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Abstract: In this paper, a Poisson mixture of the Amarendra distribution, introduced by Shanker (2016 c), is proposed, and 

called the, “Poisson-Amarendra distribution”. The first four raw moments (about the origin) and central moments (about the 

mean) are obtained. The expression for coefficient of variation, skewness and kurtosis are also given. For the estimation of its 

parameter, the maximum likelihood estimation and the method of moments are discussed. Moreover, the distribution is fitted 

using maximum likelihood estimate to certain data sets to test its goodness of fit over Poisson, Poisson-Lindley and Poisson-

Sujatha distributions. The corresponding fitting are found to be quite satisfactory in almost all data sets. 

Keywords: Amarendra Distribution, Sujatha Distribution, Poisson-Lindley Distribution, Poisson-Sujatha Distribution, 

Compounding, Moments, Estimation of Parameter, Goodness of Fit 

 

1. Introduction 

The probability density function (p. d. f.) and the 

cumulative distribution function (c. d. f.) of Amarendra 

distribution, introduced by Shanker (2016 c) for modeling 

real lifetime data sets from engineering and biomedical 

science, are given by 
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It has been shown by Shanker (2016 c) that Amarendra 

distribution is a four component mixture of exponential ( )θ
distribution, a gamma ( ),θ2

 
istribution, a gamma ( ),θ3  

distribution and a gamma ( ),θ4
 
distribution with their 

mixing proportions 
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respectively. Shanker (2016 c) has discussed its various 

mathematical and statistical properties including its shape for 

different values of its parameter, moment generating 

function, moments, skewness, kurtosis, hazard rate function, 

mean residual life function, stochastic orderings, mean 

deviations, Bonferroni and Lorenz curves, some amongst 

others. Further, Shanker (2016 c) has also discussed the 

estimation of its parameter using maximum likelihood 

estimation and method of moments along with applications 

for modeling lifetime data and observed that it gives much 

closer fit than Akash, Shanker and Sujatha distributions 

introduced by Shanker (2015 a, 2015 b, 2016 a,), Lindley 

(1958) and exponential distributions. It would be worth 

mentioning that Shanker (2015 a, 2015 b, 2016 a) has 

proposed Akash, Shanker and Sujatha, distributions along 

with their various mathematical and statistical properties to 

model lifetime data arising from engineering and biomedical 

sciences and showed that these distributions provide much 
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closer fit than Lindley and exponential distributions. 

In this paper, a Poisson mixture of Amarendra distribution, 

introduced by Shanker (2016 c), has been proposed, and 

called the “Poisson--Amarendra distribution (PAD)”. Its 

important mathematical and statistical properties including, 

shape, raw moments, central moments, coefficients of 

variation, skewness and kurtosis are obtained and discussed. 

The estimation of PAD’s parameter has been also discussed 

using both maximum likelihood estimation and method of 

moments. The distribution is then fitted using its maximum 

likelihood estimate on certain data sets in order to test its 

goodness of fit over Poisson distribution, Poisson-Lindley 

distribution (PLD), a Poisson-mixture of Lindley (1958) 

distribution, introduced by Sankaran (1970) and Poisson-

Sujatha distribution (PSD) of Shanker (2016 b), a Poisson 

mixture of Sujatha distribution, introduced by Shanker 

(2016 a). 

2. Poisson-Amarendra Distribution 

Assuming the parameter λ  of the Poisson distribution to 

follows Amarendra distribution (1), the Poisson mixture of 

Amarendra distribution can be obtained as 
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Fig. 1. Graphs of the PAD’ p. m. f. for varying values of its parameter θ . 

We shall refer to this distribution as the “Poisson-

Amarendra distribution (PAD)”. The graphs of the 

probability mass function (p. m. f) of PAD for varying values 

of its parameter θ  are shown in the figure 1. 

Recall that Sankaran (1970) obtained Poisson-Lindley 

distribution (PLD) having p. m. f. of the form 
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by compounding Poisson distribution with Lindley 

distribution, introduced by Lindley (1958) having p. d. f of 

the form 
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Shanker and Hagos (2015) has discussed the applications of 

PLD for modeling count data-sets from biological sciences 

and observed that it gives better fit than Poisson distribution. 

Shanker (2016 b) obtained Poisson-Sujatha distribution 

(PSD) with its p. m. f. given by 
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by compounding Poisson distribution with Sujatha 

distribution, introduced by Shanker (2016 a) having p. d. f. 

given by 
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Sujatha distribution, introduced by Shanker (2016 a) is 

considered a better model than exponential and Lindley 

distributions when modeling lifetime data from biomedical 

science and engineering. Further, Shanker and Hagos (2016 

a) provided a detailed study about the application of the 

Poisson-Sujatha distribution (PSD) when modeling 

biological science data, and observed a better fit than the 

Poisson-Lindley distribution (PLD) and Poisson-distribution. 
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Shanker and Hagos (2016 b, 2016 c) have obtained the size-

biased Poisson-Sujatha distribution (SBPSD) and zero-

truncated Poisson-Sujatha distribution (ZTPSD) and 

discussed their various mathematical and statistical 

properties, estimation of their parameter and applications. 

Further, Shanker and Hagos (2016 d) have also provided a 

detailed study regarding applications of the zero-truncated 

Poisson distribution (ZTPD), the zero-truncated Poisson-

Lindley distribution (ZTPLD), and the zero-truncated 

Poisson-Sujatha distribution (ZTPSD) for modeling data sets 

(with zero counts excluded) from demography and biological 

sciences and concluded that in majority of data sets ZTPSD 

gives better fit than ZTPD and ZTPLD. 

3. Moments and Related Measures 

The r  th factorial moment about origin of PAD (4) can be 

obtained as 
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Using (3) the r  th moment about origin of PAD (4) can be 

obtained as 
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Taking x r+  in place of x  within bracket, we get 

( )r
µ ′ =

( )
!

x

r

x

e
e d

x

λ
θ λθ λλ λ λ λ λ

θ θ θ

∞ −∞
−

=

 
+ + + + + +  

∑∫
4

2 3

3 2
00

1
2 6

 

The expression within the bracket is clearly unity and 

hence we have 
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Using the gamma integral and some algebraic 

simplification, we get finally a general expression for the r  
th factorial raw moment (about the origin) of PAD (4) as 
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Substituting , , , andr = 1 2 3 4  in (9), the first four raw factorial moments can be obtained and using the relationship between 

factorial raw moments and the usual raw moments, the first four raw moments the PAD (4) are obtained as 
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Using the relationship between the central moments (about the mean) and the raw moments (about the origin), the central 

moments of the PAD (4) are thus given by 
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The coefficient of variation ( ).C V , coefficient of Skewness ( )β
1

, coefficient of Kurtosis ( )β
2

 and index of dispersion 

( )γ
 
of the PAD (4) are thus obtained as 
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To study the nature and behavior of , ,C.V, , andµ µ β β γ′
1 2 1 2  

of the PLD, PSD and PAD, their numerical values are 

calculated for varying values of the parameter θ  and the results are presented in tables 1, 2 and 3. It is clear that 'µ
1

, µ
2
, and 

γ  are decreasing whereas C. V., β1 , β
2
 are increasing for increasing values of the parameter θ . 

Table 1. Numerical values of , ,C.V, , andµ µ β β γ′
1 2 1 2 of PLD, for varying values the parameter θ . 

 Values of θ  for Poisson-Lindley Distribution 

 1 2 3 4 5 6 

'µ1  1.5 0.666667 0.416667 0.3 0.233333 0.190476 

µ2  3.25 1.055556 0.576389 0.385 0.285556 0.225624 

CV 1.20185 1.541104 1.822087 2.068279 2.290174 2.493742 

β1  1.792108 2.083265 2.314307 2.517935 2.704839 2.87957 

β2  7.532544 8.941828 10.10611 11.17187 12.19654 13.203 

γ  2.166667 1.583333 1.383333 1.283333 1.22381 1.184524 

Table 2. Numerical values of , ,C.V, , andµ µ β β γ′
1 2 1 2 of PSD for varying values the parameter θ . 

 Values of θ  for Poisson-Sujatha Distribution 

 1 2 3 4 5 6 

'µ1  2.25 0.875 0.5 0.340909 0.25625 0.204545 

µ2  5.1875 1.484375 0.726190 0.451963 0.320586 0.246039 

CV 1.012270 1.392399 1.704336 1.972026 2.209573 2.425006 

β1  1.467931 1.898599 2.205880 2.443548 2.646990 2.831109 

β2  5.944113 7.864044 9.479441 10.777366 11.910905 12.969309 

γ  2.305555 1.696428 1.452381 1.325757 1.251067 1.202862 
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Table 3. Numerical values of , ,C.V, , andµ µ β β γ′
1 2 1 2 of PAD for varying values the parameter θ . 

 Values of θ  for Poisson-Amarendra Distribution 

 1 2 3 4 5 6 

'µ1  3.3 1.181818 0.604167 0.382979 0.275904 0.214815 

µ2  7.61 2.14876 0.933594 0.528859 0.353998 0.262497 

CV 0.835946 1.240347 1.599272 1.898871 2.156467 2.385051 

β1  1.172956 1.675185 2.106094 2.402408 2.626614 2.817693 

β2  4.856217 6.666575 8.883016 10.59733 11.89457 12.99572 

γ  2.306061 1.818182 1.545259 1.38091 1.283048 1.221967 

 
The corresponding sub-figures of figure 2 depict the nature 

and behavior of the mean, the variance, coefficient of 

variation, coefficient of skewness, coefficient of kurtosis, and 

index of dispersion of the PLD, PSD and PAD for varying 

values of the parameter θ . From these graphs it is obvious 

that the mean, variance and index of dispersion of PLD, PSD 

and PAD are decreasing whereas the corresponding 

coefficient of variation, coefficient of skewness, and 

coefficient of kurtosis are increasing for increasing values of 

the parameter θ . 

 

 

 

 

 

 
Fig. 2. Graphs of the mean, variance, coefficient of variation, coefficient of 

skewness, coefficient of kurtosis and Index of dispersion of the PLD, PSD 

and PAD for varying values of the parameter θ . 

4. Statistical Properties 

4.1. Increasing Hazard Rate (IHR) and Unimodality. 

The PAD as in (4) has an increasing hazard rate and has a 

unimodal density function. Since 
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is decreasing function along x , ( );P x θ
 
is log-concave. 

Therefore, the PAD has an increasing hazard rate (IHR) and 

its p. d. f. is unimodal. The interrelationship between log-

concavity, unimodality and increasing hazard rate of discrete 
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distributions has been discussed in Grandell (1997).  

4.2. Over-Dispersion 

The PAD (4) is always over- dispersed ( )σ µ>2
. We have 
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This shows that PAD (4) is always over-dispersed. 

5. Parameter Estimation 

5.1. Maximum Likelihood Estimate (MLE) of the 

Parameter 

Let ( ), ,..., nx x x1 2  be a random sample of size n from the 

PAD (4) and let 
x

f  be the observed frequency in the sample 

corresponding to ( , , ,..., )X x x k= = 1 2 3  such that 
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, where k is the largest observed value having non-

zero frequency. The likelihood function L of the PAD (4) is 
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The log likelihood function is thus obtained as 
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The first derivative of the log likelihood function is given by 
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where x  is the sample mean. 

The maximum likelihood estimate (MLE), θ̂  of θ  of PAD 

(4) is the solution of the equation 
logd L

dθ
= 0  and is given by 

the solution of the following non-linear equation 
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This non-linear equation can be solved using any 

numerical iteration methods such as Newton - Raphson 

method, Bisection method, Regula - Falsi method etc. In this 

paper, Newton - Raphson method has been used to solve the 

above equation for estimating the parameter θ . 

5.2. Method of Moment Estimate (MOME) of the 

Parameter 

Let ( ), ,..., nx x x
1 2  be a random sample of size n from the 

PAD (4). Equating the population mean to the corresponding 

sample mean, the MOME θɶ  of θ  of PAD (4) is the solution 

of the following biquadratic equation 

( ) ( ) ( )x x x xθ θ θ θ+ − + − + − − =4 3 21 2 1 6 1 24 0  

where x is the sample mean. 

6. Applications and Goodness of Fit 

In this section the PAD is fitted through four count data 
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sets in order to test the PAD’s goodness of fit in applications 

and the fiting are then compared with that of Poisson 

distribution (PD), Poisson-Lindley distribution (PLD) and 

Poisson-Sujatha distribution (PSD). The corresponding 

maximum likelihood estimates (MLE) were used to fit those 

distributions. The first data set in table 4 is due to Beall 

(1940) regarding the distribution of Pyrausta nublilalis, while 

the data sets in table 5, 6 and 7 are relating to the observed 

number of days that experienced X thunderstorms events at 

Cape Kennedy, Florida for the 11 year period of record for 

the months of June, July and August, January 1957 to 

December, 1967, available in Falls et al (1971). From the 

fitting of these distributions, it is obvious that PAD provides 

quite satisfactory fit in all data sets and hence PAD can be 

considered as an important distribution for modeling data sets 

over PD, PLD, and PSD. 

Table4. Distribution of Pyrausta nubilalis in 1937. 
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Expected Frequency 

PD PLD PSD PAD 

0 
1 

2 

3 
4 

5 

33 
12 

6 

3 
1 

1 

26.4 

19.8 

.

.

.

.








7 4

1 8

0 3

0 3

 

31.5 

14.2 

.

.

.

.








6 1

2 5

1 0

0 7

 

31.5 

14.2 

.

.

.

.








6 1

2 6

1 0

0 6

 

31.6 

14.0 
6.1 

.

.

.







2 8

1 0

1 5

 

Total 56 56.0 56.0 56.0 56.0 

ML estimate  ˆ .θ = 0 7500  ˆ .θ = 1 8081  ˆ .θ = 2 241454  ˆ .θ = 2 640279  

χ 2   4.87 0.53 0.45 0.36 

d. f.  1 1 1 2 

p-value  0.0273 0.4666 0.5023 0.8353 

Table 5. Observed and expected number of days that experienced X thunderstorms events at Cape Kennedy, Florida for the 11-year period of record for the 

month of June, January 1957 to December 1967, Falls et al (1971). 

No. of Thunderstorms 
Observed 

Frequency 

Expected Frequency 

PD PLD PSD PAD 

0 

1 

2 

3 

4 

5 

6 

187 

77 

40 

17 

6 

2 

1 

155.6 

117.0 

43.9 

.

.

.

.








11 0

2 1

0 3

0 1

 

185.3 

83.5 

35.9 

15.0 

.

.

.







6 1

2 5

1 7

 

184.8 

83.6 

36.3 

15.2 

.

.

.







6 1

2 4

1 6

 

185.4 

82.7 

36.3 

15.4 

.

.

.







6 3

2 4

1 5

 

Total 330 330.0 330.0 330.0 330.0 

ML estimate  ˆ .θ = 0 751515  ˆ .θ = 1 804268  ˆ .θ = 2 229891  ˆ .θ = 2 625345  

χ 2   31.93 1.43 1.25 1.07 

d. f.  2 3 3 3 

p-value  0.0000 0.6985 0.7410 0.7843 

Table 6. Observed and expected number of days that experienced X thunderstorms events at Cape Kennedy, Florida for the 11-year period of record for the 

month of July, January 1957 to December 1967, Falls et al (1971). 

No. of Thunderstorms 
Observed 

Frequency 

Expected Frequency 

PD PLD PSD PAD 

0 

1 

2 

3 

4 

5 

177 

80 

47 

26 

9 

2 

142.3 

124.4 

54.3 

.

.

.







15 8

3 5

0 7

 

177.7 

88.0 

41.5 

18.9 

.

.





8 4

6 5
 

176.5 

88.4 

42.2 

19.2 

.

.





8 5

6 2
 

176.7 

87.6 

42.3 

19.5 

.

.





8 6

6 3
 

Total 341 341.0 341.0 341.0 341.0 

ML estimate  ˆ .θ = 0 873900  ˆ .θ = 1 583536  ˆ .θ = 1 995806  ˆ .θ = 2 390474  

χ 2   39.74 5.15 4.67 4.35 

d. f.  2 3 3 3 

p-value  0.0000 0.1611 0.1976 0.2261 
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Table 7. Observed and expected number of days that experienced X thunderstorms events at Cape Kennedy, Florida for the 11-year period of record for the 

month of August, January 1957 to December 1967, Falls et al (1971). 

No. of Thunderstorms 
Observed 

Frequency 

Expected Frequency 

PD PLD PSD PAD 

0 

1 
2 

3 

4 
5 

185 

89 
30 

24 

10 
3 

151.8 

122.9 

49.7 

.

.

.







13 4

2 7

0 5

 

184.8 

87.2 

39.3 

17.1 

.

.





7 3

5 3
 

184.1 

87.5 

39.8 

17.3 

.

.





7 3

5 0
 

184.7 

86.6 

39.8 

17.6 

.

.





7 4

4 9
 

Total 341 341.0 341.0 341.0 341.0 

ML estimate  ˆ .θ = 0 809384  ˆ .θ = 1 693425  ˆ .θ = 2 114545  ˆ .θ = 2 511962  

χ 2   49.49 5.03 5.06 4.83 

d. f.  2 3 3 3 

p-value  0.0000 0.1696 0.1674 0.1847 

 

7. Concluding Remarks 

In the present paper the Poisson-Amarendra distribution 

(PAD) has been proposed by compounding Poisson 

distribution with Amarendra distribution, introduced by 

Shanker (2016 c). The r th factorial raw moment has been 

derived and the first four raw moments and the central 

moments have been given. The expression of the coefficient 

of variation, skewness, kurtosis and index of dispersion has 

also been obtained. The estimation of its parameter has been 

discussed using both maximum likelihood estimation and the 

method of moments. The PAD has been fitted using 

maximum likelihood estimate to certain data sets to test its 

goodness of fit over Poisson distribution (PD), Poisson-

Lindley distribution (PLD) and Poisson-Sujatha distribution 

(PSD). It is found that Poisson-Amarendra distribution 

(PAD) provides better fit than PD, PLD, and PSD for all data 

sets. 
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