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Abstract: For interval liner programming problems, Rohn proposed four equivalence relations regarding to the upper and 

lower bounds of the interval optimal value. In this paper, similar problems of interval quadratic programming problem have been 

discussed. Some interesting properties have been proved and an illustrative example and remarks are given to get an insight of the 

properties. 
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1. Introduction 

Interval systems and interval optimal models are often used 

for modeling information systems and engineering problems, 

e.g. [1]. Over the past decades, the interval systems and 

interval mathematical programming (IvMP) have been studied 

by many authors, see e.g. [2-6, 20-27, 32-35] and the 

references therein. Some papers studied the problem of 

computing the range of optimal values of interval linear 

programming problems, see e.g., [12-17] among others. Some 

authors studied the problem of computing the range of optimal 

values of interval quadratic programs (IvQP) [7, 8, 18-19].  

The other frequent problems is study the properties on 

upper and lower bounds of IvMP. There have been developed 

diverse methods for computing the lower and upper bounds 

of IvQP. Liu [18] and Li [19] described some methods to 

compute the lower and upper bounds of IvQP with inequality 

and nonnegative constraints. Hladik [7] focused on convex 

quadratic programming problems with interval data, the 

problem of computing the best case and the worst case 

optimal values was discussed for interval convex quadratic 

programming problems of certain forms, then he studied the 

method of the upper and lower bounds of interval-valued 

convex quadratic programming problems in a general form. 

For computing the upper bound, these methods described in 

[8, 18, 19] are based on the dual problem of IvQP (dual 

method for short), under the condition that the zero duality gap 

of a pair of primal and dual IvQP is specified. Recently, Li et al. 

[11] proposed a new method to compute the upper bound of 

optimal values of IvQP, in this new method, only primal 

program is taken into consideration, the dual problem is not 

required and thus the condition that the duality gap is zero is 

also removed, and then Li described the properties on the 

upper and lower bounds of interval quadratic programming 

[9-11]. However few was done on the relations among the 

upper and lower bounds. The relations among the upper and 

lower bounds of IvLP (interval linear programming) have 

been established in [4, 8]. In this paper, IvQP and several 

equivalent conditions for interval quadratic programming 

problem have been studied. First, some properties of interval 

quadratic program are formulated. Based on these results, 

some interesting and useful relations of interval quadratic 

program will be given, which give an insight into the 

corresponding problems. 

2. Preliminaries 

From notations from [4], an interval matrix is defined as  



106 Qianqian Xu et al.:  Some Properties of Interval Quadratic Programming Problem   

 

[ ] m nA A {A R A A A }×= , = ∈ | ≤ ≤A  

where m nA A R ×, ∈ , A A≤ , and '' "≤  is understood 

componentwise. The center and the radius of matrix A  is 

denoted by  

1 1
( ) ( )

2 2
cA A A A A A∆= + , = −  

So [ ]c cA A A A∆ ∆= − , +A  [4]. An interval vector

[ ] { }mb b b R b b b= , = ∈ | ≤ ≤b  is understood as one-column 

interval matrix.  

Let { 1}
m±  be the set of all { 1,1}−  m-dimensional vectors, 

i.e.  

{ }{ 1}
m my R y e= ∈ || |=±  

where ( )1, ,1
T

e = …  is the m-dimensional vector of all 1’s.  

For a given { }1 m
y ∈ ± , let  

( )1 2 …y mT diag y y y= , , ,  

denote the corresponding diagonal matrix. For each 
nx R∈ , 

its sign vector sgn x  is defined by  

1 0
(sgn )

1 0

i
i

i

if x
x

if x

≥
= − <

 

where 1 2i n= , , , .⋯  then zx T x| |= , where sgn { 1}
n

z x= ∈ ± . 

Given an interval matrix [ ]c cA A A A∆ ∆= − , +A , for each 

{ }1 m
y ∈ ±  and { }1 n

z ∈ ± , the matrices yz c y zA A T A T∆= −  

are defined. 

Similarly for an interval vector [ ]c cb b b b b∆ ∆= − , +  and 

for each { 1}my ∈ ± , the vectors y c yb b T b∆= +  are defined. 

Let ,m n k n m n kA R B R b R c R d R× ×∈ , ∈ , ∈ ∈ , ∈ and

,n nQ R ×∈ consider the quadratic programming problem  

1
2

min T Tx Qx c x+  subject to 0Ax b Bx d x≤ , = , ≥ ,   

where Q  is positive semidefinite. Briefly, the problem is 

rewritten as  

1
min{ 0}

2

T Tx Qx c x Ax b Bx d x+ | ≤ , = , ≥ .      (1) 

The Dorn dual problem[10] of the quadratic (1)  is  

1
max{ 0 0}

2

T T T T Tu Qu b v d w Qu A v B w c v− − − | + + + ≥ , ≥    (2) 

Let  

1
( ) inf{ 0}

2

T Tf A B b c d Q x Qx c x Ax b Bx d x, , , , , = + | ≤ , = , ≥ ,  

and 

1
( ) sup{ 0 0}

2

T T T T Tg A B b c d Q u Qu b v d w Qu A v B w c v, , , , , = − − − | + + + ≥ , ≥ .

denote the optimal values of (1)  and (2) , respectively.  

The set of all m-by-n interval matrices will be denoted by 
m nIR ×  and the set of all m-dimensional interval vectors by 
mIR . Given 

m n k n m n kIR IR IR IR IR× ×∈ , ∈ , ∈ ∈ , ∈A B b ,c d  

and n nIR ×∈Q , the interval convex quadratic program  

1
min{ 0}

2

T Tx x x x x x+ | ≤ , = , ≥Q c A b B d      (3) 

is the family of convex quadratic programs (1) with data 

satisfying A B b c d Q∈ , ∈ , ∈ , ∈ , ∈ , ∈ .A B b c d Q  where Q  

is positive semidefinite for all Q ∈Q . 

The lower and upper bounds of the optimal values are 

respectively defined as  

inf{ ( ) }f f A B b c d Q A B b c d Q= , , , , , | ∈ , ∈ , ∈ , ∈ , ∈ , ∈ ,A B b c d Q  

sup{ ( ) }f f A B b c d Q A B b c d Q= , , , , , | ∈ , ∈ , ∈ , ∈ , ∈ , ∈ .A B b c d Q  

The upper bound of the optimal values of (2)  is defined as  

sup{ ( ) }g A B b c d Q A B b c d Qϕ = , , , , , | ∈ , ∈ , ∈ , ∈ , ∈ , ∈ .A B b c d Q  

The following lemmas will be used in the proof of the main 

results.  

Lemma 1.1. [11] 

1
min{ 0}

2

TTf x Qx x Ax b Bx d Bx d xc= + | ≤ , ≤ , ≥ , ≥  

and  

{ 1}

( ) sup ( )
k

ye y
y

f f A B b c d Q
∈ ±

, , , , , = , , , , , .A B b c d Q  

Lemma 1.2. [9] Let ( )f , , , , , = −∞,A B b c d Q  then there 

exists a 0B ∈ ,B  such that  

0( ) { }f A B b d Q, , , , ∈ −∞,∞  

holds for each d ∈d . 

Lemma 1.3. [10] It is hold that 
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                             ( )

                               ( )

            ( )

if f a

f if f is finite b

cannotdermine if f c

ϕ

−∞, = −∞;
= , ;
 , = ∞.

 

Lemma 1.4. [9] Let f  be finite and let x∗
 be an optimal 

solution of the problem (6) . then  

( )c y c yf f A B T B b c d T d Q∆ ∆= , − , , , + , ,  

where, for arbitrary [ 1 1]α ∈ − ,   

( )
( )

( ) 0
     1,2, ,( )

           ( ) 0

c c i
i

i i

i

B x d
if B x d

y i kB x d

if B x dα

∗
∗

∆ ∆∗
∆ ∆

∗
∆ ∆

 −
+ >

= =+
 + =

…  

3. Some Properties of IvQP 

For an interval linear programming problem (IvLP) with 

data , ,A b c , Rohn proved that the following assertions are 

equivalent [4].  

a. For each A B b c∈ , ∈ , ∈ , ∈A B b c the problem  

min{ 0}Tc x Ax b x| = , ≥  

has an optimal solution.  

b. Both ( )f , ,A b c  and ( )f , ,A b c  are finite.  

c. Both ( )f , ,A b c  and ( )ϕ , ,A b c  are finite.  

d. The system  

1 2
T T

p p cAA − ≤  

is feasible and ( )ϕ , ,A b c  is finite.  

Similarly, the relationship of the following assertions is 

studied.  

(a) For each A B b c d Q∈ , ∈ , ∈ , ∈ , ∈ , ∈A B b c d Q  the 

problem  

1
min{ 0}

2

T Tx Qx c x Ax b Bx d x+ | ≤ , = , ≥      (4) 

has an optimal solution.  

(b) Both ( )f , , , , ,A B b c d Q  and ( )f , , , , ,A B b c d Q  are 

finite.  

(c) Both ( )f , , , , ,A B b c d Q  and ( )ϕ , , , , ,A B b c d Q  are 

finite.  

(d) The system  

1 2 3 0 0 1 2 3
T T T

iQu v v v c v iA B B+ + − + ≥ , ≥ , = , ,    (5) 

is solvable, and ( )ϕ , , , , ,A B b c d Q  is finite.  

Theorem 2.1. For an interval quadratic programming 

problem with data A B b c d Q∈ , ∈ , ∈ , ∈ , ∈ , ∈A B b c d Q  

there holds that  

( ) ( ) ( ) ( )a b c d⇒ ⇔ ⇒  

Proof. ( ) ( )a b⇒ : Since each problem (4)  has an 

optimal solution, it must be ( )f , , , , , < ∞A B b c d Q . From 

Lemma 1.2, if ( )f , , , , , = −∞,A B b c d Q  then there exists a 

0B ∈ ,B  such that 0( ) { }f A B b d Q, , , , ∈ −∞,∞ , hold for 

each d ∈ d , so the possibility of ( )f , , , , , = −∞A B b c d Q  

is precluded by Lemma 1.2. Hence ( )f , , , , ,A B b c d Q  is 

finite. From Lemma 1.4 and Lemma 1.1, which can be got is 

that ( )c y c yf f A B T B b c d T d Q∆ ∆= , − , , , + ,  and 

{ 1}

sup ( )
k

ye y
y

f f A B b c d Q
∈ ±

= , , , , , , in other words, f  gets the 

maximum in a finite group generated by y , hence 

( )f A B b c d Q, , , , ,  is finite. 

( ) ( )b c⇒ : From Lemma 1.3, if ( )f , , , , ,A B b c d Q  is 

finite, ( ) ( )f ϕ, , , , , = , , , , ,A B b c d Q A B b c d Q . Hence 

( )f , , , , ,A B b c d Q  is finite implies that ( )ϕ , , , , ,A B b c d Q  is 

finite. 

According to the process of above proof, something can be 

easily got that if ( )f , , , , ,A B b c d Q  is finite, then 

( )f , , , , ,A B b c d Q  is finite. Thus, the result of ( ) ( )c b⇒  is 

obviously true, since that if ( )f , , , , ,A B b c d Q  and 

( )ϕ , , , , ,A B b c d Q  are finite, ( )f , , , , ,A B b c d Q  and 

( )f , , , , ,A B b c d Q  are obviously finite.  

Thus, ( )b  and ( )c  are necessary and sufficient 

conditions to each other.  

( ) ( )c d⇒ : Since  

1
inf{ 0}

2

TT
f x Qx x Ax b Bx d Bx d xc= + | ≤ , ≤ , ≥ , ≥   (6) 

The Dorn  dual problem of (6)  is  

1 2 3 1 2 3

1
max{ 0 0 1 2 3}

2

T T T T T TT
iu Qu v v v Qu v v v c v id A Bb d B− − − + | + + − + ≥ , ≥ , = , ,            (7) 

If ( )f A B b c d Q, , , , ,  is finite, then by the strong duality theory [9], the following formula is established  
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1 2 3 1 2 3

1
sup{ 0 0 1 2 3}

2

T T T T T TT
if u Qu v v v Qu v v v c v id A Bb d B= − − − + | + + − + ≥ , ≥ , = , ,           (8) 

so that (7) is finite, thus the system (5) is solvable. 

4. An Illustrative Example 

In this section, an illustrative example is given for Theorem 

2.1, which helps us to understand Theorem 2.1. 

Example 1 Consider the interval quadratic program  

1 2

1
min[ 1]

2
x x, +  

1 2

1 2

1 2

[1 2] [0 2]

[1, 2] [ 2 2]

0

x x

x x

x x

, − = ,
 − = − ,
 , ≥

             (9)  

The corresponding interval matrices and vectors of (9) are  

1
2

1
c

 
=  
 

 [ ]
[1 2] 1

1,2 1
B

, − 
=  − 

 [ ]
[0 2]

2,2
d

, 
=  − 

 

The lower bound of the optimal values can be determined 

by convex quadratic program  

1 2

1
min

2
x x+  

1 2

1 2

1 2

1 2

1 2

2 0

2

2 2

2

0

x x

x x

x x

x x

x x

− ≥
 − ≤ − ≥ −
 − ≤


, ≥

               (10) 

It can be shown that 0f =   

Then the upper bound is computed by Lemma 1.1. This 

problem can be decomposed into four convex quadratic 

programs  

1 1 2minf x x= +  

1 2

1 2

1 2

2 0

2 2

0

x x

x x

x x

− =
 − = −
 , ≥

              (11) 

2 1 2minf x x= +  

1 2

1 2

1 2

2 0

2

0

x x

x x

x x

− =
 − =
 , ≥

              (12) 

3 1 2minf x x= +  

1 2

1 2

1 2

2

2 2

0

x x

x x

x x

− =
 − = −
 , ≥

             (13) 

and  

4 1 2minf x x= +
 

1 2

1 2

1 2

2

2

0

x x

x x

x x

− =
 − =
 , ≥

               (14) 

It is easy to see that the convex quadratic programs (11), (12) 

and (13) are infeasible and the convex quadratic program (14) 

is feasible, hence the optimal solution is exist in the convex 

quadratic program (14), it can be shown that optimal values of 

four convex quadratic programs are 

1 2 3 4 2f f f f= ∞, = ∞, = ∞, = . Thus 2f = . 

Therefore ,f f  are finite while the subproblem (11)
 
has 

no optimal solution. This example shows that ( ) ( )b a⇒/ in 

Theorem 2.1. 

5. Conclusion 

In applications we are mostly interested in interval 

quadratic programming problems having finite optimal 

solutions. There for problems of interval optimization when 

all subproblems have optimal solutions is of particular interest. 

This paper discuss some interesting finite solution properties 

of interval quadratic programming problem with standard 

constraints. A topic is worth of further study is the properties 

of interval quadratic programming problem with mixed 

constraints. 
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