

the distribution of residual is not normal or there are some 

outliers that affect the model. 

M-estimation: is the simplest approach both 

computationally and theoretically [7]. It is an extension of the 

maximum likelihood method. Although it is not robust with 

respect to leverage points, it is still used extensively in 

analyzing data for which it can be assumed that the 

contamination is mainly in the response direction. 

Weakness: M-estimation is the lack of consideration on the 

data distribution and not a function of the overall data 

because only using the median as the weighted value. 

S estimation: is a high breakdown value method [12]. With 

the same breakdown value, it has a higher statistical 

efficiency than LTS estimation. S estimation is based on 

residual scale of M-estimation. This method uses the residual 

standard deviation to overcome the weaknesses of median. 

MM estimation:
 

combines high breakdown value 

estimation and M-estimation [15]. It has both the high 

breakdown property and a higher statistical efficiency than S 

estimation. MM estimation procedure is to estimate the 

regression parameter using S estimation which minimize the 

scale of the residual from M-estimation and then proceed 

with M-estimation. MM estimation aims to obtain estimates 

that have a high breakdown value and more efficient. 

Breakdown value is a common measure of the proportion 

of outliers that can be addressed before these observations 

affect the model. 

4. Statistical Results and Discussions 

Let’s begin our discussion on robust regression with 

application on statistical software. Robust regression is 

applicable on different statistical software. In this section, we 

will show M-estimation with Huber and bisquare weighting 

on SAS and R. These two are very standard and are 

combined as the default weighting function in Stata’s robust 

regression command. In Huber weighting, observations with 

small residuals get a weight of 1 and the larger the residual, 

the smaller the weight. With bisquare weighting, all cases 

with a non-zero residual get down-weighted at least a little. 

4.1. Dealing with Robust Regression Using SAS 

M-estimation: is a commonly used method for outlier 

detection and robust regression when contamination is 

mainly in the response direction. Proc robustreg in SAS 

command implements several versions of robust regression. 

The following example introduces the basic usage of the 

ROBUSTREG procedure. We used the following example to 

show how these robust techniques. The data is about national 

growth of 61 countries from 1960 to 1985. 

Where the response variable is the GDP growth per worker 

(GDP) and the regressors are the constant term, labor force 

growth (LFG), relative GDP gap (GAP), equipment 

investment (EQP), and non-equipment investment (NEQ). 

The regression equation they used is 

GDP = β0 + β1LFG + β2GAP + β3EQP + β4NEQ + ε     (2) 

By default, the procedure does M-estimation with the 

bisquare weight function, and it uses the median method for 

estimating the scale parameter. The MODEL statement 

specifies the covariate effects. The DIAGNOSTICS option 

requests a table for outlier diagnostics, and the LEVERAGE 

option adds leverage-point diagnostic results to this table for 

continuous covariate effects. 

The following outputs are OLS procedure. 

Table 1. OLS estimate. 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 

Standard 

Error 

t 

Value 

Pr > 

|t| 

Intercept 1 -0.01430 0.01028 -1.39 0.1697 

LFG 1 -0.02981 0.19838 -0.15 0.8811 

GAP 1 0.02026 0.00917 2.21 0.0313 

EQP 1 0.26538 0.06529 4.06 0.0002 

NEQ 1 0.06236 0.03482 1.79 0.0787 

The OLS analysis of Table 1 indicates that GAP and EQP 

have a significant influence on GDP at the 5% level. 

The following outputs are ROBUSTREG procedure with 

the default M estimation. 

Table 2. Model Fitting Information and Summary Statistics. 

Summary Statistics 

Variable Q1 Median Q3 Mean 
Standard 

Deviation 
MAD 

LFG 0.0118 0.0239 0.0281 0.0211 0.00979 0.00949 

GAP 0.5796 0.8015 0.8863 0.7258 0.2181 0.1778 

EQP 0.0265 0.0433 0.0720 0.0523 0.0296 0.0325 

NEQ 0.0956 0.1356 0.1812 0.1399 0.0570 0.0624 

GDP 0.0121 0.0231 0.0310 0.0224 0.0155 0.0150 

Remark: 

The column labeled MAD provides a robust estimate of 

the univariate scale, which is computed as the standardized 

median absolute deviation (MAD). The columns labeled 

Mean and Standard Deviation provide the usual mean and 

standard deviation. A large difference between the standard 

deviation and the MAD for a variable indicates some extreme 

values for this variable. 

Therefore the ROBUSTREG analysis of Table 2 indicates 

that there is no any variable that have extreme values on GDP 

at the 5% level. 
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Table 3. M-estimates. 

Parameter Estimates 

Parameter DF Estimate Standard Error 95% Confidence Limits Chi-Square Pr > ChiSq 

Intercept 1 -0.0247 0.0097 -0.0437 -0.0058 6.53 0.0106 

LFG 1 0.1040 0.1867 -0.2619 0.4699 0.31 0.5775 

GAP 1 0.0250 0.0086 0.0080 0.0419 8.36 0.0038 

EQP 1 0.2968 0.0614 0.1764 0.4172 23.33 <.0001 

NEQ 1 0.0885 0.0328 0.0242 0.1527 7.29 0.0069 

Scale 1 0.0099 
     

For the growth data, M estimation yields the fitted linear model: 

Y
^ 

= -0.0247+0.1040X1+0.0250X2-0.2968X3+0.0885X4                                                   (3) 

Table 4. Diagnostics on M-estimation. 

Diagnostics 

Obs Mahalanobis Distance Robust MCD Distance Leverage Standardized Robust Residual Outlier 

1 2.6083 4.0639 * -0.9424 
 

5 3.4351 6.7391 * 1.4200 
 

8 3.1876 4.6843 * -0.1972 
 

9 3.6752 5.0599 * -1.8784 
 

17 2.6024 3.8186 * -1.7971 
 

23 2.1225 3.8238 * 1.7161 
 

27 2.6461 5.0336 * 0.0909 
 

31 2.9179 4.7140 * 0.0216 
 

53 2.2600 4.3193 * -1.8082 
 

57 3.8701 5.4874 * 0.1448 
 

58 2.5953 3.9671 * -0.0978 
 

59 2.9239 4.1663 * 0.3573 
 

60 1.8562 2.7135 
 

-4.9798 * 

61 1.9634 3.9128 * -2.5959 
 

It also displays leverage points; however, there are no serious high leverage points. Beside this observation 60
th

 is considered 

as an outlier on growth data on robust regression using M-estimation. 

The ROBUSTREG Procedure 

Table 5. LTS estimates. 

LTS Profile 

Total Number of Observations 61 

Number of Squares Minimized 33 

Number of Coefficients 5 

Highest Possible Breakdown Value 0.4590 

 

LTS Parameter Estimates 

Parameter DF Estimate 

Intercept 1 -0.0249 

LFG 1 0.1123 

GAP 1 0.0214 

EQP 1 0.2669 

NEQ 1 0.1110 

Scale (sLTS) 0 0.0076 

Scale (Wscale) 0 0.0109 

Table 6. Diagnostics. 

Diagnostics Profile 

Name percentage Cutoff 

Outlier 0.0164 3.0000 

Leverage 0.2131 3.3382 

Based on the cutoff point for both outlier and leverage in Table 4 indicate that the 60
th

 observation is outlier and some other 
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are considered as leverages. 

Table 7. Final Weighted LS estimates. 

Parameter Estimates for Final Weighted Least Squares Fit 

Parameter DF Estimate Standard Error 95% Confidence Limits Chi-Square Pr > ChiSq 

Intercept 1 -0.0222 0.0093 -0.0405 -0.0039 5.65 0.0175 

LFG 1 0.0446 0.1771 -0.3026 0.3917 0.06 0.8013 

GAP 1 0.0245 0.0082 0.0084 0.0406 8.89 0.0029 

EQP 1 0.2824 0.0581 0.1685 0.3964 23.60 <.0001 

NEQ 1 0.0849 0.0314 0.0233 0.1465 7.30 0.0069 

Scale 0 0.0116 
     

 

Y
^ 

= -0.0222+0.0446X1+0.0245X2+0.2824X3+0.0849X4  (4) 

Equation 1: fitted model on LS estimate. 

4.2. Dealing with Robust Regression Against Outlier Using 

R 

 
Figure 3. Dealing with Robust Regression against outlier using R. 

Discussion: Based on the above graph: initially model 

fitting without outlier (Dash line) implies that fit the model 

without considering outlier (may be removed) but it has its 

own effect. While fitting model with outlier (Black line) 

implies that fitting model with considering many bad 

leverage points. It is risk for the given model, means that it 

needs some remedial needed to be taken. This leads to fit the 

model using robust regression model (Blue line). Robust 

doesn’t consider influence of outlier (removal of outliers 

from the data), this leads that fitting model using robust 

regression is best way. 

4.3. Discussions 

Robust regression methods are not an option in most 

statistical software today. However, SAS, R (package is 

needed), PROC, NLIN etc can be used to implement 

iteratively reweighted least squares procedure. There are 

also Robust procedures available in S-Pluz. It is more 

advisable that using robust regression on outlier detection 

than removing or transforming the extreme data. More of 

all in this article we are dealing outlier on robust regression 

on SAS and R using M-estimation which is commonly 

popular. 

5. Conclusions and Recommendations 

5.1. Conclusions 

One important fact to be noted is that Robust regression 

methods have much to offer a data analyst. They will be 

extremely helpful in locating outliers and highly influential 

observations. Whenever a least squares analysis is perfumed it 

would be useful to perform a robust fit also. If the results of 

both the fit are in substantial agreement, the use of Least 

Square Procedure offers a good estimation of the parameters. 

Robust regression techniques aiming to represent the majority 

of a sample can be extremely valuable in detecting data that 

would undermine the least squares estimator's performance. 

Increasingly sophisticated estimators have been proposed with 

ever more desirable properties. High breakdown point, high 

efficiency and bounded influence functions have been the main 

concerns. A key idea in the use of robust regression techniques 

is being able to rely on them not to be influenced by individual 

observations or subtends in the data, so that if the least squares 

estimator and the robust estimator coincide, the least squares 

estimator can be considered reliable. Furthermore, if the two 

estimates are different one needs to know if the robust estimate 

is actually representing the majority of the data or if it too may 

have been negatively influenced. This report draws the 

conclusion that in order to understand how and why aspects of 

a sample might be influencing an estimator, it is crucial to look 

critically at how the estimator performs in reality, as well as in 

theory. Without understanding the real-world, finite-sample 

properties of the estimator one cannot justifiably draw 

conclusions from the results of the robust parameter estimation. 

5.2. Recommendations 

I would like to recommend that the next generation of 

Robust estimators, which are called MM-estimators one can, 

observe a combination of the high asymptotic relative 

efficiency of M-estimators with the high breakdown point of 

the class of estimators known as the S-estimators. The 'MM' 

refers to the fact that multiple M-estimation procedures are 

carried out in the computation of the estimators. And perhaps, 

it is now the most commonly employed robust regression 

technique. I look forward qualified article on MM estimation 

and S-estimation who deal high breakdown point from the 

next generation. 
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