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Abstract: The aim of this study is to determine the best mixture model for claim amount from a comprehensive insurance 

policy portfolio and use the model to estimate the expected claim amount per risk for the coming calendar year. The claims 

data were obtained from the motor insurance office of one of the top business insurance companies in Ghana. The data consists 

of one thousand (1,000) claim amounts from January 2012 to December 2014. The expectation-maximization (EM) algorithm 

within a maximum likelihood framework was used to estimate the parameters of four mixture models namely the 

Heterogeneous Normal-Normal, Homogeneous Normal-Normal, Pareto-Gamma and Gamma-Gamma. These mixture models 

were fitted to the claims data and measures of goodness-of-fit (AIC and BIC) were used to determine the best mixture model. 

The Heterogeneous Normal-Normal mixture distribution was the appropriate model for the motor insurance claims data due to 

the least AIC. The estimated expected claims amount for the coming calendar year (2015) from the model was GHS 877.672 

per risk. This in a way may inform decision makers as to the kind of anticipated reserves for future claims.  
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1. Introduction 

Finite mixtures of distributions have provided a 

mathematical approach to the statistical modeling of a wide 

variety of random phenomenon. It is an extremely flexible 

method of modeling and have continued to receive increasing 

attention over the years from both practical and theoretical 

point of view [1].  

Areas in which mixture models have been successfully 

applied include astronomy, biology, genetics, medicine, 

psychiatry and economics. Very little literature is on the 

applications in general insurance setting. According to [2], 

the motor insurance is an important branch of non-life 

insurance in many countries, with contributions amongst the 

total premium income category. It is a fact that, most 

insurance claims exhibit some level of clustering, and the 

usefulness of mixture distribution in modeling heterogeneity 

in a cluster analysis context is obvious. In practice, most 

motor insurance claims which occur with losses are modeled 

by unimodal loss models [3] and [4]. Motor insurance claims 

with multimodal loss distributions are more advance to apply 

common unimodal loss models. We therefore extend our 

knowledge on mixture distributions using finite mixtures of 

regression models to model such case. Finite mixtures of 

regression models are a popular method to model unobserved 

heterogeneity or to account for over dispersion in the claims 

data. They are flexible models and in theory it is easy to 

modify and extend them by using more complex models for 

the component distribution functions and estimate the 

corresponding parameters. Finite mixture models with a fixed 

number of components are usually estimated with the 

expectation-maximization (EM) algorithm within a 

maximum likelihood framework [5]. Since there are many 

different modes for claim possibilities, a finite mixture model 
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should work well, [6] and [7] compared (numerically) two 

approaches to the estimation of the parameters of the 

component densities in a univariate mixture of normal 

distributions; one approach is based on a constrained 

maximum likelihood (ML) algorithm; the other, is on the 

fuzzy c-means (FCM) clustering algorithm, [8]. Finite 

mixture models so far include components of the data 

structure [9-14]. 

The purpose of this study is to determine an appropriate 

finite mixture model for the claims data. The results which 

can help us determine the expected reserves. This paper is 

organized as follows: Section 2 gives notation and the model 

class, the main mixture models and estimation are presented 

in Section 3, and we end with an application to the claims 

data in Section 4. All computations and graphics in this paper 

have been done with the flexmix package version 1.0-0 and R 

version 3.2.1. 

2. Methodology 

Two mixture distributions with probabilities ��and ��  of 

the various densities were considered: 

���; �	 = ∑ ������; �	 = ������; �	��
� + ������; �	   (1) 

where �� + �� = 1. 

The following mixture distributions were used to model 

the data: 

2.1. Normal-Normal (Heterogeneous) 

We let �� be the population of moderate claims and �� be 

the population of larger claims. We assume both populations 

are normal with different means and different variance.  

��~����, ��	, ��~����, ��	 
Probability density function (pdf) of these two populations 

are defined below:  
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where �� = � and �� = 1 − � from (1) and 0< � < 1. 

2.2. Normal-Normal (Homogenous) 

Similarly, we let ��  be the population of moderate claims and ��  be the population of larger claims. We assume both 

populations are normal with different means and same variance.  

The probability density function of normal-normal (with same variance) with probability, p, is: 
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2.3. Pareto-Gamma 

Let �� be the population of moderate claims and �� be the population of larger claims.  

��~./00/�1, 2	, ��~3/4�56��, 7	 
A mixture density function of Pareto-Gamma is shown as: 
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2.4. Gamma-Gamma 

Probability density function of Gamma-Gamma mixture is  

��~./00/�1�, 2�	,	��~./00/�1�, 2�	 
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3. Parameter Estimation and Goodness of Fit 

The log-likelihood of a sample of n observations C���, D�	, … ��F , DF	G is given by  

log K = ∑ log ℎ�DF|�F , N	 = ∑ log�∑ �O��DF|�F , �O	PO
� 	QF
�QF
�                                     (6) 

We estimate the posterior class probabilities for each 

observation 

�̂FO = 3STU�F , DF , NVW 

Using the posterior probability that observation (x, y) 

belongs to class j is given by: 

3�X|�, D, N	 = $YZS[U�,BYW
∑ $\Z�[|�,B\	\                    (7) 

We then derive �]O = �
F∑ �̂�OF�
�  

Maximize the log-likelihood for each component 

separately using the posterior probabilities as weights 

maxB\ ∑ �̂�O log ��D�|�� , �O	F�
�                (8) 

The E- and M-steps are repeated until the likelihood 

improvement falls under a pre-specified threshold or a 

maximum number of iterations is reached. The expectation-

maximization (EM) algorithm cannot be used for mixture 

models only, but rather provides a general framework for 

fitting models on incomplete data. Suppose we augment each 

observation ��F , DF	 with an unobserved multinomial variable �F = ��F�, … , �FO	 where �FO = 1 if ��F , DF	 belongs to class T and �FO = 0 otherwise. The EM algorithm can be shown to 

maximize the likelihood on the “complete data” ��F , DF, bF	; 
the bF  encode the missing class information. If the bF  were 

known, maximum likelihood estimation of all parameters 

would be easy, as we could separate the data set into the c 

classes and estimate the parameters �O  for each class 

independently from the other classes. 

If the weighted likelihood estimation is infeasible for 

analytical, computational or other reasons, then we have to 

resort to approximations of the true EM procedure by 

assigning the observations to disjoint classes and do 

unweighted estimation within groups: 

maxB\ d log��D�|�� , �O	
F

�:fg\
�
 

This corresponds to allow only 0 and 1 as weights. 

Possible ways of assigning the data into T classes are: 

Hard assignment to the class with maximum posterior 

probability �FO, the resulting procedure is called maximizing 

the classification likelihood by [15]. Random assignment to 

classes with probabilities 	�FO , which is similar to the 

sampling techniques used in Bayesian estimation (although 

for the bF only). 

 

4. Results 

4.1. Explore Data 

Table 1 below shows the summary information of the claims 

data. The average amount of claims over the period is GHS 

878.54. The minimum and maximum claim amounts over the 

said three year period are GHS 369.84 and GHS 2,116.11 

respectively. The skewness measure indicates a positively 

skewed claim amount distribution. The sample standard 

deviation is almost three (3) times to the mean. There seem to 

be some substantial amount of variations in the claims data 

based on the standard deviation and mean observations.  

Table 1. Summary statistics of claims data. 

Statistic measure(GHS) 

Mean 878.54 

Standard deviation 339.03 

Median 753.17 

Minimum 369.84 

Maximum 2116.11 

Range 1746.27 

Skewness 1.31 

Figure 1 below displays a histogram superimpose with the 

Gaussian kernel density that depicts the empirical 

distribution of the claims amount. We observed two possible 

modes of the claims data, suggesting a bimodal distribution 

of the claims amount. The information inferred from this 

distribution is that there exist two subpopulations of the 

claims amount data. A population that consists of moderate 

claims amount and a population of larger claims. It is 

assumed that the underlying process generating this behavior 

is consistent with the claims processes over the period. 

Though the likelihood of larger claims amount is small 

relative to the likelihood of the smaller claims amount, we do 

not ignore such likelihood or larger claims amount which 

may lead to misinformation.  

 

Figure 1. Histogram with Gaussian kernel density estimator of claims data. 
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The non-parametric empirical estimator suggests two 

components of a mixture distribution. We observed a bimodal 

distribution of the claims data where claim amount between 

300 to 1000 units have high frequency of occurrence and 

claims between 1200 to 2000 units shows low frequency of 

occurrence over the period. The sample mean and sample 

standard deviation for the claims amount is 878.54 and 

339.02 units respectively. This shows some substantial 

amount of variations in the claims data. 

4.2. Fitted Mixture Models  

The rootogram of the posterior class probabilities can be 

used to visually assess the cluster structure of the claims data. 

The height of the bars in the rootogram correspond to square 

roots of counts rather than counts themselves, thus, low 

counts are more visible and peaks are less emphasized. A 

peak at probability 1 indicates that a mixture component is 

well separated from other components. It can therefore be 

said that for the Normal-Normal (Hetero) mixture model, 

component 1 is well separated from component 2, since there 

is a peak at probability 1 as shown in figure 2.  

Table 2 below shows the parameter estimates from the EM 

and MLE procedures. These parameters are defined for each 

mixture density discussed under session 2. 

 

Figure 2. Rootogram of posterior probabilities > 1e-04. 

Table 2. Parameter estimates of selected two component mixtures. 

PARETO-GAMMA NORMAL-NORMAL (Homo) NORMAL-NORMAL (Hetero) GAMMA-GAMMA 

p 0.933 p 0.85 p 0.7957 p 0.198 

theta 700.00 mu 1 879.97 mu 1 721.87 alpha 1 0.0006667 

lambda 1.00 mu 2 870.33 mu 2 1484.4825 beta 1 69.704 

alpha 0.999 sigma 338.84 sigma 1 124.0253 alpha 2 0.00138 

beta 20.00   sigma 2 193.4745 beta 2 31.818 

 

4.3. Goodness-of-Fit Statistics 

The fitted mixtures are assessed based on the AIC and 

BIC.  

Table 3. Estimates of AICs and BICs. 

MIXTURE DISTRIBUTION AIC BIC 

PARETO-GAMMA 20422.78 20447.32 

NORMAL-NORMAL(Homo) 14497.05 14516.68 

NORMAL-NORMAL(Hetero) 13648.72 13673.26 

GAMMA-GAMMA 1437.08 13861.62 

The model with the least values of AIC and BIC indicates 

the best fitted model to the claims data. From table 3, the 

Heterogeneous Normal-Normal mixture model is the best 

fitted mixture model for the observed claims data. 

From Figure 3, the mixture model that comes closest to the 

kernel density estimator is the heterogeneous Normal-Normal 

model. 

 

4.4. Expectation of Claims Amount 

From table 2, the Normal-Normal Heterogeneous mixture 

model parameters are  

� = 0.7957, �̂� 
 721.87	/mn	�̂� 
 1484.4825 

 

Figure 3. Fitted Mixture models against kernel density.  

The expected claims amount per risk for the coming year 

is: 

p�qr/s0t	/06um5	��4	4stT	 
 0.7957�721.87	 � �1 � 0.7957	�1484.4825	 
 877.672 

Therefore, the expected claims amount per risk for the 

coming year is approximately GHS 877.672. 

5. Conclusion 

From our analysis, it was observed that the nature of the 

claims paid by the insurance company over the three year 

period is heterogonous. Meaning two subpopulations of claims 

were revealed. A population of moderately paid claims and a 

population of larger paid claims. We also observed a 

substantial variations in the claims amount over the said 

period. Amongst the four mixture models, the normal-normal 

heterogeneous mixture best fit the claims data. This model in 

particular has explained enough of the variations in the claims 
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data. Therefore, the model was used to estimate expected 

claim amount per risk for the coming year, which was 

approximately GHS 877.672. This will inform decision makers 

on expected reserves for the next year.  
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