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Abstract: Topological indices have important role in theoretical chemistry for QSPR researches. Among the all topological 
indices the Randić and the Zagreb indices have been used more considerably than any other topological indices in chemical 
and mathematical literature. Most of the topological indices as in the Randić and the Zagreb indices are based on the degrees of 
the vertices of a connected graph. Recently novel two degree concepts have been defined in graph theory; ev-degrees and ve-
degrees. In this study ev-degree Zagreb index, ve-degree Zagreb indices and ve-degree Randić index are defined by using these 
new graph invariants as parallel to their corresponding classical degree versions. These new group ev-degree and ve-degree 
indices are compared with the other well-known and most used topological indices in literature such as; Wiener, Zagreb and 
Randić indices by modelling some physicochemical properties of octane isomers. The ev-degree Zagreb index, the ve-degree 
Zagreb and the ve-degree Randić indices give better correlation than Wiener, Zagreb and Randić indices to predict the some 
specific physicochemical properties of octanes. The relations between the second Zagreb index and ev-degree and ve-degree 
Zagreb indices and some mathematical properties of ev-degree and ve-degree Zagreb indices are investigated. 
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1. Introduction 

Graph theory which is an important branch of applied 
mathematics has many applications to modelling real world 
problems from science to technology. Chemical graph theory 
which is a fascinating branch of graph theory has many 
applications related to chemistry. Chemical graph theory 
provides many information about molecules and atoms by 
using pictorial representation (chemical graph) of these 
chemical compounds. A topological index which is a 
numerical quantity derived from the chemical graph of a 
molecule is used to modelling chemical and physical 
properties of molecules in QSPR/QSAR researches. 
Quantitative structure-property/activity relationships 
(QSPR/QSAR) studies have very important role in 
theoretical chemistry. Octane isomers have been used widely 
in QSPR studies. The role of octane isomers in QSPR 
studies, we refer the interested reader [1-4] and references 

therein. Among the all topological indices, Wiener, Randić 
and Zagreb indices are the most used topological indices in 
the chemical and mathematical literature so far. 

Very recently, Chellali, Haynes, Hedetniemi and Lewis have 
published a seminal study: On ve-degrees and ev-degrees in 
graphs [5]. The authors defined two novel degree concepts in 
graph theory; ev-degrees and ve-degrees and investigate some 
basic mathematical properties of both novel graph invariants 
with regard to graph regularity and irregularity [5]. After given 
the equality of the total ev-degree and total ve-degree for any 
graph, also the total ev-degree and the total ve-degree were 
stated as in relation to the first Zagreb index. It was proposed 
in the article that the chemical applicability of the total ev-

degree (and the total ve-degree) could be an interesting 
problem in view of chemistry and chemical graph theory. 

In this study, ev-degree Zagreb index, ve-degree Zagreb 
indices and ve-degree Randić index are defined by using these 
new graph invariants. Tthese novel topological indices are 
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defined by as parallel to corresponding original definitions of 
based on classical degree concept. These new group ev-degree, 
ve-degree Zagreb and ve-degree Randić indices are compared 
with the other well-known and most used topological indices 
such as Wiener, Zagreb and Randić indices by modelling some 
physicochemical properties of octane isomers. 

2. Preliminaries 

In this section some basic and preliminary concepts will be 
given which shall be used later. A graph � = (�, �) consists 
of two nonempty sets �	and 2-element subsets of � namely 
�. The elements of � are called vertices and the elements of 
� are called edges. For a vertex 	, deg	(	) show the number 
of edges that incident to 	.  The set of all vertices which 
adjacent to 	  is called the open neighborhood of 	  and 
denoted by �(	). If we add the vertex 	 to �(	), then we get 
the closed neighborhood of 	, ��	�. For the vertices � and 	, 
�(�, 	) denotes the distance between �  and 	  which means 
that minimum number of edges between � and 	. In [6], the 
Wiener index of a connected graph G, the first topological 
index, was defined as; 

� = �(�) = 12� �(�, 	)
�,�∈�(�)

. 

In his study, Wiener used the total distance between all 
different atoms (vertices) of paraffin to predict boiling point. 
We refer the interested reader to [7-9] and the references 
therein for the detailed discussion of Wiener index. The first 
and second Zagreb indices [10] defined as follows: The first 
Zagreb index of a connected graph �, defined as; 

�� = ��(�) = ∑ deg	(�)� =�∈�(�) ∑ (deg(�) + deg	(	))��∈!(�) . 

And the second Zagreb index of a connected graph � , 
defined as; 

�� = ��(�) = ∑ deg(�) . deg	(	)��∈!(�) . 

The authors investigated the relationship between the total 
π-electron energy on molecules and Zagreb indices [10]. For 
the details see the references [11-13]. Randić investigated the 
measuring the extent of branching of the carbon-atom 
skeleton of saturated hydrocarbons via Randić index [14]. 
The Randić index of a connected graph G defined as; 

" = "(�) = ∑ (deg(�) . deg(	))#� �⁄��∈!(�) . 

The interested reader should see to [15-17] and the references 
therein for the up to date arguments about the Randić index. And 
now the definitions of ev-degree and ve-degree concepts are 
given which were given by Chellali et al. in [5]. 

Definition 2.1 [5] Let �  be a connected graph and 		 ∈
�(�). The ve-degree of the vertex		 , �%&�'(	),	equals the 
number of different edges that incident to any vertex from the 
closed neighborhood of 	. For convenience the ve-degree of 
the vertex		 is showed by (�. 

Definition 2.2 [5] Let �  be a connected graph and % =

�	 ∈ �(�).  The ev-degree of the edge 	% , �%&'�(%),	equals 
the number of vertices of the union of the closed 
neighborhoods of �	and		. For convenience the ev-degree of 
the edge % = �	 is showed by (' or (��. 

These new degree definitions are illustrated for the vertices 
and edges of the graph �	which are shown in Figure 1. 

 

Figure 1. The graph G for the Example 2.3 and Example 2.13. 

Example 2.3 Notice that for the vertices of � , we get 
() = 3 , (� = 4 , (� = 6 , (- = 3 , (. = 6 , (/ = 3 , (0 = 6 , 
(1 = 4 and (2 = 4.	And for the edges of �, we get ()� = 4, 
(�� = 5 , (�- = 4 , (�. = 5 , (.0 = 6 , (./ = 4 , (01 = 4 , 
(02 = 4 and (21 = 3. 

Definition 2.4 [5] Let �  be a connected graph and 		 ∈
�(�). The total ev-degree of the graph � is defined as; 

4' = 4'(�) = ∑ (''∈!(�) . 

And the total ve-degree of the graph � is defined as; 

4� = 4�(�) = ∑ (��∈�(�) . 

Observation 2.5 [5] For any connected graph G, 

4'(�) = 4�(�). 
The following theorem states the relationship between the 

first Zagreb index and the total ve-degree of a connected 
graph �. 

Theorem 2.6 [5] For any connected graph G, 

4'(�) = 4�(�) = ��(�) − 37(�). 
where 7(�) denotes the total number of triangles in G. 

Theorem 2.1 can be restated for the trees which are acyclic 
and are not contain any triangles. 

Corollary 2.7 For any tree 4, 

4'(4) = 4�(4) = ��(4). 
And from this last equality, naturally is considered to 

apply these two novel degree concepts to chemical graph 
theory by introducing ev-degree and ve-degree Zagreb 
indices as well as ve-degree Randić index. 

Definition 2.8 Let � be a connected graph and % ∈ �(�). 
The ev-degree Zagreb index of the graph � is defined as; 

8 = 8(�) = ∑ ('�'∈!(�) . 

Definition 2.9 Let � be a connected graph and 	 ∈ �(�). 
The first ve-degree Zagreb alpha index of the graph �  is 
defined as; 

89 = 89(�) = ∑ (���∈�(�) . 

Definition 2.10 Let �  be a connected graph and �	 ∈



 International Journal of Systems Science and Applied Mathematics 2017; 2(5): 87-92 89 
 

�(�). The first ve-degree Zagreb beta index of the graph � is 
defined as; 

8: = 8:(�) = ∑ ((� + (�)��∈!(�) . 

Definition 2.11 Let �  be a connected graph and �	 ∈
�(�). The second ve-degree Zagreb index of the graph � is 
defined as; 

8; = 8;(�) = ∑ (�(���∈!(�) . 

Definition 2.12 Let � be a connected graph and �	 ∈ �(�). 
The ve-degree Randić index of the graph � is defined as; 

"9(�) = ∑ (	(�(�	)#� �⁄��∈!(�) . 

Example 2.13 These novel topological indices are computed 
for the graph G in the Example 2.3 (see Figure 1). 

8 = 8(�) = ∑ ('�'∈!(�) =175, 89 = 89(�) = ∑ ���∈�(�) =
183, 8: = 8:(�) = ∑ ((� + (�)��∈!(�) = 84, 

8; = 8;(�) = ∑ (�(���∈!(�) =202, 
"9(�) = ∑ 1 (	(�(�	)� �⁄⁄��∈!(�) = 13.425 and ��(�) = 46. 

3. Results and Discussions 

In this section all above mentioned old and new 
topological indices are compared with each other by using 
strong correlation coefficients acquired from the chemical 
graphs of octane isomers. The experimental results are got at 
the www.moleculardescriptors.eu (see Table 1). The 
following physicochemical features have been modeled: 

• Entropy, 
• Acentric factor (Acen Fac), 
• Enthalpy of vaporization (HVAP), 
•Standard enthalpy of vaporization (DHVAP). 
Those physicochemical properties of octane isomers are 

selected for which give reasonably good correlations, i.e. the 
absolute value of correlation coefficients are larger than 0.8 
except from the property HVAP (see Table 2). Also, the 

Wiener index, the first Zagreb index, the second Zagreb 
index and the Randić indices of octane isomers values are 
retrieved at the www.moleculardescriptors.eu (see Table 3). 
The ev-degree Zagreb index, the ve-degree Zagreb indices 
and the ve-degree Randić index of octane isomers values are 
showed in Table 3. 

Table 1. Some physicochemical properties of octane isomers. 

Molecule Entropy Acen Fac HVAP DHVAP 

n-octane 111.70 0.39790 73.19 9.915 
2-methyl-heptane 109.80 0.37792 70.30 9.484 
3-methyl-heptane 111.30 0.37100 71.30 9.521 
4-methyl-heptane 109.30 0.37150 70.91 9.483 
3-ethyl-hexane 109.40 0.36247 71.70 9.476 
2,2-dimethyl-hexane 103.40 0.33943 67.70 8.915 
2,3-dimethyl-hexane 108.00 0.34825 70.20 9.272 
2,4-dimethyl-hexane 107.00 0.34422 68.50 9.029 
2,5-dimethyl-hexane 105.70 0.35683 68.60 9.051 
3,3-dimethyl-hexane 104.70 0.32260 68.50 8.973 
3,4-dimethyl-hexane 106.60 0.34035 70.20 9.316 
2-methyl-3-ethyl-pentane 106.10 0.33243 69.70 9.209 
3-methyl-3-ethyl-pentane 101.50 0.30690 69.30 9.081 
2,2,3-trimethyl-pentane 101.30 0.30082 67.30 8.826 
2,2,4-trimethyl-pentane 104.10 0.30537 64.87 8.402 
2,3,3-trimethyl-pentane 102.10 0.29318 68.10 8.897 
2,3,4-trimethyl-pentane 102.40 0.31742 68.37 9.014 
2,2,3,3-tetramethylbutane 93.06 0.25529 66.20 8.410 

Table 2. The correlation coefficients between new and old topological 

indices and some physicochemical properties of octane isomers. 

Index Entropy AcenFac HVAP DHVAP 

S -0.9614 -0.9829 -0.8425 -0.9043 
Sα -0.9565 -0.9906 -0.8279 -0.8931 
Sβ -0.9410 -0.9864 -0.7281 -0.8118 
Sµ -0.9481 -0.9863 -0.7552 -0.8118 
Rα 0.9486 0.9829 0.8351 0.8924 
W 0.8772 0.9656 0.7381 0.8202 
M1 -0.9543 -0.9731 -0.8860 -0.9361 
M2 -0.9410 -0.9864 -0.7281 -0.8118 
R 0.9063 0.9043 0.9359 0.9580 

 

Table 3. Topological indices of octane isomers. 

Molecule M1 M2 W R S Sα Sβ Sµ Rα 

n-octane 26 24 84 3.914 98 90 48 84 2.144 
2-methyl-heptane 28 26 79 3.770 114 104 52 98 1.971 
3-methyl-heptane 28 27 76 3.808 116 98 54 106 1.956 
4-methyl-heptane 28 27 75 3.808 116 110 54 107 1.991 
3-ethyl-hexane 28 28 72 3.846 118 114 56 115 1.964 
2,2-dimethyl-hexane 32 30 71 3.561 152 138 60 132 1.754 
2,3-dimethyl-hexane 30 30 70 3.681 134 126 60 129 1.784 
2,4-dimethyl-hexane 30 29 71 3.664 132 124 58 121 1.799 
2,5-dimethyl-hexane 30 28 74 3.626 130 118 56 113 1.801 
3,3-dimethyl-hexane 32 32 67 3.621 156 146 64 148 1.718 
3,4-dimethyl-hexane 30 31 68 3.719 136 130 62 136 1.753 
2-methyl-3-ethyl-pentane 30 31 67 3.719 136 132 62 137 1.770 
3-methyl-3-ethyl-pentane 32 34 64 3.682 160 152 68 163 1.645 
2,2,3-trimethyl-pentane 34 35 63 3.481 174 162 70 171 1.527 
2,2,4-trimethyl-pentane 34 32 66 3.417 168 156 64 147 1.606 
2,3,3-trimethyl-pentane 34 36 62 3.504 176 164 72 179 1.489 
2,3,4-trimethyl-pentane 32 33 65 3.553 152 144 66 151 1.589 
2,2,3,3-tetramethylbutane 38 40 58 3.250 214 194 80 217 1.277 
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Table 4. The squares of correlation coefficients between topological indices 

and some physicochemical properties of octane isomers. 

Index Entropy AcenFac HVAP DHVAP 

S 0.9242 0.9660 0.7098 0.8177 
Sα 0.9148 0.9812 0.6854 0.7976 
Sβ 0.8854 0.9729 0.5301 0.6590 
Sµ 0.8988 0.9727 0.5703 0.6590 
Rα 0.8998 0.9660 0.6973 0.7963 
W 0.7694 0.9323 0.5447 0.6727 
M1 0.9106 0.9469 0.7849 0.8762 
M2 0.8854 0.9729 0.5301 0.6590 
R 0.8213 0.8177 0.8759 0.9177 

It can be seen from the Table 2 that the most convenient 
indices which are modelling the Entropy, Enthalpy of 
vaporization (HVAP), Standard enthalpy of vaporization 
(DHVAP) and Acentric factor (AcenFac) are ve-degree 
Zagreb index (S) for entropy, the first ve-degree Zagreb alpha 
index (Sα) for Acentric Factor and the Randić index (R) for 
the Enthalpy of vaporization (HVAP) and Standard enthalpy 
of vaporization (DHVAP), respectively. But notice that the 
first two indices show the negative strong correlation and the 
third index show the positive strong correlation. Because of 
this fact these graph invariants are compared with each other 
by using the squares of correlation coefficients for ensure the 
compliance between the positive and negative correlation 
coefficients (see Table 4). 

Entropy: It can be seen from the Table 4 that the ve-degree 
Zagreb index (S) gives the highest square of correlation 
coefficient for entropy. After that the first ve-degree Zagreb 
alpha index (Sα), the first Zagreb index (M1), the ve-degree 
Randić index (Rα) and the second ve-degree Zagreb index 
(Sµ) give the highest square of correlation coefficients, 
respectively. 

Acentric factor (AcenFac): It can be seen from the Table 4 
that the first ve-degree Zagreb alpha index (Sα) gives the 
highest square of correlation coefficient for Acentric factor. 
After that the first ve-degree Zagreb beta index (Sβ) and the 
second Zagreb index (M2) give the same value. And the the 
second ve-degree Zagreb index (Sµ), the ev-degree Zagreb 
index (S) and ve-degree Randić index (Rα) give the highest 
square of correlation coefficients, respectively. 

Enthalpy of vaporization (HVAP): It can be seen from the 
Table 4 that the Randić index (R) gives the the highest square 
of correlation coefficient for Enthalpy of vaporization. After 
that the first Zagreb index (M1), the ev-degree Zagreb index 
(S), the ve-degree Randić index (Rα) and the the first ve-
degree Zagreb alpha index (Sα) give the highest square of 
correlation coefficients, respectively. 

Standard enthalpy of vaporization (DHVAP): It can be 
observed from the Table 4 that the Randić index (R) gives the 
the highest square of correlation coefficient for Enthalpy of 
vaporization. After that the first Zagreb index (M1), the ev-
degree Zagreb index (S), the first ve-degree Zagreb alpha 
index (Sα) and the ve-degree Randić index (Rα) give the 
highest square of correlation coefficients, respectively. 

And now, the relations between the old topological indices 
and the novel topological indices are investigated. The 

correlation coefficients between the Wiener, Zagreb, Randić 
indices and the ev-degree and ve-degree indices are shown in 
Table 5. It can be shown from the Table 5 that the first ve-
degree Zagreb beta index (Sβ) gives the highest absolute 
value of correlation coefficient with the Wiener index. The 
ev-degree Zagreb index (S) gives the highest correlation 
coefficient with the first Zagreb index (M1). The first ve-
degree Zagreb beta index (Sβ) gives the highest absolute 
value of correlation coefficient with the Randić index. And it 
is very surprisingly see that the correlation coefficient 
between the second Zagreb index (M2) and the first ve-degree 
Zagreb beta index (Sβ) is one. It can be seen from the Table 3 
that 8:(�) = 2��(�)  for the molecular graphs of octane 
isomers. But we know that 8:(�) ≠ 2��(�)  from the 
Example 2.3. The following section the relation between the 
second Zagreb index and the first ve-degree Zagreb beta 
index will be investigated. 

Table 5. The correlation coefficients between old and corresponding novel 

topological indices. 

Index W M1 M2 R 

S -0.9177 0.9951 0.9676 -0.9441 
Sα 0.9483 0.9818 0.9774 -0.9182 
Sβ -0.9683 0.9495 1.000 -0.8609 
Sµ -0.9567 0.9523 0.9982 -0.8645 
Rα 0.9478 -0.9764 -0.9758 0.9365 

The cross correlation matrix of ev-degree and ve-degree 
indices are given in Table 6. 

Table 6. The cross correlation matrix of the ev-degree and ve-degree 

topological indices. 

Index S Sα Sβ Sµ Rα 

S 1.0000     
Sα 0.9901 1.0000    
Sβ 0.9676 0.9774 1.0000   
Sµ 0.9738 0.9797 0.9982 1.0000  
Rα -0.9758 -0.9752 -0.9758 -0.9701 1.0000 

It can be shown from the Table 6 that the minimum 
correlation efficient among the all ve-degree and ev-degree 
indices is 0.9676 which is indicate strong correlation among 
all these novel indices. From the above arguments, it can be 
said that the ve-degree and ev-degree indices are possible 
tools for QSPR researches. 

4. Lower and Upper Bounds of ev-Degree 

and ve-Degree Zagreb Indices for 

General Graphs 

In this section are given the relations between second 
Zagreb index and ve-degree and ev-degree Zagreb indices. 
And also fundamental mathematical properties of ev-degree 
and ve-degree Zagreb indices are given. 

Lemma 4.1 Let T be a tree and 	 ∈ �(4) then, 

(� =� deg	(�)
�∈>(�)

. 
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Proof From the Definition 2.1 we know that (� equals the 
number of different edges incident to any vertex from �(	). 

Clearly for any tree, this definition corresponds the sum of all 
degrees of the vertices lie in �(	). Hence 

(� = � deg (�)
�∈>(�)

.  

Theorem 4.2 Let T be a tree with the vertex set �(4) =
?	�, 	�, … , 	AB then 

8:(4) = 2��(4). 
Proof From the Definition 2.10 and Lemma 4.1 we can 

directly write 

8:(4) = � ((�C + (�D)
�C�D∈!(E)

= � (� deg(F)
G∈>(�C)�C�D∈!(E)

+ � deg (F))
G∈>(�D)

 

= deg (	�) � deg(F)
G∈>(�H)

+ deg (	�) � deg(F) + ⋯
G∈>(�J)

+  deg (	A) � deg (F)
G∈>(�K)

 

Notice that the above sum contains the multiplication of 
the degree of end vertices of each edge exactly two times. 
Hence, 

= 2 ∑ deg(�) deg(	) = 2��(4)��∈!(E) . 

Before we give the following interesting theorem, we 
mention the forgotten topological index [10]. The forgotten 
topological index for a connected graph G defined as; 

L = L(�) = ∑ deg (	)M = ∑ (deg(�)� + deg(	)�)��∈!(�)�∈�(�) . 

It was showed in [18] that the predictive power of the 
forgotten topological index is very close to the first Zagreb 
index for the entropy and acentric factor. For further studies 
about the forgotten topological index we refer to the 
interested reader [18-20] and references therein. 

Theorem 4.3 Let G be a triangle free connected graph, 
then; 

8(�) = L(�) + 2��(�). 
Proof. It was showed in [5] that (' = (�� = deg(�) +

deg (	) for any triangle free graph. By using this equality, we 
get that; 

8 = 8(�) = � ('�
'N��∈!(�)

= � (deg(�) + deg(	))�
'N��∈!(�)

 

= � (deg(�)� + deg(	)�)
'N��∈!(�)

+ 2 � deg(�) deg (	)
'N��∈!(�)

 

= L(�) + 2��(�).  

We can state the following corollary which describe the 
relation between the ev-degree Zagreb index and the first ve-
degree Zagreb alpha index for trees by using the Theorem 
4.3. 

Corollary 4.4 Let T be a tree then; 

8(4) = L(4) + 8:(4). 
And now we give the maximum and minimum graph 

classes with respect to ev-degree and ve-degree Zagreb 
indices. 

Theorem 4.5 Let G be a simple connected graph of order 
7 ≥ 3 vertices then; 

167 − 30 ≤ 8(�) ≤ 1
2 7M(7 − 1). 

Lower bound is achieved if and only if G is a path and 
upper bound is achieved if and only if G is a complete graph. 

Proof We get that (' = (�� = |�(�) ∪ �(�)|  from the 
definition of ev-degree of any edge of G. |�(�) ∪ �(�)| 
reaches its maximum value for the complete graphs and its 
minimum value for the path for an edge of G. There are 
7 − 3 edges with their ev-degrees equals 4 and 2 edges with 
their ev-degrees equals 3 for the n-vertex path. And the ev-
degrees of all edges of the complete graph are 7. From this, 
the desired result is acquired.  

Theorem 4.6 Let T be a tree of order 7 ≥ 3 vertices then; 

167 − 30 ≤ 8(4) ≤ 7�(7 − 1). 
Lower bound is achieved if and only if T is a path and 

upper bound is achieved if and only if T is a star. 
Proof The lower bound comes from Theorem 4.5. From 

the same arguments of the Theorem 4.5, the maximum tree of 
the ev-degree Zagreb index is star graph. The ev-degrees of 
all edges of the star graph are 7 . From this, the proof is 
completed.  

Theorem 4.7 Let G be a simple connected graph of order 
7 ≥ 5 vertices then; 

167 − 6 ≤ 89(�) ≤ 1
4 7M(7 − 1)�. 

Lower bound is achieved if and only if G is a path and 
upper bound is achieved if and only if G is a complete 
graphs. 

Proof It is known that (�  equals the number of different 
edges that incident to any vertex from the closed 
neighborhood of 	. Clearly (� reaches its maximum value for 
the complete graphs and its minimum value for the path for a 
vertex of G. There are 7 − 2 vertices with their ve-degrees 
equals 4, 2 vertices with their ve-degrees equals 3 and 2 
vertices with their ve-degrees equals 2. And the ve-degrees of 
all vertices of the complete graph are 7(7 − 1) 2⁄ . From this, 
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the desired result is acquired.  
Theorem 4.8 Let T be a tree of order 7 ≥ 5 vertices then; 

167 − 6 ≤ 89(4) ≤ 7(7 − 1)�. 
Lower bound is achieved if and only if T is a path and 

upper bound is achieved if and only if T is a star. 
Proof The lower bound comes from Theorem 4.6. From 

the same arguments of the Theorem 4.7, the maximum tree of 
the ve-degree first Zagreb alpha index is star graph. The ve-
degrees of all vertices of the star graph are 

7 − 1. From this, the proof is completed.  
Theorem 4.9 Let G be a simple connected graph of order 

7 ≥ 5 vertices then; 

87 − 16 ≤ 8:(�) ≤ 1
2 7�(7 − 1)�. 

Lower bound is achieved if and only if G is a path and 
upper bound is achieved if and only if G is a complete graph. 

Proof The proof is similar the proof of Theorem 4.7. 
Theorem 4.10 Let T be a tree of order 7 ≥ 5 vertices then; 

167 − 6 ≤ 8:(�) ≤ 27(7 − 1). 
Lower bound is achieved if and only if T is a path and 

upper bound is achieved if and only if T is a star. 
Proof The proof is similar the proof of Theorem 4.8.  
Theorem 4.11 Let G be a simple connected graph of order 

7 ≥ 5 vertices then; 

167 − 44 ≤ 8;(�) ≤ 1
8 7M(7 − 1)M. 

Lower bound is achieved if and only if G is a path and 
upper bound is achieved if and only if G is a complete graph. 

Proof The proof is similar the proof of Theorem 4.7.  
Theorem 4.12 Let T be a tree of order 7 ≥ 5 vertices then; 

167 − 6 ≤ 8;(4) ≤ (7 − 1)M. 
Lower bound is achieved if and only if T is a path and 

upper bound is achieved if and only if T is a star. 
Proof The proof is similar the proof of Theorem 4.8.  

5. Conclusion 

It was proposed novel topological indices based on ev-
degree and ve-degree concept which have been defined very 
recently in graph theory. It has been shown that these indices 
can be used as predictive means in QSAR researches. 
Predictive power of these indices have been tested on by 
using some physicochemical properties of octanes. Acquired 
results show that the new ev-degree and ve-degree indices 
give somewhat better results by analogy well-known Wiener, 
Zagreb and Randić indices. In addition, basic mathematical 
properties of these novel topological indices was 
investigated. It was found that a lower and upper bounds for 

the simple connected graphs. It can be interesting to find the 
exact value of the ev-degree and ve-degree Zagreb indices of 
some graph operations such as; direct, Cartesian, corona, 
tensor, hierarchical and generalized hierarchical product of 
graphs for further studies. It can also be interesting to 
investigate the relations between the ev-degree and ve-degree 
Zagreb indices and the other well-known topological indices. 
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