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Abstract: Motive Finding is the process of locating the meaningful patterns in the sequence of DNA, RNA or Proteins. 
There are many widely used algorithms in practice to solve the motive finding problem and these methods are local search 
methods. Different search algorithms were discussed which are Gibbs sampling, projection, pattern branching, and profile 
branching. The limitations surrounding them gave an advantage for the selection of the best algorithm in producing an 
optimized algorithm for the DNA discovery. 
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1. Introduction 

Motive Finding is the process of locating the meaningful 
patterns in the sequence of DNA, RNA or Proteins. The 
patterns are not exact copies due to biological reasons. So, 
the motive finding problem tends to be an NP-Complete 
Problem. It is one of the key areas of interest for a number of 
researchers. There are different types of motives in literature 
namely: Sequential Motives, Gapped motives, Structured 
Motives, Planted Motives and Network Motives. A number 
of methods, algorithms and tools have been developed in 
recent years to solve these problems. Gibbs Sampler and 
MEME are most widely used in practice to solve the motive 
finding problem and these methods are local search methods. 
For planted motives, Random Projections and Pattern 
Branching got better results compared to others. All these 
methods suffered from the problem of local optima. In the 
recent days many Evolutionary Computational 
Techniques/Evolutionary Algorithms (EAs) are being tried 
with different coding schemes and different objective 
functions to eliminate local optima. 

Among these, Genetic Algorithm (GA) is one of the most 
widely used algorithms to find motives. Though GA’s help 
overcome the problem of local optima, it is only to some 

extent and it is possible only at the cost of exercising more 
operators 

In Bioinformatics, Motive finding is one of the most 
popular problems, which has many applications. Generally, it 
is to locate recurring patterns in the sequence of nucleotides 
or amino acids. As we can’t expect the pattern to be exact 
matching copies owing to biological mutations. By 
approximating the same in different aspects, scientists have 
provided many solutions in literature. 

The most of the algorithms suffer with local optima. 
Particle swarm optimization (PSO) is a new global 
optimization technique which has wide applications. It finds 
the global best solution by simply adjusting the trajectory of 
each individual towards its own best location and towards the 
best particle of the swarm at each generation. 

Statement of the Problem 

The critical issue is DNA motive finding remains a 
complex challenge for biologists and computer scientists. 
Performance comparison of different motive finding tools 
and identification of the best tools have proven to be a 
difficult task because tools are designed based on algorithms 
and motive models that are diverse and complex and our 
incomplete understanding of the biology of regulatory 
mechanism does not always provide adequate evaluation of 
underlying algorithms over motive models. Thus, a more 



68 Amannah Constance Izuchukwu and Ernest Chukwuka Ukwosah:  An In-depth Evaluation of an   
Optimized Algorithm for DNA Motive Discovery 

realistic motive evaluation model giving appropriate 
consideration to the domain knowledge could provide better 
motive predictions. 

Aim and Objectives of the Study 

The aim of this research was to design an optimized 
algorithm for DNA motive discovery. The following 
objectives were taken to achieve the aim of the study. 

i. to ascertain the DNA motive prediction algorithms; 
ii. to ascertain the operation procedure of the DNA 

prediction algorithm. 
iii. to design a template for DNA motive prediction 

algorithm. 
Scope of the Study 

The study focuses on motive finding using an optimized 
algorithmic method. a large number of motive finding 
algorithms are available, therefore, users may like to have 
some guidance in choosing the best tools for their motive 
finding endeavour.  

2. Related Literature 

A gene is a segment of DNA that is the blueprint for 
protein. Basically, the control of gene regulation is 
determined by the chemical reactions which are, in turn, 
controlled by the shape and electrostatic charges of the 
molecules involved. In 1950, Francois Jacob and Jacques 
Monod first discovered regulation genes, in Paris. These 
genes provide the instructions for creating proteins to control 
the expression of the other structural genes and play a key 
role in gene expression [1]. 

In order to regulate the gene expression process, a 
molecule called transcription factor will bind to a short 
substring in the promoter region of the gene. We call this 
substring as a binding site of the transcription factor. A single 
transcription factor can be bound to multiple binding sites. 
We refer to these binding sites as "Motives".  

Motives are fundamental functional elements in proteins. 
These patterns are vital for understanding gene function, 
human disease, and may serve as therapeutic drug target. 
Motives can be used to determine evolutionary and 
functional relationships of the genes. 

Motives vary in lengths, positions, redundancy, orientation 
and bases. Finding these short sequences (motives or signals) 
is a fundamental problem in molecular biology and computer 
science with important applications such as knowledge-based 
drug design, forensic DNA analysis, and agricultural 
biotechnology [2]. 

A DNA motive is defined as a nucleic acid sequence 
pattern that has some biological significance such as being 
DNA binding sites for a regulatory protein, i.e., a 
transcription factor. Normally, the pattern is fairly short (5 to 
20 base-pairs (bp) long) and is known to recur in different 
genes or several times within a gene [3].  

Motives are patterns in biological sequences which can 
indicate the presence of certain biological characteristics. In 
general, these could represent patterns in any kind of 
biological sequences such as DNA sequences, RNA 

sequences, protein sequences etc. Some of the features of 
motives are: 

i. They are patterns of length, 10 to 25 bases, and are 
repeated over many sequences. 

ii. They are statistically over-represented in regulatory 
regions. 

iii. They are small, have constant size, and are repeated 
very often. 

Identification of motives is becoming very important 
because they represent conserved sequences which can be 
biologically meaningful. Some of the areas where motive 
discovery can be useful include finding binding sites in 
amino acids, finding regulatory information within either 
DNA or RNA sequences, searching for splicing information, 
and protein domains. The motives can represent patterns 
which activate or inhibit the transcription process and are 
responsible for regulating gene expression. Motive 
identification can be thought of as finding the best local 
multiple alignments for the sequences under consideration 
[4]. 

DNA motives are often associated with structural motives 
found in proteins. Motives can occur on both strands of 
DNA. Transcription factors indeed bind directly on the 
double-stranded DNA. Sequences could have zero, one, or 
multiple copies of a motive. In addition to the common forms 
of DNA motives, two special types of DNA motives are 
recognized: palindromic motives and spaced dyad (gapped) 
motives. A palindromic motive is a subsequence that is 
exactly the same as its own reverse complement, e.g., 
CACGTG. A spaced dyad motive consists of two smaller 
conserved sites separated by a spacer (gap). The spacer 
occurs in the middle of the motive because the transcription 
factors bind as a dimer. This means that the transcription 
factor is made out of two subunits that have two separate 
contact points with the DNA sequence. The parts where the 
transcription factor binds to the DNA are conserved but are 
typically rather small (3–5 bp). These two contact points are 
separated by a non-conserved spacer. This spacer is mostly of 
fixed length but might be slightly variable. 

Given a set of DNA sequences (promoter region), the 
motive finding problem is the task of detecting 
overrepresented motives as well as conserved motives from 
orthologous sequences that are good candidates for being 
transcription factor binding sites. A large number of 
algorithms for finding DNA motives have been developed. 
Most of these algorithms are designed to deduce motives by 
considering the regulatory region (promoter) of several co-
regulated genes from a single genome. It is assumed that co-
expression of genes arises mainly from transcriptional co-
regulation. As co-regulated genes are known to share some 
similarities in their regulatory mechanism, possibly at 
transcriptional level, their promoter regions might contain 
some common motives that are binding sites for transcription 
factors. A sensible approach to detecting these regulatory 
elements is to search for statistically overrepresented motives 
in the promoter region of such a set of co-expressed genes. A 
statistically overrepresented motive means a motive that 
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occurs more often than one would expect by chance. 
Therefore, these algorithms search for overrepresented 
motives in this collection of promoter sequences. However, 
most of these motive finding algorithms have been shown to 
work successfully in yeast and other lower organisms, but 
perform significantly worse in higher organisms. To 
overcome this difficulty recent motive finding algorithms are 
taking advantages of cross-species genome comparison or 
phylogenetic foot printing [5]. The simple premise 
underlying phylogenetic foot printing is that selective 
pressure causes functional elements to evolve at a slower rate 
than non-functional sequences. This means that usually well 
conserved sites among a set of orthologous promoter regions 
are excellent candidates for functional regulatory elements or 
motives. Several motive finding algorithms have been 
developed based on phylogenetic foot printing [6]. 

Most recently, algorithms that integrate DNA sequence 
data from co-regulated genes and phylogenetic foot printing 
have significantly improved motive finding from genomic 
sequences [7]. Efforts have also focused toward developing 
algorithms that incorporate parameters that are useful for 
motive finding in higher organisms [8]. An excellent history 
of development and application of computer algorithms for 
DNA motive finding was presented in [9]. Since then a 
remarkably rapid development has occurred in DNA motive 
finding algorithms and a large number of DNA motive 
finding algorithms have been developed and published. In 
this survey, we review the recent developments in DNA 
motive finding algorithms. 

Based on the type of DNA sequence information employed 
by the algorithm to deduce the motives, we classify available 
motive finding algorithms into three major classes:  

i. those that use promoter sequences from co-regulated 
genes from a single genome, 

ii. those that use orthologous promoter sequences of a 
single gene from multiple species (i.e., phylogenetic 
foot printing) and 

iii. those that use promoter sequences of co-regulated genes 
as well as phylogenetic foot printing [10]. 

However, most of the earlier literature categorized motive 
finding algorithms into two major groups based on the 
combinatorial approach used in their design: 

1. Word-based (string-based) methods that mostly rely on 
exhaustive enumeration, i.e., counting and comparing 
oligonucleotide frequencies and 

2. Probabilistic sequence models where the model 
parameters are estimated using maximum-likelihood 
principle or Bayesian inference [11]. 

The word-based enumerative methods guarantee global 
optimality and they are appropriate for short motives and are 
therefore useful for motive finding in eukaryotic genomes 
where motives are generally shorter than prokaryotes. The 
word-based methods can also be very fast when implemented 
with optimized data structures such as suffix trees and are a 
good choice for finding totally constrained motives, i.e., all 
instances are identical. However, for typical transcription 
factor motives that often have several weakly constrained 

positions, word-based methods can be problematic and the 
result often needs to be post-processed with some clustering 
system [12]. Word-based methods also suffer from the 
problem of producing too many spurious motives. The 
probabilistic approach involves representation of the motive 
model by a position weight matrix. Position weight matrices 
are often visualized as a pictogram in which each position is 
represented by a stack of letters whose height is proportional 
to the information content of that position. 

Probabilistic methods have the advantage of requiring few 
search parameters but rely on probabilistic models of the 
regulatory regions, which can be very sensitive with respect 
to small changes in the input data. Many of the algorithms 
developed from the probabilistic approach are designed to 
find longer or more general motives than are required for 
transcription factor binding sites. Therefore, they are more 
appropriate for motive finding in prokaryotes, where the 
motives are generally longer than eukaryotes. However, these 
algorithms are not guaranteed in finding globally optimal 
solutions, since they employ some form of local search, such 
as Gibbs sampling, expectation maximization (EM) or greedy 
algorithms that may converge to a locally optimal solution. 

3. Methodology and System Analysis 

The methodology adopted in this research was the V-
model research methodology. The V-Model demonstrates the 
relationships between each of the DNA Motive Discovery 
algorithms. The horizontal and vertical axes represents 
accuracy, efficiency (left-to-right) and level of abstraction 
(coarsest-grain abstraction uppermost), respectively. There 
are many applications used in motive finding, as we can’t 
expect the patterns to be exact, different algorithms are used 
in finding motive.  

The Algorithms for DNA motive prediction 

1. Gibbs Sampling 
2. The Projection Algorithm 
3. Pattern Branching 
4. Profile Branching 
Gibbs sampling and Projection are methods that search in 

the space of starting positions. Pattern Branching and Profile 
Branching are examples of methods that search in the space 
of possible motives. 

Gibbs Sampling 

Gibbs sampling is a well-known method for finding 
motives in DNA sequences [13]. 

Given t sequences s1,..., st, each of length n, and an integer 
l, the goal is to find an l-mer in each of the sequences such 
that the “similarity” between these l-mers is maximized. 

Let (a1,..., at) be a list of l-mers contained in s1,..., st. This 
forms a t × l alignment matrix. 

Let X (a) = (xij) denote the corresponding 4 × l profile, 
where xij denotes the frequency with which we observe 
nucleotide i at position j. Usually, we add pseudo counts to 
ensure that X does not contain any zeros (Laplace 
correction). 
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3.1. Gibbs Sampling Algorithm 

Gibbs sampling operates as follows: 
1. Randomly select an l-mer ai, in each input sequence si. 
2. Randomly select one input sequence sh. 
3. Build a 4 × l profile X from a1,…, ah−1, ah+1,..., at 
4. Compute background frequencies Q from input 

sequences s1,…, sh−1, sh+1,..., st. 
5. For each l-mer a ∈sh, compute w (a) = P(alX)/P(alQ) 
6. Set ah = a, for some a ∈sh chosen randomly with 

probability W (a)/∑aꞌ€shw(aꞌ 
7. Repeat until “convergence occurs 
Gibbs sampling is a well-known method that often works 

well in practice. However, it has difficulties finding subtle 
motives. 

Also, its performance degrades if the input sequences are 
skewed, that is, if some nucleotides occur much more often 
than others. The algorithm may be attracted to low 
complexity regions like AAAAAAA.... 

To address this problem, the algorithm can be modified to 
use “relative entropies” rather than frequencies. 

Another modification is the use of “phase shifts”: The 
algorithm can get trapped in local minima that are shifted up 
or down a few positions from the strongest pattern. To 
address this, in every Mth iteration the algorithm tries shifting 
some ai up or down a few positions. 

3.2. The Projection Algorithm 

The key idea of this method is to choose k of l positions at 
random, then to use the k selected positions of each l-mer x 
as a hash function h(x). With a sufficient number of l-mers 
hash to the same bucket, it is likely to be enriched for the 
planted motive 

Like many probabilistic algorithms, the Projection 
algorithm performs a number of independent trials of a basic 
iteration. In each such trial, it chooses a random projection h 
and hashes each l-mer x in the input sequences to its bucket 
h(x). Any hash bucket with sufficiently many entries is 
explored as a source of the planted motive, using a series of 
refinement steps. 

Random Projections 

Choose k of the l positions at random, without 
replacement. For an l-mer x, the hash function h(x) is 
obtained by concatenating the selected k residues of x. 
Viewing x as a point in l-dimensional Hamming space, h(x) 
is the projection of x onto a k-dimensional subspace. 

If M is the (unknown) motive, then we call the bucket with 
hash value h (M) the planted bucket. The key idea is that, if k 
< l − d, then there is a good chance that some of the t planted 
instances of M will be hashed to the planted bucket, namely 
all planted instances for which the k hash positions and d 
substituted positions are disjoint. So, there is a good chance 
that the planted bucket will be enriched for the planted 
motive, and will contain more entries than an average bucket. 
The first part of the Projection algorithm is a heuristic for 
finding promising sets of l-mers in the sequence. It must be 
followed by a refinement step that attempts to generate a 

motive from each of such set. 
The algorithm has three main parameters: 
1. The projection size k, 
2. The bucket (inspection) threshold s, and 
3 And the number of independent trails m. 
The following, highlights how to choose each of these 

parameters. 
Projection size: Ideally, the algorithm should hash a 

significant number of instances of the motive into the planted 
bucket, while avoiding contamination of the planted bucket 
by random background l-mers. 

To minimize the contamination of the planted bucket, we 
must choose k large enough. The size of k must be such that 
the average bucket will contain less than 1 random l-mer. 

Since we are hashing t (n − l + 1) l-mers into 4 k buckets, 
if we choose k such that 

4k>t(n − l + 1) 

then the average bucket will contain less than one random l-
mer. 

Bucket threshold: In the Challenge Problem, a bucket size 
of s = 3 or 4 is practical, as we should not expect too many 
instances to hash to the same bucket in a reasonable number 
of trails. 

If the total amount of sequence is very large, then it may 
be that one cannot choose k to satisfy both k < l − d and 4k> t 
(n − l + 1). In this case, set k = l − d − 1, as large as possible, 
and set the bucket threshold s to twice the average bucket 
size t (n − l + 1)/4k 

Number of independent trails: We want to choose m so 
that the probability is at least q = 0.95 that the planted bucket 
contains s or more planted motive instances in at least one of 
the m trails. Let p(l, d, k) be the probability that a given 
planted motive instance hashes to the planted bucket. 

Projection Algorithm 
Algorithm Projection 
Input: sequences s1,..., st, parameters k, s and m 
Output: best guess motive for i = 1 to m do choose k 

different positions 
Ik⊂ {1, 2,…, l} for each l-mer x ∈ s1,..., st do compute hash 

value hIk(x) 
Store x in hash bucket for each bucket with ≥ s elements 

do refine bucket using EM algorithm return consensus 
pattern of best refined bucket. 

3.3. Pattern Branching Algorithm 

Let M be an unknown motive of length l, and let A0 be an 
occurrence of M in the sample with exactly k substitutions. 
Given A0, how do we determine M? Since the Hamming 
distance d(M, A0) = k, we have M ∈ D=k (A0), defined as the 
set of patterns of distance exactly k from A0. The idea of the 
Pattern Branching algorithm is to construct a path of patterns 

A0 −→ A1 −→... −→ Ak, 

in each step, moving to the “best neighbour” in D=1(Ai). The 
pattern Ak is scored as a guess for M. Given a pattern A of 
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length l, two questions must be addressed: 
1. How do we score A? 
2. How do we determine the “best neighbour” of A? 
First, we score A using its total distance from the sample. 

For each sequence si in the sample S ={s1,...,st}, let d(A, si) = 
min{d(A, P ) | P ∈si} 
where P denotes an l-mer contained in si. Then the total 
distance of A from the sample is 

d(a, S)= ∑d(A, si ) si∈S 

Second, we define a best neighbour of A to be any pattern 
B ∈ D=1(A) with lowest total distanced (B, S). 

The resulting algorithm is very straight-forward: 
Pattern Branching Algorithm 
Input: Sequences S, motive length l, number of 

substitutions k 
Output: best guess motive M 
Init: M ← arbitrary motive pattern 
for each l-mer A0 ∈ S do 
for j ← 0 to k do 
if d(Aj, S ) < d(M, S) then M ← Aj 

Aj+1 ← Best Neighbour (Aj) 

Output M 
To conduct a more thorough search of D=k 
(A0), one can keep a set A of r patterns at each iteration 

instead of a single pattern, defining Best Neighbours (A) to 
be the set of r patterns B ∈ D=1(A) with lowest total distance 
d(B, S). 

Letting A0 = {A0}, we thus have |A0| = 1 and |Aj| = r for j > 
0 

The algorithm returns the motive that has the smallest total 
distance to all input strings. 

3.4. Profile Branching Algorithm 

The Profile Branching algorithm is similar to the Pattern 
Branching algorithm. However, the search is in the space of 
motive profiles, instead of motive patterns. The algorithm is 
obtained from the Pattern Branching algorithm by making the 
following changes: 

a. convert each sample string A0to a profile X(A0), 
b. generalize the scoring method to score profiles, 
c. modify the branching method to apply to profiles, and 
d. use the top-scoring profile found as a seed for the EM 

algorithm. 
Profile of the Branching Algorithm 

Input: Sequences S, motive length l, number of 
substitutions k 

Output: best guess motive profile X 
Init: X∗← arbitrary motive profile 
for each l-mer A0 ∈ S do 
X0 ← X(A0

 

for j ← 0 to k do 
if e(Xj, S ) < e(X∗, S ) then X∗← Xj 

Xj+1 ← Best Neighbour (Xj) 

Run EM algorithm with X∗ as seed and return result. 
This algorithm runs about 5 times slower than the Pattern 

Branching algorithm. The Pattern Branching algorithm 
clearly outperforms the Profile Branching algorithm on 
Challenging problems. However, pattern-based algorithms 
have difficulty finding motives with many degenerate 
positions. 

Limitations of the Branching Algorithm 

Recently, it has been realized that current motive discovery 
algorithms are far from perfect. To improve the prediction 
accuracy, researchers incorporated other sources of 
information to complement the sequence information, such as 
phylogenetic trees and gene expression patterns [14]. 

On the other hand, despite the availability of dozens of 
motive discovery algorithms, there are few systematic 
comparative benchmarking that work to independently 
evaluate the prediction performance of existing motive 
discovery algorithms [15]. 

One of the limitations is the inherent low signal/noise ratio 
in only-sequence-based motive discovery problems. 
Performance decreases significantly as the length of 
sequences increases. Several strategies have been proposed to 
increase the signal-to-noise ratio. An iterative refinement 
approach to this problem was proposed in [14]. Phylogenetic 
trees and structural information can be incorporated to 
increase signal-to-noise ratio [16]. 

The Gibbs Sampling can fail in two ways. The first is 
when there are islands of high-probability states, with no 
paths between them. For example, consider a probability 
distribution over 2-bit vectors, where the vectors (0,0) and 
(1,1) each have probability ½, but the other two vectors (0,1) 
and (1,0) have probability zero. Gibbs sampling will become 
trapped in one of the two high-probability vectors, and will 
never reach the other one. More generally, for any 
distribution over high-dimensional, real-valued vectors, if 
two particular elements of the vector are perfectly correlated 
(or perfectly anti-correlated), those two elements will become 
stuck, and Gibbs sampling will never be able to change them. 

The second problem can happen even when all states have 
nonzero probability and there is only a single island of high-
probability states. For example, consider a probability 
distribution over 100-bit vectors, where the all-zeros vector 
occurs with probability ½, and all other vectors are equally 
probable, and so have a probability of ½(2100-1) each. If you 
want to estimate the probability of the zero vectors, it would be 
sufficient to take 100 or 1000 samples from the true 
distribution. That would very likely give an answer very close 
to ½. But you would probably have to take more thansamples 
from Gibbs sampling to get the same result. No computer 
could do this in a lifetime. This problem occurs no matter how 
long the burn-in period is. This is because in the true 
distribution, the zero vectors occurs half the time, and those 
occurrences are randomly mixed with the nonzero vectors. 

4. Results and Discussion of Results 

The Proposed Optimized Algorithm for DNA Motive 
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Discovery. 
The Gibbs sampler is a technique for generating random 

variables from a (marginal) distribution indirectly, without 
having to calculate the density. Although straightforward to 
describe, the mechanism that drives this scheme may seem 
mysterious.  

Suppose we are given a joint density f(x, y1,…, yp), and 
are interested in obtaining characteristics of the marginal 
density. 

f(x) = ∫....∫ f(x, y1,…yp) dy1…. dyp Such as the mean or 
variance. Perhaps the most natural and straightforward 
approach would be to calculate f(x) and use it to obtain the 
desired characteristic. However, there are many cases where 
the integrations in the formular above are extremely difficult 
to perform, either analytically or numerically. In such cases 
the Gibbs sampler provides an alternative method for 
obtaining f(x). 

Rather than compute or approximate f(x) directly, the 
Gibbs sampler allows us effectively to generate a sample 
X1,…, Xm ~ f(x). By simulating a large enough sample, 
the mean, variance, or any other characteristic of f(x) can 
be calculated to the desired degree of accuracy. It is 
important to realize that, in effect, the end results of any 
calculations, although based on simulations, are the 
population qualities. 

Procedure of the Algorithm 

1. Given n sequences, s1, s2,…,sn 
2. Randomly initialize Position Weight Matrix (i.e. align) 
3. For each sequence si, take it out from the PWM 

(a) score each segment of si with the rest of the 
sequences 

(b) put the sequence back 
The important feature of the algorithm is convergence. 

5. Conclusion 

Motive Finding is the process of locating the meaningful 
patterns in the sequence of DNA, RNA or Proteins. A number 
of methods, algorithms and tools have been developed in 
recent years to solve these problems. 

Five heuristics algorithms were mentioned and discussed 
with the limitations involved when each is used in motive 
finding. A proposed algorithm for the DNA motive discovery 
was selected for optimal results; this was the Gibbs Sampling 
algorithm. 

Motive discovery in biological sequence analysis remains 
a challenge in computational biology. The Gibbs sampler 
algorithm is one of the most popular methods used in motive 
discovery. However, Gibbs heavily depends on initialization 
and suffers from local optima. 

Biologists and computer scientists have been very 
interested in identifying computational tools for motive 
finding. With the advent of availability of large scale genome 
sequencing and high-throughput gene expression analysis 
techniques, a large number of motive finding tools have been 
designed and implemented over the past decade. This study 
survey shows that diverse approaches such as combinatorial 

enumeration, probabilistic modelling, mathematical 
programming, neural networks and genetic algorithms have 
been employed to develop motive finding tools. Earlier 
algorithms relied on co-expressed genes and searched for 
overrepresented motives. Recent algorithms take advantage 
of motive's overrepresentation and conservation among 
orthologous sequences. From this large number of available 
tools for motive finding, users would like to have guidance in 
choosing the generally best tool. However, assessment of 
performance of tools has still been a difficult task. This is 
mainly because we do not have a clear understanding of the 
biology of regulatory mechanisms; therefore, we lack an 
absolute standard against which to measure correctness of 
tools. Most of the algorithms perform better in lower 
organisms including yeast as compared to higher organism. 
Recent algorithms that integrate the motive 
overrepresentation and cross-species conservation have 
proven to perform better in higher organism including 
human. 

6. Recommendations 

Considering the relevance of locating recurring patterns in 
the sequence of nucleotides or amino acids, motive finding is 
becoming popular with different algorithms created to solve 
the problem, but most of the algorithms suffer with local 
optima. 

The Gibbs Sampling method is faced with a difficulty in 
the algorithm implementation in setting an appropriate 
parameter value. It is recommended that they depend on the 
initial choice of parameters and/or an initial set of simple 
motives. 
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