
 
International Journal of Statistical Distributions and Applications 
2016; 2(3): 35-41 

http://www.sciencepublishinggroup.com/j/ijsda 

doi: 10.11648/j.ijsd.20160203.12 

ISSN: 2472-3487 (Print); ISSN: 2472-3509 (Online)  

 

A New Extended Uniform Distribution 

K. K. Sankaran
1
, K. Jayakumar

2
 

1Department of Statistics, Sree Narayana College, Kerala, India 
2Department of Statistics, University of Calicut, Kerala, India 

Email address: 

snsankaran08@gmail.com (K. K. Sankaran), jkumar19@rediffmail.com (K. Jayakumar) 

To cite this article: 
K. K. Sankaran, K. Jayakumar. A New Extended Uniform Distribution. International Journal of Statistical Distributions and Applications. 

Vol. 2, No. 3, 2016, pp. 35-41.doi: 10.11648/j.ijsd.20160203.12 

Received: October 14, 2016; Accepted: November 7, 2016; Published: December 5, 2016 

 

Abstract: We introduce a new family of distributions using truncated the Discrete Mittag- Leffler distribution. It can be 

considered as a generalization of the Marshall-Olkin family of distributions. Some properties of this new family are derived. 

As a particular case, a three parameter generalization of Uniform distribution is given special attention. The shape properties, 

moments, distributions of the order statistics, entropies are derived and estimation of the unknown parameters is discussed. An 

application in autoregressive time series modeling is also included. 
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1. Introduction 

Many researchers are interested in search that introduces 

new families of distributions or generalization of 

distributions which can be used to describe the lifetimes of 

some devices or to describe sets of real data. Exponential, 

Rayleigh, Weibull and linear failure rate are some of the 

important distributions widely used in reliability theory and 

survival analysis. However, these distributions have a limited 

range of applicability and cannot represent all situations 

found in application. For example, although the exponential 

distribution is often described as flexible, its hazard function 

is constant. The limitations of standard distributions often 

arouse the interest of researchers in finding new distributions 

by extending ones. The procedure of expanding a family of 

distributions for added flexibility or constructing covariates 

models is a well known technique in the literature. 

Uniform distribution is regarded as the simplest 

probability model and is related to all distributions by the fact 

that the cumulative distribution function, taken as a random 

variable, follows Uniform distribution over (0,1) and this 

result is basic to the inverse method of random variables 

generation. This distribution is also applied to determine 

power functions of tests of randomness. It is also applied in a 

power comparison of tests of non random clustering. There 

are also numerous applications in non parametric inference, 

such as Kolmogrov-Smirnov test for goodness of fit. It is 

well known that Uniform distribution can be used as a 

representation distribution of round-off errors, and it is also 

connected to probability integral transformations. Ristic and 

Popovic (2000a, b) introduced and studied the properties of a 

first order autoregressive (AR(1)) time series model and 

discussed the parameter estimation of the uniform AR(1) 

process. Jose and Krishna (2011) introduced Marshall-Olkin 

extended uniform distribution as a generalization of uniform 

distribution and studied its properties. 

Marshall and Olkin (1997) introduced a new family of 

distributions by adding a parameter to a given family of 

distributions. They started with a parent survival function ����� ≔ 1 − ����	  and considered a family of survival 

functions given by 


̅��� = 
����������
����� ,			� > 0.              (1) 

They constructed their family of distributions in the 

following way. Let X1, X2,…. be a sequence of independent 

and identically distributed (i.i.d) random variables with 

survival function �����.Let N be a geometric random variable 

with probability mass function (p.m.f) Pr(N =n) = α(1−α)
n−1

, 

for n = 1, 2, … and 0<α<1. Then the random variable 

UN=min{X1,X2,…,XN} has the survival function given by (1). 

If α > 1 and N is a geometric random variable with p.m.f 
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���� = �� = �∝ �1 − �∝����, n = 1,2,… then the random 

variable VN = max{X1,X2,..XN} also has the survival function 

as in (1). 

Many authors have studied various univariate distributions 

belonging to the Marshall-Olkin family of distributions; see 

Ristic et al. (2007), Jose et al. (2010) and Cordeioro and 

Lemente (2013). Jayakumar and Thomas (2008) proposed a 

generalization of the family of Marshall-Olkin distribution as 


̅��; �, !� = " 
����������
������#$ ,				for	� > 0, ! > 0	(�)	� ∈ +   (2) 

Nadarajah et al. (2013) introduced a new family of life 

time models as follows: 

Let X1, X2,.. be a sequence of independent and identically 

distributed random variables with survival function �����. Let 

N be a truncated negative binomial random variable with 

parameters α∈(0,1) and θ > 0. 

That is, 

���� = �� = �,1 − �, �- + � − 1- − 1 � �1 − ���, � = 1,2, … 

Consider UN = min{X1,X2,…, XN}. Then, 

���12 > �� = 
̅3���
= �,1 − �, 4 �- + � − 1- − 1 �5

�6�
7�−����	���8�.	 

That is, 


̅3��� = 	 
9
��
9 "7���� + ������8�, − 1#	          (3) 

Similarly, if α > 1 and N is a truncated negative binomial 

random variable with parameters 1/α and θ > 0, then VN = 

max{X1,X2,…,XN} also has the survival function (3). 

This implies that we can consider a new family of 

distributions given by the survival function 


̅3��; �, -� = 	 �,1 − �, "7���� + ������8�, − 1#	, 
																													� > 0, - > 0	and	� ∈ +	. 

Note that 
̅3��; �, -� → 	�����  as α→1. This family of 

distributions is a generalization of the Marshall-Olkin family, 

in the sense that the family is reduced to the Marshall-Olkin 

family of distributions, when θ=1. 

The aim of this paper is to introduce a new family of 

univariate distributions by using discrete Mittag-Leffler 

truncated distribution. In section 2 we introduce a new family 

of univariate distributions for a given parent distribution 

function F. This family contains the well-known Marshall-

Olkin family of distributions. We study some properties of this 

family, including random variate generation. In section3, we 

introduce a new family of univariate distribution which 

contains Uniform distribution and Marshall-Olkin extended 

Uniform distribution. We derive its shape properties, moments, 

median, mode, quantiles, distribution of order statistics, 

entropies and estimation procedure. In section 4, we discuss 

the estimation of parameters of DMLU by the method of 

maximum likelihood. An application in autoregressive time 

series modeling is presented in Section 5. Conclusions are 

presented in Section 6. 

2. Truncated Discrete Mittag-Leffler 

Family of Distributions 

Pillai and Jayakumar (1995) introduced the discrete 

Mittag-Leffler distribution and studied its properties. The 

mathematical origin of the discrete Mittag-Leffler 

distribution can be described as follows: 

Consider a sequence of independent Bernoulli trails in 

which the k
th

 trail has probability of success α/k with 0 <α< 1 

and k = 1, 2, 3,… Let N be the trail number in which the first 

success occurs. Then the probability that {N=r} is given by 

p> = 	 �1 − α� �1 − α2� �1 − α3� … �1 − αr − 1� αr	 
																	= 			 ����A
�
����
�B�…�
�C���C! .                                (4) 

Probability generating function (pgf) of N is given by 

G(z)=1−(1−z)
α
. Let X1,X2,…,Xn be independent and identically 

distributed random variables  as N and let X0=0. Let M be 

geometric distributed random variable with parameter p, ie. 

Pr(M =k)=q
k
p, k = 0,1,2,…; 0 < p < 1, q = 1−p. 

Then X1 +X2 +...+XM has generating function 

��E� = 	 F��G������H�I� 	 = ���J���H�I	              (5) 

with p = 1/(1+c). The distribution with pgf (5) is known as 

Discrete Mittag-Leffler distribution with parameters α and c. 

Define now a new random variable Y such that. 

��K = �� = ��L = ��1 − MN , � = 1, 2, 3, … 

Then 

O�P� 		= Q�PR� = 	 4 PSM�L = T�1 − MN
5

S6�
= 	 11 − MN U4 PSM�L = T� − M�L = 0�5

S6N V
= 	 11 − MN W��P� − 11 + XY
= 	 �1 + X�X W 11 + X�1 − P�
Y − 1X	. 

Therefore, 

O7�����8 = �1 + X�X Z 11 + X�1 − ������
[ − 1X	. 
Hence we obtain a new family of distributions with 
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parameters α and c having survival function 


̅��� = ���I�����J�I���	.	                                (6) 

The corresponding distribution function is given by 


��� � ���J��I���
��J�I���                                    (7) 

Since discrete Mittag-Leffler distribution can be 

considered as a generalization of geometric distribution, the 

family of distributions given by (7) can be considered 

appropriate for life time modeling. 

From (7), the p.d.f is given by 

\��; �, X� � 
���J��I]^���_���
`��J�I���ab , � � 0, X � 0		�c+      (8) 

where f(x) is the p.d.f of F(x), while the hazard rate function 

is given by 

d��� � 	 e���
f̅��� 	 � 	 
���J��I]^���_���

`���I���a`��J�I���                         (9) 

The distribution belonging to (7) can easily be simulated. 

For a given parent distribution function F, random variable X 

with distribution function (7) can be simulated as 

L � ��� " R
��J�JR#

^
I
                               (10) 

where Y is uniformly distributed random variable on (0,1). 

The newly constructed truncated Discrete Mittag-Leffler 

distribution can be considered as a generalization of 

Marshall-Olkin family of distributions since it reduces to 

Marshall-Olkin family when α = 1. 

In (7), when F(x) is exponential, G(x) becomes the 

Marshall-Olkin generalized exponential distribution studied 

in Ristic and Kundu (2015). When F(x) in (7) is Weibull, 

G(x) reduces to Marshall-Olkin exponentiated Weibull 

distribution studied in Bidram et al. (2015). Hence (7) is a 

rich class in the sense that it leads to various generalizations 

of existing distributions that have the capability of modeling 

real data sets. 

3. A New Family of Uniform Distribution 

3.1. Distribution Function 

Let X∼	Uniform (0, θ) distribution, where θ > 0. Then 

���� � �
, ,					0 h � h -                    (11) 

Using (7), we get the distribution function G(x), for F(x) in 

(11) as 


��� � 	 ���J��I
,I�J�I                                  (12) 

We refer to this distribution as truncated Discrete Mittag-

Leffler Uniform Distribution (DMLU) with parameters α, c 

and θ; and write it as DMLU(α,c,θ). 

The graph of G(x) for different values of α and c for θ = 10 

is given in Figure1. 

 

Figure 1. Distribution function of truncated Discrete Mittag-Leffler Uniform 

Distribution.(i) α =1, c=2.33 (ii) α =1, c=3 (iii) α =1, c=1 (iv) α=1, c=0.01 

(v)  α=1, c=10 (vi) α=2, c=2.33 (vii) α= 5, c=2.33. 

3.2. Probability Density Function 

The probability density function is given by 

\��; �, X, -� � 	 
,I���J��I]^
`,I�J�Iab                                  (13) 

for 0 < x < θ, α > 0, c > 0 and θ > 0. 

The graph of g(x) for different values of α for c=2.33 and 

θ=10 are given in Figure 2. 

 

Figure 2. Probability density function of DMLU(α, 2.33, 10) (i) α =0.5 (ii) α 

=1.5 (iii) α=2.0. 

Some special cases of the DMLU(α, c, θ) are: 

Case I: When α = 1, c = q/ p 

\ i�; 1, jM , -k � 	 M-
`M- . j�aB ,
0 h � h -,			0 h M h 1,				j � 1 � M 

This is Marshall-Olkin Extended Uniform (MOEU) 

distribution studied in Jose and Krishna (2011). 

Case II: When α = 1 and c→ 0 
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\��; 1, 0, -� � 	 �
, ,			0 h � h -. 

which is Uniform distribution in ( 0, θ ). 

In order to derive the shape properties of the p.d.f (13), we 

consider the function 

�log \�′ � 	 �
����,I�J�I��BJ
�I
��,I�J�I�                     (14) 

The following shapes are possible: 

1 Let α ∈ (0,1). Then g(x) is a decreasing function with 

g(0) = ∞ and g�-� � 

,���J�. 

2 Let α > 1. Then g(x) is a unimodal function with mode 

at x0. Furthermore g(0)=0 and \�-� � 

,���J�. 

3.3. Hazard Rate Function 

The hazard rate function is given by 

d��� 	 � 	 ,I
���J��I]^
�,I��I��,I�J�I�                    (15) 

The shapes of hazard rate function varies with respect to α:  

1. If 0 < α < 1, then h(x) initially decreasing and then 

moving constantly and then increasing steeply. 

2. If α > 1, h(x) is moving constantly at the initial values 

and then increasing steeply. The graph of hazard 

function for different values for α and c when θ = 10 are 

given in Figure 3. 

 

Figure 3. Hazard rate function of DMLU(α,c,10) (i) α=0.1,c =1 (ii) α =1,c 
=1 (iii) α=10,c =2. 

3.4. Moments 

Suppose that X has the DMLU(α, c, θ). The r
th 

moment can 

be written as 

Q�LC� � 	�-
�1 . X� o �ApI]^
�,I�J�I�b )�,

N            (16) 

Let x
α
 = u, above equation reduces to 

Q�LC� � 	 -
�1 . X� q rA
I

�-
 . Xr�B )r
,I

N
. 

From Prudnikov et al. (1986), equation (2.2.5.2) is 

q �� � (�
��
�X� . )�
���� )�

s

t

� 	 �u � (�

�(X . )��uX . )�
 4 ��

v� w�� . v, � � v . 1�
�uX . )�x�(X . )���x

�

x6N
, 

where a, b, c and d are real numbers with  

(ac+d)(bc+d) > 0; Real part of α > 0 and B(a, b) = 
y�t�y�s�
y�t�s� . 

Hence if r/α is a positive integer, we have, 

q rA
I

�-
 . Xr�B )r	
			

,I

N
 

� 	 �
,ApI���J�^pA

I
 ∑ �� �⁄

v �C 
⁄
x6N

|���x�A
I,��x�A

I�
���J�}  

Therefore 

Q�LC� � 	 �
,A���J�A

I
∑ �� �⁄

v �C 
⁄
x6N

|���x�A
I,��x�A

I�
���J�} 	   (17) 

In particular, 

Q�L� � �
,���J�^

I
∑ �1 �⁄

v �� 
⁄
x6N

y���x�^	
I�y���x�^	

I�
yB���^

I����J�}           (18) 

Q�LB� � 	 �
,���J�b

I
∑ �2 �⁄

v �B 
⁄
x6N

y���x�b	
I�y���x�b	

I�
yB���b

I����J�}           (19) 

Var (X) = E(X
2
) – E(X)

2
. 

The q-th quantile of a random variable X following 

DMLU(α, c, θ) is given through the quantile function as 

�G � 	 
���j� � 	 W j-

X . 1 � jY

^
I , 0 ~ j ~ 1, 

where G
-1

(.) denote the inverse distribution function of G(.). 

In particular, the median of X is given by 

Median � 	 ,
�BJ���^

I
. 

Finally, the mode of X is given by 

Mode � 	- " 
��
J�
���#

^
I
. 

The mean and variance of DMLU for different values of α 

and c when θ =10 are calculated (via MATHCAD) and 

given in Table 1. 
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Table 1. Mean and Variance of DMLU for different values of α and c when θ = 10. 

c ↓ α→ 0.1 0.2 0.4 0.5 1.0 2.0 5.0 10.0 15.0 20.0 

0.0 
Mean 0.91 1.67 2.86 3.33 5.0 6.67 8.33 9.09 9.38 9.52 

Variance 3.93 6.31 8.51 8.89 8.33 5.55 1.81 0.69 0.34 0.20 

0.25 
Mean 0.75 1.42 2.51 2.97 4.63 6.37 8.16 8.99 9.31 9.47 

Variance 3.31 5.52 7.84 8.35 8.28 5.77 2.14 0.76 0.38 0.23 

1.0 
Mean 0.50 0.98 1.87 2.27 3.86 5.08 7.67 8.76 9.14 9.35 

Variance 2.25 4.13 6.31 6.98 7.82 12.84 2.45 0.89 0.45 0.27 

1.5 
Mean 0.41 0.82 1.61 1.98 3.51 5.39 7.57 8.64 9.06 9.28 

Variance 1.85 3.39 5.57 6.28 7.46 6.08 2.57 0.95 0.49 0.29 

4.0 
Mean 0.21 0.45 0.96 1.24 2.53 4.42 6.92 8.25 8.78 9.06 

Variance 0.99 1.92 3.54 4.19 5.96 5.76 2.84 1.12 0.59 0.36 

9.0 
Mean 0.11 0.24 0.55 0.73 1.73 3.52 6.25 7.83 8.47 8.82 

Variance 0.51 1.03 2.06 2.53 4.26 4.96 2.90 1.24 0.66 0.42 

3.5. Order Statistics 

Assume X1,X2,…,Xn are independent random variables having the DMLU(α, c, θ) distribution. Let Xi:n denote the i
th 

order 

statistic. The p.d.f of Xi:n is 

\�:���; �, X, -� = 	 �!�� − 1�! �� − 1�! \��; �, X, -�
�����; �, X, -�
̅�����; �, X, -� 

= 	 ��!�
,I���J���I�]^	�,I��I��]�
�����!�����!�,I�J�I��p� 		                                                                                   (20) 

3.6. Renyi and Shannon Entropies 

 

Entropy is, in principle, a measure of variation or uncertainty. The Renyi entropy of a random variable with p.d.f g(.) is 

defined as 

���!� = 	 11 − ! q \$���)�		.		! > 0, ! ≠ 1	.5
N  

The Shannon entropy of a random variable X is defined by E[−log g(X)]. It is the particular (limiting) case of the Renyi 

entropy for γ →1. Let us first derive the Renyi entropy. We have 

o \$5N ���)� = 	 `�-
�1 + X�a$ o " �I]^
�,I�J�I�b#$5N )� = 	 `�-
�1 + X�a$ o " ���I]^�

�,I�J�I�b�#5N )�. 

Let u = x
α
. Then 

q Z �$�
����-
 + X�
�B$[5
N )� = 	 1� q rÎ`$�
����
��a

�-
 + Xr�B$
5

N )r. 
Using eq.(2.2.5.2) from Prudnikov et al. (1986) and if ! − �
 �1 − ! − �� is a positive integer, the above integral becomes 

1
-
�1 + X�Î`$�
����B
��a 4 w��
 `!�� − 1� − � + 1a + v − 1, ! − �
 �1 − ! − �� − v − 1��1 + X�x-$
�$�
��

$�Î���$�
�
x6N

	. 
Therefore the Renyi entropy is 

���!� = 	 11 − ! log`�-
 + �1 + X�a�		 1
-
�1 + X�Î`$�
����B
��a 

4 w��
 `!�� − 1� − � + 1a + v − 1, ! − �
 �1 − ! − �� − v − 1��1 + X�x-$
�$�
��
$�Î���$�
�

x6N
	. 

The Shannon entropy is 

Q`− log \�L�a = 	 −log	̀�-
 �1 + X�a − �� − 1�Q`log�L�a + 2Q`log�-
 + X�
�a. 
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4. Estimation 

Since the moments of a DMLU random variable cannot be 

obtained in closed from, we consider estimation of the 

unknown parameters by the method of maximum likelihood. 

For a given sample X:= (x1,x2,…,xn), the log-likelihood 

function is given by 

log ���; �, X, -� = 	�	log	̀�-
 �1 + X�a + �� − 1�∑� 	log	����− 2∑�log	�-
 + X��
�a 
= � log � + �� log - + � log�1 + X� + �� − 1� ∑� 	log	����− 2∑�log	�-
 + X��
�a	. 
The partial derivatives of the log-likelihood function with 

respect to the parameters are 

� log ��� = 	 �� + 	���\- + 4 log	����
� − 2 4 log	�- + X����-
 + X��
��

, 
� log ��X = 	 ��1 + X� − 	2 4 ��
�-
 + X��
��

, 
� log ��- = 	 ��- − 2	 4 �-
���-
 + 	X��
��

		. 
The maximum likelihood estimates can be obtained 

numerically solving the equation.
�	��e	��
 = 0 , 

�	��e	��J = 0 , �	��e	��, = 0. We can use, for example, the function nlm from 

the programming language R. 

The second derivatives of the log-likelihood function of 

DMLU with respect to α, c and θ are given by 

�B log ���B 		 = 	 − ��B + 2	 4�-
 +
�

X��
� log � log�- + X���, 
�B log ��XB 		 = 	 − ��1 + X�B + 	2	 4 ��B
�-
 + X��
�B�

, 
�B log ��-B 	 = 	 − ��-B − 2� 4 `�� − 1�X��
-
�B − -B�
����-
 + X��
�B�

, 
�B log ����- 	 = 	 �- − 2 4 `�-
 + X��
� − 2-�- + X��� log�- + X���a�- + X����-
 + X��
�B� , 
�B log ����X 	 = 	 −2 4 `���-
 + X��
� − ��
�- + X��� log�- + X���a�- + X����-
 + X��
�B� , 
�B log ��-�X = 2	 4 �-
����
�-
 + X��
�B�

. 
If we denote the MLE of β:= (α, c, θ) by,	�� = ���, X̂, 	-� �, 

then the observed information matrix is given by 

���� = 	 −Q
��
��
��
��B log ���B �B log ����X �B log ����-�B log ����X �B log ��XB �B log ��-�X�B log ����- �B log ��-�X �B log ��-B ��

��
��
�
 

and hence the variance covariance matrix of the estimate 

vector �� would be I
−1

(��). 

The approximate (1– ��% confidence intervals for the 

parameters α, c, θ are �� 	± ¡¢b£¤����, X̂ 	± ¡¢b£¤�X̂�, -¥ 	±
¡¢b¦¤�-¥�  respectively, where V(���, V�X̂�  and.V�-¥ ) are the 

variances of ��, X̂  and -¥ , which are given by the diagonal 

elements of I
-1

(β), and ¡¢b  is the upper ( B̈ ) percentile of 

standard normal distribution. 

5. Autoregressive Time Series Modeling 

Time series models with uniform marginal distribution are 

studied by various researchers (see Ristic and Popovic 

(2000a,b) and Jose and Krishna (2011)). Here we develop an 

AR(1) model with DMLU as marginal distribution, which is 

considered as a generalization of the existing time series 

models with uniform marginal. 

Consider the AR(1) process 

L� = ©c�	ª�«ℎ	M��u(u���«T	�																															¬� ��L���, c�� ª�«ℎ	M��u(u���«T	1 − �,	  (21) 

where 	0 ≤ � ≤ 1, �	 ≥ 1	and		{c� }is a sequence of i.i.d 

random variables with power function distribution in (0, θ). 

Theorem 5.1: Consider the AR(1) structure given in (21) 

with X0 distributed as a DMLU(α,c,θ) distribution. Let X = ��

 . Then {Xn, n ≥ 1} is a stationary Markovian 

autoregressive model with DMLU(α,c,θ) marginals iff	{c�}is 

distributed as power distribution in (0, θ) with survival 

function 1 − ��,�
 . 
Proof: From the above expression (21), it follows that 

��̄ ���� = 	���°���� + �1 − ����̄ �]^�����°���� 

Using the fact that X0 has DMLU(α, θ) distribution 

and c� has a power distribution in (0, θ) with distribution 

function ��,�

,we obtain, that for n = 1, 

��̄ ^��� 			 = 			 ±� + �1 − ����̄ ²	���³��°^��� 

		= 	 U� + �1 − �� -
 − �

-
 + ���

 � �
V W1 − ��-�
Y 

	= -
 − �

-
 + ���

 ��
 		 = 		 -
 − �
-
 + X�
	. 
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which means that X1 has DMLU(α,c,θ) distribution 

where 	X = ��

 .	 Assume that Xn-1 is distributed as 

DMLU(α,c,θ). Then by induction method we can establish 

that {Xn} is distributed as DMLU(α,c,θ). 

Hence the process {Xn} is stationary. 

Conversely, if {Xn,n≥1} is stationary with DMLU(α, θ) 

marginal’s, it can be easily shown that {c� }has power 

distribution, F(x) = ��,�
 , 0 < � < 	-.	 Hence the theorem. 

Even if X0 is arbitrary, it is easy to establish that {Xn} is 

asymptotically stationary. 

6. Conclusion 

Marshall and Olkin (1997) introduced a way of expanding 

a given family of distribution by adding a parameter. In this 

paper, we introduced the Discrete Mittag-Leffler truncated 

distribution as a generalization of Marshall-Olkin family of 

distributions and studied its properties. This class is a rich 

class in the sense that some of the recently investigated 

distributions are members of this family; see Ristic and 

Kundu (2015), and Bidram et al. (2015). As a particular case, 

a three parameter generalization of Uniform distribution was 

given special attention. The shape properties of the 

distribution were studied. The expression for moments, 

distributions of the order statistics and entropies were also 

derived. Moreover, we discussed the maximum likelihood 

method of estimation of the distribution’s parameters. An 

application on the autoregressive time series modeling was 

also presented. 
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