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Abstract: The four tank system is a widely used mechatronic laboratory system in control theory. This work is aimed to 
choose the best controller for the four tank system (4TS) with two input force. The optimal control is one of the best techniques 
in a sense of performance, and is demonstrated for the level control of 4TS. There are several controller systems in optimal 
control for this purpose which are Linear Quadratic Regulator (LQR), Linear Quadratic Gaussian Regulator (LQGR), H2, and 
H∞ controller system. These controllers will be applied to this important mechatronic system (4TS) separately, and compared 
the performance for disturbance rejection with each other to study the effect of these controller systems on the 4TS controlled 
state. On the other hand the performances of the optimal control systems are compared with other controller performances 
available in literatures for the same case study. The results indicate that the Linear Quadratic Regulator (LQR) provides 
significant improvement over completely controllers. The simulations were carried out in MATLAB-Simulink. 
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1. Introduction 

During last decades, liquid level control has become the 
major challenges concerning research due to increasing use 
in variety of applications, especially industrial applications 
and has somehow got extreme importance especially in 
petrochemical industries, pharmaceutical and food processing 
industries, chemical plants,…etc. The basic task of controller 
is to provide proper output. Due to this reason when the level 
controller works well then final product will be error free and 
will be accurate, hence the quality of the final product 
depends on the accuracy of the level controller. Since the 
liquid level control has been the subjects of study for a large 
number of researchers. Moreover, the liquid level control is 
the most representative equipments in the tank systems. The 
tank systems may be classified into various types based on 
the system configurations, like single and double tank 
(Chianeh et al. 2011), three tank systems (3TS) (Skogestad 
and Postlethwaite 2001, Kovács et al. 2010, Iplikci 2010, 
Altinisik and Yildirim 2012) and (Sarailoo et al. 2015) or 
four tank systems (4TS) (Gatzke et al. 2000, Mercangoz et 

al. 2007, Drca 2007, Alvarado et al. 2011, Ruscio 2012, 
Balsemin and Picci 2013, Khalid et al. 2014, Gouta et al. 

2015). The four tank system (4TS) design is one of the most 
widely used laboratory system in control theory. It is a well-
known MIMO (Multi Input Multi Output) system suitable for 
analysis of various control schemes used in real-time which 
have nonlinear dynamics. There are different controllers that 
operate in the world for the purpose of liquid level control for 
4TS, which are the proportional-integral-derivative (PID) 
controller, artificial neural network (ANN) controller, fuzzy 
logic controller, sliding mode control, model predictive 
control (MPC) and optimal control techniques. The optimal 
control is one of the best techniques in a sense of 
performance. The famous optimal controller for nonlinear 
MIMO systems has some remarkable properties due to the 
guaranteed nominal stability of the closed loop controlled 
system (under weak conditions such as the stabilizability of 
the system and the detectability of the system seen from the 
objective). On the other hand, these optimal controller 
techniques have not attained the position it deserves between 
researchers. One reason for this is probably that it has been 
difficult to compare the optimal controller with the other 
controller methods which have received a great deal of 
attention owing to its simplicity and its practical applications. 
This work deals with the control of the 4TS using modern 
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control methods. More precisely, there are four methods in 
optimal control for this purpose which are: Linear Quadratic 
Regulator (LQR), Linear Quadratic Gaussian Regulator 
(LQGR), H2 method, and H∞ method, extended optimal 
control methods will be applied to the 4TS, known as 
disturbance rejection is applied, and the obtained results are 
compared with each other to find which of them gives the 
best response, and the performance of the best response for 
disturbance rejection is compared with other control 
configurations of the most common control techniques in the 
process industry, which are predictive control techniques by 
(Gatzke et al. 2000, Mercangoz et al. 2007). 

2. The Four Tank System Model 

The 4TS model used in this work is based on the system 
originally presented by Johansson and Nunes (1998). Similar 
systems were used for both traditional and advanced control 
research (Dai and Åstrӧm 1999). The specific experimental 
setup in this case study was previously used for model 
predictive control (MPC) by Gatzke et al. (2000), Drca 
(2007), Alvarado et al. (2011), Balsemin and Picci (2013), a 
distributed model predictive control (DMPC) by Mercangoz 
et al. (2007) and robust control applications by Vadigepalli et 

al. (2001). For the same case study, Gouta et al. (2015) was 
used model based predictive and back-stepping controllers to 
overcome the errors of MPC. A simple Linear Quadratic 
(LQ) optimal controller of the 4TS level velocity 
(incremental) form with approximately the same properties 
as a conventional PID controller of velocity form was 
presented by Ruscio (2012). The simulation model of a 
nonlinear artificial neural network (ANN) control design for 
the nonlinear coupled four tanks system was designed by 
Khalid et al. (2014). The level control of coupled tanks using 
sliding mode control (SMC) is presented by Abbas and 

Qamar (2012) and using the fuzzy logic controller by Wu et 

al. (2004). 
The model is a 6th order, non-linear system with two inputs 

(two pumps) and two outputs presented in Fig. 1. The two 
pumps are used to transfer water from a basin into four 
overhead tanks. The two tanks at the upper level drain freely 
into the two tanks at the bottom level. A portion of the flow 
from one pump is directed into one of the lower level tanks 
and the rest is directed to the overhead tank that drains into 
the other lower level tank. By adjusting the bypass valves of 
the system, the proportion of the water pumped into different 
tanks can be changed to adjust the degree of interaction 
between the pump throughputs and the water levels. 

2.1. Mathematical Modeling of the Four Tank System 

The four tank process is consists of four connected tanks 
as shown in Fig. 1. Pump A extracts water from the basin 
below and pours it to tank 1 and 4, while pump B pours to 
tank 2 and 3. The relationship between the flows at each 
outlet pipe and the total flow from pump A and pump B 
depends on the flow parameters 1γ  and 2γ  as: 

( )
( )

1

2

2

1

1

1

1 a

2 a

3 b

4 a

q q

q q

q q

q q

γ
γ

γ
γ

= 
= 
= − 
= − 

                            (1) 

The resistance R for liquid flow in such a pipe or 
restriction is defined as the change in the level difference (the 
difference of the liquid levels of the two tanks) necessary to 
cause a unit change in flow rate; that is: 

3

change in level difference,m

change in flow rate,m /sec
R =

 

 

Fig. 1. Schematic diagram of the four tank system. 

Since the relationship between the flow rate and level 
difference differs for the laminar flow and turbulent flow, we 
shall consider both cases in the following. The relationship 

between the steady-state flow rate and steady-state head at 
the level of the restriction is given by: 
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Q Kh=  

Where Q = steady-state liquid flow rate (m3/sec), K = 
coefficient (m2/sec) and h = steady-state head (m). 

For laminar flow, the resistance Rl is obtained as: 

l

dh
R

dQ
=

 

After some mathematical processing we can be written the 
6th order differential equations of the four tank system as: 
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  (2) 

In the simulation scenarios, nonlinear differential 
equations for the water mass balance in the tanks are used to 
represent the case study of this work, which are given in 
equation (2). In this model, Bernoulli’s law is used for the 
flows out of the tanks, Ai is the cross-sectional area of tank i, 
hi is the liquid level of tank i, and ai s the outlet hole cross-

sectional area of tank i, ( )0,1iγ ∈  the valve parameters, iυ  is 

the speed, kj the corresponding gain, and  is the portion of the 
flow that goes to the upper tank from pump j. In this case 
study, the system model is expanded to include the pump 
dynamics between the control signals uj and the actual speeds 

jυ  as a first order lag with unit gain and time constant iτ . 

The valve parameters specify the flow into the tanks, i.e. the 

flow into tank 1 is 1 1uγ  and into tank 4 ( )1 11 uγ−  and 

respectively to tank 2 and tank 3. Where the estimated 
parameter values of the real plant are shown in Table 1 by 

Johansson and Nunes (1998). 

Table 1. Nominal operating conditions and parameter values of the four-

tank system by Johansson and Nunes (1998). 

Symbol State/parameters Value 

oh  Nominal levels 11.4, 11.6, 5.3, 4.0 cm 

oυ  Nominal pump settings 50% ,50% 

ia  Area of the drain in tank i 
2.10, 2.14, 2.2, 2.3 
cm2 

iA  Areas of the tanks 730 cm2 

1γ  
Ratio of flow in tank 1 to flow in tank 
4 

0.30 

2γ  
Ratio of flow in tank 2 to flow in tank 
3 

0.35 

jk  Pump proportionality constants 7.45, 7.30 cm3/(s%) 

g Gravitational acceleration 981 cm/s2 

iτ  Pump response time constants 2.0, 2.1 s 

2.2. The Linear Model 

Some systems cannot be represented by a linear model and 
require the use of nonlinear models. The nonlinearity in 4TS 
is due to the square root term in mass flow relationship in 
equation (2), between flow and level of the tank. The 
nonlinear models create more difficulty in optimizing the 
system and also its performance becomes poor (Miaomiao 
ma et al. 2012). 

The linearization of this type of system requires a 
stationary point around which the system operates. Taylor 
series expansion is one of the methods used for linearization 
which approximates the system at a given stationary point. 
Generally any system can be represented by state-space or 
Input-output model. Here it deals with the uses the former 
model where A, B, C and D of the state-space representation 
are obtained using Jacobian matrices (Xue et al. 2007). 

The non-linear dynamics are in the form: 

( ),
dh

f h u
dt

=                                     (3) 

( ),y g h u=                                    (4) 

And linearization of the system about the nominal 

operating point, ( , )o oh u  from Table 1, requires calculating 

the linear system: 

( ),o oh

f
A

h υ

∂ =  ∂ 
, 

( ),o oh

f
B

υυ
∂ =  ∂ 

, 
( ),o oh

g
C

h υ

∂ =  ∂ 
 and 

( ),o oh

g
D

υυ
∂ =  ∂ 

 

From Table 1: 

[ ]1 2 3 4 11.4 11.6 5.3 4.0
T To o o o o

h h h h h = =  , 

[ ]1 2 0.5 0.5
T To o oυ υ υ = =   
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The linear approximation to the system is: 

dh
Ah Bu

dt
= +                                                                                           (5) 

y Ch Du= +                                                                                           (6) 

Where: oh h h= − , oy y y= −  and ou u u= − . 

The derivative of linearization is: 

1 1 3 10.1274 0.13349 0.00306 0.00137h h h υ∴ = − ⋅ + ⋅ + ⋅ +ɺ                                                 (7) 

2 2 4 20.12985 0.1396 0.0035 0.00137h h h υ∴ = − ⋅ + ⋅ + ⋅ +ɺ                                                  (8) 

3 3 20.13349 0.0065h h υ∴ = − ⋅ + ⋅ɺ                                                                   (9) 

4 4 20.1396 0.007144h h υ∴ = − ⋅ + ⋅ɺ                                                                   (10) 

1 1 10.5 0.5 uυ υ∴ = − ⋅ + ⋅ɺ                                                                                     (11) 

2 2 20.4762 0.4762 uυ υ∴ = − ⋅ + ⋅ɺ                                                                          (12) 

It is important to note that the states are rearranged so that the discrete states 1–6 correspond to physical quantities 1h , 3h ,

2υ , 1υ , 2h  and 4h  respectively. 

The linear system matrices are found to be: 

( ) ( ) ( )x t Ax t Bu t= +ɺ  

( ) ( ) ( )y t Cx t Du t= +  
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By substitute the partial derivative of equations (7-12) in linear system matrices we can get: 

-0.01886 0.0289922 0 0.00306 0 0

0 -0.02899 0.0065 0 0 0

0 0 -0.4762 0 0 0

0 0 0 0.5 0 0

0 0 0.0035 0 0.019063 0.0349

0 0 0 0.007144 0 0.0349

A

 
 
 
 

=  − 
 −
 

−  

, 

0 0 0 0.5 0 0

0 0 0.4762 0 0 0

T

B
 =   

,
1 0 0 0 0 0

0 0 0 0 1 0
C

 
=  
 

,
0 0

0 0
D

 
=  
 

 

3. The Control System Design 

Now we want to examine The Criteria of Our System, we 
mean Controllability, Observability and Stability should be 
checked before the Design of controller.  

After system checked, we find that the system has Rank 
equal 6, this means our system fully controllable and fully 
observable, and the Eigen value: 

[ ]0.0189 0.0290 0.0191 0.4762 0.0349 0.5
T

oL = − − − − − − , 

This means our system is stable. 

3.1. Linear Quadratic Optimal Control Regulator LQR 

Model linear quadratic optimal control regulator (LQR) is 
designed by the mathematical model of the plant. The model 
to be used in the control system design is taken to be a state-
space model. By using a state-space model, the current 
information required for containing ahead is represented by 
the state variable at the current time.  

The plant has 2 inputs (fluid flow rate qa and fluid flow 
rate qb), Also the number of outputs is 2 (height h1 level and 
height h2 level). 

Introduce the following performance index for the optimal 
controller design: 

( ) ( ) ( ) ( ) ( ) ( )1 1

2 2

f

o

t

T T T
f f

t

J x t Sx t x t Qx t u t Ru t dt = ⋅ + ⋅ + ⋅ ∫  

Where Q and R are weighting matrices for the state 
variables and the input variables, respectively, and ft  is the 

terminal time for control action, which means that the control 
action is in a finite time interval. 0S ≥  is the weighting 
matrix for the terminal states. This optimal control problem is 
referred to as the linear quadratic (LQ) optimal control 
problem. To solve this LQ optimal control problem, let us 
first construct a Hamiltonian function. 

( ) ( ) ( ) ( ) ( ) ( ) ( )1

2
T T TH x t Qx t u t Ru t t Ax t Bu tλ   = − ⋅ + ⋅ + +  

 

When there is no constraint on the input signal, the optimal 
(in this case, the minimum) value can be solved by taking the 
derivative of �  with respect to u and then solving the 

following equation: 

( ) ( )TH
Ru t B t

u
λ∂ = −

∂
 

Denote by ( )*u t  the optimal control signal ( )u t . Then, 

( )*u t  can be explicitly written in the following form: 

( ) ( )* 1 Tu t R B tλ−=  

On the other hand, it can be shown that the Lagrangian 

multiplier ( )tλ  can be written as ( ) ( ) ( )t P t x tλ = − , where 

( )P t is the symmetrical solution matrix of the well-known 

differential Riccati equation (DRE). 

( ) ( ) ( )1T T TP t P t A A P P BR B P t Q−= − − + −ɺ  

With its final value ( )fP t S= . So, the optimal control 

signal can also be written as: 

( ) ( ) ( ) ( )* 1 Tu t R B P t x t tλ−= −  

It is interesting to note that the solution of the finite time 
LQ optimal control problem turns out to be a linear state 
feedback with a time varying gain matrix, which is equal to

( )1 TR B P t−− . 

A MATLAB function ( )lqr  provided in the Control 

Systems Toolbox can be used to design an LQR for a given 
system with given weighting matrices. The syntax of the 

function is [ ] ( ), , , ,K P lqr A B Q R=  , where ( ),A B  is the 

given state space model, and Q and R are the weighting 
matrices. K is the state feedback gain matrix, and P is the 
solution matrix for the DRE. 

The performance of the system with the LQR controller is 
shown in Fig. 2 and Fig. 3. The final results of the LQR 
design are the state feedback matrix are: 

[ ]0.01 0.01R diag= , 

[ ]500 0 0 0 0 500 0Q diag= , 
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2

2.6456 2.0099 0.0036 0.0021 2.5404 0.8072

2.0099 2.3851 0.0040 0.0012 3.2759 1.0476

0.0036 0.0040 0 0 0.0009 0.0013
10

0.0021 -0.0012 0 0 0.0032 0.0012

-2.5404 -3.2759 -0.0009 0.0032 5.8360 1.5370

0.8072 -1.0476 -0.0013 0.0

P

− −
− − −

− −
= ×

012 1.5370 0.4874

 
 
 
 
 
 
 
 
  

, 

106.15 61.299 0.111 0.986 160.72 57.96

169.55 189.92 1.35 0.106 43.79 62.97
k

− 
=  − − 

 

Fig. 2 is presented a comparison between the state 
description of the state X1 and X5 for tank level h1 and h2 
respectively and state X2 and X6 for tank level h3 and h4 

respectively and state X3 and X4 for pump flow rate 2υ and 

1υ respectively with different Q, R matrices. We put initially 

Q and R matrices as diagonal of ones in status X1 and X5 and 
the other is zero. Then we increase the first element in Q 
matrix which is related to first status h1 (water level in tank 

one) that we are want to control it. Then we decrease the first 
element in Q matrix which is related to first status h1 (water 
level in tank one) that we are want to control it. Then we are 
made another increase the fifth element in Q matrix which is 
related to fifth status h2 (water level in tank two) that we are 
want to control it. The Q and R matrices are presented in 
Table 2. 

Table 2. Different Q, R matrices as diagonal of ones in status X1 and X5. 

i iQ diag=     iR diag=     Curve Color 

1 1 0 0 0 0 1 0    1 1    blue 

2 100 0 0 0 0 100 0    1 1    red 

3 0.001 0 0 0 0 0.001 0    1 1    black 

4 300 0 0 0 0 300 0    1 1    Dash black 

5 100 0 0 0 0 100 0    500 500    Phosphoric 

6 500 0 0 0 0 500 0    0.001 0.001    brown 

Fig. 3 is presented the final states we are selected from above comparison Fig. 2. The selection is depending on which state 
has the minimum shooting and minimum steady state time. The final Q and R matrices that given the best stat

[ ]6 500 0 0 0 0 500 0Q = and [ ]6 0.001 0.001R = . 

 

Fig. 2. States description with different Q and R matrices in LQR optimal control (4TS). 
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Fig. 3. States description with better Q and R matrices in LQR optimal control (4TS). 

3.2. Linear Quadratic Gaussian Optimal Control Regulator LQGR 

The performance of the system with the LQGR controller is depended on the final response of LQR controller in Fig. 3. The 
final response of LQGR controller is presented in Fig. 4. 

 

Fig. 4. States Description with better Q and R matrices in LQGR Optimal Control (4TS). 

3.3. Optimal H2 Controller Design 

The performance of the system with the H2 controller is shown in Fig. 5 and Fig. 6. The final results of the H2 design are the 
Disturbance output matrix. 
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Fig. 5 is presented a comparison between the state description of the state X1 and X5 for tank level h1 & h2 respectively and 
state X2 and X6 for tank level h3 and h4 respectively and state X3 and X4 for pump flow rate 2υ and 1υ respectively with 
different Disturbance output matrix D. The D matrices are presented in Table 3. 

Table 3. Different D matrices as diagonal of ones in status X1 and X5. 
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Fig. 5. States Description with different Disturbance [D22] in H2 optimal control (4TS). 

Fig. 6 is presented the final states we are selected from above comparison Fig. 5. The selection is depending on which state 
has the minimum shooting and minimum steady state time. The final Disturbance output matrix D that given the best states 
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Fig. 6. States Description with better curve in H2 optimal control (4TS). 

3.4. Optimal H∞ Controller Design 

The performance of the system with the H∞ controller is 
shown in Fig. 7 and Fig. 8. The final results of the H∞ design 
are the Disturbance output matrices. 
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Fig. 7 is presented a comparison between the state 
description of the state X1 and X5 for tank level h1 and h2 

respectively and state X2 and X6 for tank level h3 and h4 
respectively and state X3 and X4 for pump flow rate 2υ and 

1υ respectively with different Disturbance output matrices D 
and C. The D and C matrices are presented in Table 4. 

Fig. 8 is presented the final states we are selected from 
above comparison Fig. 7. The selection is depending on 
which state has the minimum shooting and minimum steady 
state time. The final Disturbance output matrices D and C 
that given the best states 
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Table 4. Different D, C matrices as diagonal of ones in status X1 and X5. 

 i Matrices Curve Color 

iD  

1 0.07 0 , 0 0.07 , 0 0.07    blue 

2 0.5 0 , 0 0.5 , 0 0.5    black 

3 5 0 , 0 5 , 0 5    red 

4 50 0 , 0 50 , 0 50    Phosphoric 

iC  

1 0.07 0 0 , 0 0.07 0 , 0 0.07 0    blue 

2 0.05 0 0 , 0 0.05 0 , 0 0.05 0    black 

3 0.05 0 0 , 0 0.05 0 , 0 0.05 0    red 

4 0.05 0 0 , 0 0.05 0 , 0 0.05 0    Phosphoric 

 

Fig. 7. States Description with different [D11] [D12] in H∞ optimal control (4TS). 

 

Fig. 8. States Description with better curve in H∞ optimal control (4TS). 
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4. Discussion 

The controller performances are presented in Fig. 9 and 
Fig. 10 and listed in Table 5. The performance of the 
different control strategies are compared in two ways of 
comparison based on the settling time for the six controlled 
state X1, X5, X2 and X6 for tank level h1, h2, h3 and h4 
respectively and X3, and X4 for pump flow rate 2υ and 1υ
respectively. The first way we will be compared the 
percentages of the settling time between the different optimal 
control methods only to choose the best performance of 
optimal control for the 4TS, and then repeat the comparison 
with compared the percentages of the settling time between 
all different control strategies, i.e. the optimal control in the 
current work and the different predictive control which study 
by Gatzke et al. (2000), Mercangoz et al. (2007), to see the 
effect of each of them on the system for disturbance rejection 
and show that the proposed optimal control methods can 
improve the performance of the different predictive control 
for the same case study. 

Fig. 9 is presented a comparison between the final best 
states for the worst case disturbance; we are selected from the 
previous methods to select the better method which gives the 
minimum shooting and settling time. From Table 5 and Fig. 
9, the results from the finally comparison is: 

(1) The smallest settling time of the optimal control 
methods is LQR, since the states spend around (6, 1, 
25, 30, 22 and 15) seconds and the highest one is H∞ , 
since the states spend around (80, 260, 105, 125, 75 
and 50) seconds for h1, h2, h3, h4, υ1 and υ2 respectively, 
to reach its steady state response. 

(2) The smallest settling time of the predictive control 
methods is Centralized model predictive control (MPC) 
(Gatzke et al. 2000), since the states spend around 
(700, 750, 750 and 650) seconds and the highest one is 
Fully decentralized MPC (Mercangoz et al. (2007)), 
since the states spend around (1750, 2100, 1900 and 
1800) seconds for h1, h2, υ1 and υ2 respectively, to reach 
its steady state response. 

(3) The LQR gives the best performance along all the 
controllers strategies, i.e. optimal and predictive 
control, since the states spend around (7.5, 5.8, 23, 24, 
29 and 30) % for h1, h2, h3, h4, υ1 and υ2 respectively 
from total settling time of the highest one of the 
optimal control methods (H∞ method), and (0.34, 0.7, 
1.2 and 0.83) % for h1, h2, υ1 and υ2 respectively from 
total settling time of the highest one of the predictive 
control methods (Fully decentralized MPC), with small 
values of overshooting. Challenge for the controlling 
process. 

(4) In the LQGR an external of noise is added to the model 
which affected the result, but the controller is work 
correctly and the states reach the steady state in nearly 
(93, 38, 38, 64, 40 and 80) % for h1, h2, h3, h4, υ1 and υ2 
respectively from total settling time of the highest one 
of the optimal control methods (H∞ method), and (4.3, 
4.8, 1.6 and 2.2) % for h1, h2, υ1 and υ2 respectively 
from total settling time of the highest one of the 
predictive control methods (Fully decentralized MPC), 
and we can neglect from comparison because noise and 
high values of overshooting. 

(5) The H2 controller takes a long time to reach the steady 
state nearly (56, 19, 33, 36, 33 and 60) % for h1, h2, h3, 

h4, υ1 and υ2 respectively from total settling time of the 
highest one of the optimal control methods (H∞ 
method), and (2.6, 2.4, 1.3 and 1.7) % for h1, h2, υ1 and 
υ2 respectively from total settling time of the highest 
one of the predictive control methods (Fully 
decentralized MPC), and this is not accepted. 

From the previous comparison between the methods of 
controller design with different control strategies, we can be 
selected LQR method to be used in presented work, and the 
final best states of X1 and X5 for tank level h1 and h2 
respectively and state X2 and X6 for tank level h3 and h4 
respectively and state X3 and X4 for pump flow rate υ1 and υ2 
respectively are shown in the Fig. 10. 

 

Fig. 9. Status description with different optimal control (4TS) LQR, H2 and H∞. 
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Fig. 10. Status descriptions with LQR optimal control which is the better controller we are get it for our system (4TS). 

Table 5. Performance comparison of different control strategies. 

Control Algorithm 
Optimal Control Predictive Control 

LQR LQGR H2 H∞ Centralized MPCa Fully decentralized MPCb DMPCb 

Settling Time (sec) 
h1 6 75 45 80 700a 1750b 700b 
h2 15 100 50 260 750a 2100b 1200b 
h3 25 40 35 105 --- --- --- 
h4 30 80 45 125 --- --- --- 
υ1 22 30 25 75 750a 1900b 800b 
υ2 15 40 30 50 650a 1800b 650b 
Optimal Control Settling Time Comparison % 
h1 7.5 93 56 100 --- --- --- 
h2 5.8 38 19 100 --- --- --- 
h3 23 38 33 100 --- --- --- 
h4 24 64 36 100 --- --- --- 
υ1 29 40 33 100 --- --- --- 
υ2 30 80 60 100 --- --- --- 
Optimal and Predictive Control Settling Time Comparison % 
h1 0.34 4.3 2.6 4.6 40a 100b 40b 
h2 0.7 4.8 2.4 12.5 35a 100b 57b 
h3 --- --- --- --- --- --- --- 
h4 --- --- --- --- --- --- --- 
υ1 1.2 1.6 1.3 4 40a 100b 42b 
υ2 0.83 2.2 1.7 2.8 36a 100b 36b 

a Gatzke et al. (2000), b Mercangoz et al. (2007)  

5. Conclusions 

In this paper the disturbance rejection optimal control 
using four different optimal control methods in for this 
purpose which are: Linear Quadratic Regulator (LQR), 
Linear Quadratic Gaussian Regulator (LQGR), H2 method, 
and H∞ method, these methods were applied on the 4TS 
separately, and the obtained results were compared with each 
other and with those obtained by the predictive control 
method by Mercangoz et al. (2007). The superiority of the 
Linear Quadratic Regulator (LQR) controller was 
demonstrated, namely which has small percentage of the 
settling time values obtained for the worst case disturbance. 
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