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Abstract: Here we develop an extended version of the modified intervened geometric distribution of Kumar and Sreeja (The 

Aligarh Journal of Statistics, 2014) and investigate some of its important statistical properties. Parameters of the distribution 

are estimated by various methods of estimation such as the method of factorial moments, the method of mixed moments and 

the method of maximum likelihood. The distribution has been fitted to a real life data set for illustrating its practical relevance. 
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1. Introduction 

Intervened type distributions have found many 

applications in several areas such as epidemiological studies, 

life testing problems etc. In epidemiological studies health 

agencies takes various preventive actions. The information 

concerning the effect of such actions taken by the agencies 

can statistically analyzed by intervened type distributions. In 

life testing problem the failed items during the observational 

period are either replaced or repaired. This kind of actions 

changes the reliability of the system as only some of its 

components have longer life. The impact of such actions can 

be studied by intervened type distributions. The intervened 

type distributions such as intervened Poisson distribution 

(IPD), intervened geometric distribution (IGD) and modified 

intervened geometric distribution (MIGD) has been studied 

by several authors. For example see Shanmugan [1, 2], 

Huang and Fung [3], Scollink [4], Dhanavanthan [5, 6], 

Kumar and Shibu [7-15], Bartolucci et al [16], Kumar and 

Sreeja [17] etc. 

Through this paper we consider a new class of intervened 

geometric distribution suitable for multiple intervention cases 

and named it as the extended intervened geometric 

distribution (EIGD), which contains the MIGD as its special 

case. The paper is organized as follows. In Section 2, we 

present a model leading to EIGD and obtain expression for 

its probability mass function, mean and variance. We also 

obtain a recurrence relation useful for the computation of 

probabilities of the EIGD. In Section 3, we consider the 

estimation of parameters of the EIGD by the method of 

maximum likelihood and the distribution has been fitted to a 

real life data set for highlighting the usefulness of the model. 

We need the following series representation in the sequel 

i

i 0 r 0 i 0 r 0

A(i, r) A(i r, r)
∞ ∞ ∞

= = = =

= −∑∑ ∑∑                    (1) 

and 

i

m

i 0 r 0 i 0 r 0

B(i, r) B(i mr, r),

 
 ∞ ∞ ∞  

= = = =

= −∑∑ ∑∑                 (2) 

where [a] represents the integer part of “a”, for any a > 0 

2. Extended Intervened Geometric 

Distribution 

Consider a discrete random variable X having intervened 

geometric distribution with the following probability mass 

function (pmf), in which x = 1, 2, 3,. . . , θ∈(0, 1), 
1

1 0≠ ρ >  

such that 
1

1ρ θ ≤ . 
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1

1

1

x x 1

1

(1 )(1 )
h(x; , )

1

(1 ) −

− θ − ρ θ
ρ θ =

− ρ

− ρ θ
 

The probability generating function (pgf) of X is the 

following 

1

X 1

1

1

P (s) (1 )(1 )s(1 s )

(1 s )

−

−

= − θ − ρ θ − θ

− ρ θ
 

Let Y be a random variable having geometric distribution 

with the following pmf, in which 

y = 1, 2, 3,..., θ∈(0, 1), 2
1 0≠ ρ >  and such that 2

1ρ θ ≤ . 

y

2 2 2f (y; , ) (1 ) ( )ρ θ = − ρ θ ρ θ  

The pgf YQ (s)  of Y is  

1

Y 2 2Q (s) (1 )(1 s )−= − ρ θ − ρ θ  

Define Z = X+ mY, in which X and Y are assumed to be 

independent and m is a fixed but arbitrary positive integer. 

Then the pgf of Z is 

m

Z X YG (s) P (s) Q (s )=  

1

1 2

1 m 1

1 2

( , , )s(1 s )

(1 s ) (1 s ) ,

−

− −

= Λ ρ ρ θ − θ

− ρ θ − ρ θ
                         (3) 

where 

1 2 1

2

( , , ) (1 )(1 )

(1 )

Λ ρ ρ θ = − θ − ρ θ
− ρ θ

 

The distribution of a random variable whose pgf is (3) is 

called “the extended intervened geometric distribution” or in 

short “the EIGD”. 

Result 2.1. Let Z follows EIGD with pgf given in equation 

number (3). Then the pmf gz of Z is the following, for z 

=1,2,3,…. 

z 1 2

j

mz 1
z j 1 k j mk

1 2

j 0 k 0

g ( , , )

( ) ( ) ,

 
 −  

− − −

= =

= Λ ρ ρ θ

ρ θ ρ θ θ∑∑
              (4) 

where 1 2
( , , )Λ ρ ρ θ  is as defined in (3), θ∈(0, 1), j

0 1< ρ ≠  

such that j
1,ρ θ ≤  for j=1,2.  

Proof: We have  

z

Z z

z 0

G (s) s g
∞

=

=∑                                                 (5) 

1

1 2

1 m 1

1 2

( , , )s(1 s )

(1 s ) (1 s )

−

− −

= Λ ρ ρ θ − θ

− ρ θ − ρ θ
 

( ) ( ) ( )
1 2

kz j m

1 2

z 0 j 0 k 0

( , , )

s s s s
∞ ∞ ∞

= = =

= Λ ρ ρ θ

ρ θ θ ρ θ∑ ∑ ∑
 

1 2

z k z j k z j mk 1

1 2

z 0 j 0 k 0

( , , )

s
∞ ∞ ∞

+ + + + +

= = =

= Λ ρ ρ θ

ρ ρ θ∑ ∑∑
                   (6) 

Now by applying the results given in equations (1) and (2) 

in equation (6) we get 

z 1 2

j

m z jz
k z (m 1)k z 1

1 2

z 0 j 0 k 0

G (s) ( , , )

s

 
  −∞  

− − +

= = =

= Λ ρ ρ θ

ρ ρ θ∑ ∑∑
             (7) 

On equating co efficient of s
z
 in the right hand side 

expressions of (5) and (7) we get (4) when ρ2 →0 and ρ1 = ρ 

(4) reduces to the pmf of IGD defined by Bartalucci et.al [8]  

Result 2.2 The first three factorial moments ( ) ( )
1 1

1 2
,µ µ  and 

( )
1

3
µ  of the EIGD are 

( )
1

2 31
1 mµ = + δ + δ + δ ,  

( )
1 2 2

3 3 2 22

1 1 3 1 2 1 2

2m m(m 1) 2 (1 )

2 (1 ) 2m ( ) 2

µ = δ + + δ + δ + δ

+ δ + δ + δ δ + δ + δ δ
 

and 

( ) ( ) ( ) ( )1 3 2 2 2

3 3 2 2 1 13

2 2

3 1 2 1 2 1 2 1 2

2

3 3 1 2 3

6 m 1 1 1

6m ( ) 6 (1 )

m (m 1) 3m ( )(m 1 2m ),

 µ = δ + δ + δ + δ + δ + δ 

+ δ δ + δ + δ δ + δ δ + δ + δ

+ − δ + δ δ + δ + + δ

      (8) 

in which δ1=θ(1- θ)
-1

, δ2=ρ1 θ(1- ρ1 θ)
-1

 and δ3=ρ2θ(1- ρ2 θ)
-1

. 

Proof follows from the fact that  

( )
1 (1)

Z1
G (s) / s 1µ = = , 

( )
1 (2)

Z2
G (s) / s 1µ = =  

and 

( )
1 (3)

Z3
G (s) / s 1µ = =  

in which 

r
(r )

Z Zr

d
G (s) (G (s))

ds
=  

with 
Z

G (s)  as the pgf of Z.

 Result 2.3 The mean and variance of EIGD is  

Mean = 1+δ1 + δ2 +m δ3                        (9) 

and 
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Variance = δ1(1+ δ1)+δ2(1+ δ2)+m2δ3(1+δ3)      (10) 

where δj for j=1,2,3 are as defined in Result 2.2. 

Proof: On differentiating the pgf Gz(s) of “Z” given in 

equation (3) with respect to s and putting s=1, we get 

(1)

Z 1 2 3G (1) E(Z) 1 m= = + δ + δ + δ
(2)

Z

2 2

3 3 3 1 2

1 1 2 2 1 2

G (1) E(Z(Z 1))

2m m(m 1) 2m ( )

2 (1 ) 2 (1 ) 2

= −

= δ + + δ + δ δ + δ
+ δ + δ + δ + δ + δ δ

. 

in which 

r
(r )

Z Zr

d
G (1) (G (s)) / s 1.

ds
= =  

Now the mean and variance are obtained by using the 

following results 

Mean=
(1)

ZG (1)  

and 

Variance (Z)= ( ) ( ) ( )( )2
(2) (1) (1)

Z Z Z
G 1 G 1 G 1+ −  

Result 2.4 For z ≥1, the following is a simple recurrence 

relation for probabilities gz  of the EIGD for z<m 

z 1
i 1 i 1

z 1 1 z i

i 0

zg (1 ) g
−

+ +
+ −

=

= + ρ θ∑  

and for z m≥  

z m

m
i 1

z 1 2 z mi m 1

i 0

z 1
i 1 i 1

1 z i

i 0

zg m ( ) g

(1 ) g

− 
 
 

+
+ − − +

=
−

+ +
−

=

= ρ θ

+ + ρ θ

∑

∑

                 (11) 

Proof: From (3) we have  

z

Z z

z 0

G (s) s g
∞

=

=∑                                                       (12) 

1 2

1 1 m 1

1 2

( , , )

s(1 s ) (1 s ) (1 s )
− − −

= Λ ρ ρ θ

− θ − ρ θ − ρ θ
            (13) 

On differentiating (12) and (13) with respect to s we get 

the following, in the light of (3), 

z z z

z 1

z 0

m 1

z z

1 2 m

1 2

G (s) G (s)
(z 1)g s

s 1 s

G (s) G (s)s
m

1 s 1 s

∞

+
=

−

+ = + θ
− θ

+ ρ θ + ρ θ
− ρ θ − ρ θ

∑
           (14) 

By applying (1) and (2) in (14) to obtain 

z

z 1

z 0

z
z i 1 i 1 z 1

z 1 1 z i 1

z 0 z 0 i 0

z

m
i 1 z m

2 z mi 1

z 0 i 0

(z 1)s g

s g (1 ) s g

m ( ) s g ,

∞

+
=

∞ ∞
+ + +

+ − +
= = =

 
 ∞  

+ +
− +

= =

+ =

+ + ρ θ

+ ρ θ

∑

∑ ∑∑

∑∑

 

which implies 

z 1
z i 1 i 1 z

z 1 1 z i

z 0 z 0 i 0

z m

m
i 1 z

2 z mi m 1

z 0 i 0

zs g (1 ) s g

m ( ) s g

∞ ∞ −
+ +

+ −
= = =

− 
 ∞  

+
− − +

= =

= + ρ θ

+ ρ θ

∑ ∑∑

∑ ∑

            (15) 

On equating coefficient of s
z
 on both sides of the 

expressions (15), we get (11). 

3. Estimation 

Here we discuss the estimation of the parameters of the 

EIGD by various methods of estimation such as the method 

of factorial moments, the method of mixed moments and the 

method of maximum likelihood. We assume that m is a fixed 

positive integer and the parameters ρ1, ρ2 and θ of the EIGD 

are estimated for possible values of m. 

Method of factorial moments 

In method of factorial moments, equate the first three 

factorial moments of the EIGD to the corresponding sample 

factorial moments say 
/

1
m , /

2
m , and 

/

3
m  and there by we 

obtain the following system of equations: 

/

2 3 1
1 m m+ δ + δ + δ =                          (16) 

2 2

3 3

2 2 1 1

/

3 1 2 1 2 2

2m m(m 1)

2 (1 ) 2 (1 )

2m ( ) 2 m

δ + + δ
+ δ + δ + δ + δ

+ δ δ + δ + δ δ =
             (17) 

( ) ( ) ( )3 2 2 2

3 3 2 2 1 1

2 2

3 1 2 1 2

2

1 2 1 2 3

/

3 1 2 3 3

6 m 1 1 1

6m ( )

6 (1 ) m (m 1)

3m ( )(m 1 2m ) m

 δ + δ + δ + δ + δ + δ 

+ δ δ + δ + δ δ

+ δ δ + δ + δ + − δ

+ δ δ + δ + + δ =

       (18) 

where 
1

δ ,
2

δ  and 
3

δ  are given in (8). Now the parameters of 

EIGD are estimated by solving the non- linear equations (16), 

(17) and (18). 

Method of mixed moments 

In method of mixed moments, the parameters are estimated 

by using the first two sample factorial moments and the first 

observed frequency of the distribution. That is, the 

parameters are estimated by solving the following equation 

together with (16) and (17). 
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( ) 1
1 2,

p
,

N
Λ ρ ρ θ =                           (19) 

where ( )1 2,,Λ ρ ρ θ  is as defined in (3), 
1

p  is the observed 

frequency of the distribution corresponding to the 

observation x = 1 and N is the total frequency. 

Method of maximum likelihood 

Let a(z) be the observed frequency of z events and u be the 

highest value of z observed. Then the likelihood function of 

the sample is 

u
a(z)

z

z 1

L (g )
=

= ∏  

which implies 

u

z

z 1

log L a(z) log (g )
=

=∑  

Let 1 2
ˆˆ ˆ, ,ρ ρ θ  denotes the maximum likelihood estimators 

of 1, 2 ,ρ ρ θ respectively. Now 1 2
ˆˆ ˆ, ,ρ ρ θ  are obtained by 

solving the likelihood equations (20), (21) and (22) as given 

below. 

log L
0

∂ =
∂θ

 

implies 

u u u
2 1 2

1 1 2

z 1 z 1 z 13 1 2

(m, , , )
a(z) ( , , ) a(z) za(z)

(m, , , )= = =

Ψ ρ ρ θ
Ψ ρ ρ θ + =

Ψ ρ ρ θ∑ ∑ ∑  (20) 

where 

1 2
1 1 2

1 2

( , , ) 1 ,
1 1 1

ρ θ ρ θθΨ ρ ρ θ = + + +
− θ − ρ θ − ρ θ

 

( )
j

j kmz 1
2

2 1 2 m 1
j 0 k 0 1

1
(m, , , ) m 1 k

 
 −  

−
= =

  ρ Ψ ρ ρ θ = −    ρ θ  
∑∑  

and 

j
j kmz 1

2

3 1 2 m 1
j 0 k 0 1

1
E (m, , , )

 
 −  

−
= =

  ρ ρ ρ θ =    ρ θ  
∑∑  

1

log L
0

∂ =
∂ρ

 

implies 

u u
1 4 1 2

z 1 z 11 3 1 2

(m, , , )
a(z)(1 ) a(z) 0,

1 (m, , , )= =

ρ θ Ψ ρ ρ θ
+ + =

− ρ θ Ψ ρ ρ θ∑ ∑       (21) 

where 
j

j kmz 1
2

4 1 2 m 1
j 0 k 0 1

1
(m, , , ) j

 
 −  

−
= =

  ρ Ψ ρ ρ θ =    ρ θ  
∑∑  and 

3 1 2(m, , , )Ψ ρ ρ θ  is as defined in (20). 
1

log L
0

∂ =
∂ρ

 

implies 

u u
5 1 22

z 1 z 12 3 1 2

(m, , , )
a(z) a(z) 0

1 (m, , , )= =

Ψ ρ ρ θρ θ
+ =

− ρ θ Ψ ρ ρ θ∑ ∑        (22) 

in which 

j
j kmz 1

2

5 1 2 m 1
j 0 k 0 1

1
(m, , , ) k

 
 −  

−
= =

  ρ Ψ ρ ρ θ =    ρ θ  
∑∑  and 

3 1 2(m, , , )Ψ ρ ρ θ  is as defined in (20). 

We present the fitting of the intervened geometric 

distribution (IGD) and the extended intervened geometric 

distribution (EIGD) for particular values of m for the data set 

on the count of the number of European red mites on apple 

leaves taken from Jani and Shah [18]. We estimate the 

parameters by the method of factorial moments, the method 

of mixed moments and the method of maximum likelihood. 

We have computed the values of χ
2
 statistics in the case of 

each model and the numerical results are summarized in 

Table 1,Table 2 and Table 3. From the tables it is obvious that 

the EIGD with m=3 gives a better fit compared to IGD as 

well as for the case m=1, m=2(MIGD) and m=4. 

Table 1. (Observed frequencies Oi and Expected frequencies Ei calculated by the method of factorial moments). 

x Oi Ei Expected frequencies of EGD for different values of m 

  
(IGD) m=1 m=2 m=3 m=4 

1 38 29 28 32 40 33 

2 17 20 26 17 18 22 

3 10 12 14 15 7 11 

4 9 7 7 7 9 5 

5+ 6 12 5 9 6 9 

Total 80 80 80 80 80 80 

Estimated values of 

parameters  

1
ˆ 0.17

ˆ 0.596

ρ =

θ =
 

1

2

ˆ 1.21

ˆ 1.8

ˆ 0.216

ρ =
ρ =

θ =

 

1

2

ˆ 0.31

ˆ 0.54

ˆ 0.416

ρ =
ρ =

θ =

 

1

2

ˆ 0.427

ˆ 0.491

ˆ 0.326

ρ =
ρ =

θ =

 

1

2

ˆ 1.05

ˆ 0.187

ˆ 0.326

ρ =
ρ =

θ =

 

Chi- square value  7.148 8.601 4.363 1.441 6.185 

p-value 
 

0.128 0.072 0.359 0.837 0.186 
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Table 2. (Observed frequencies Oi and Expected frequencies Ei calculated by the method of mixed moments). 

x Oi Ei Expected frequencies of EGD for different values of m 

  
(IGD) m=1 m=2 m=3 m=4 

1 38 27 28 26 40 29 

2 17 22 23 17 16 19 

3 10 14 14 15 6 10 

4 9 8 7 9 10 5 

5+ 6 9 8 13 8 17 

Total 80 80 80 80 80 80 

Estimated values 
of parameters  

1
ˆ 0.56

ˆ 0.521

ρ =

θ =
 

1

2

ˆ 0.35

ˆ 0.187

ˆ 0.526

ρ =
ρ =

θ =

 

1

2

ˆ 0.25

ˆ 0.387

ˆ 0.529

ρ =
ρ =

θ =

 

1

2

ˆ 0.246

ˆ 0.587

ˆ 0.329

ρ =
ρ =

θ =

 

1

2

ˆ 0.57

ˆ 0.387

ˆ 0.428

ρ =
ρ =

θ =

 

Chi- square value  7.886 7.351 10.974 3.429 13.321 

p-value 
 

0.096 0.118 0.027 0.489 0.009 

Table 3. (Observed frequencies Oi and Expected frequencies Ei calculated by the method of maximum likelihood). 

x Oi Ei Expected frequencies of EGD for different values of m 

  
(IGD) m=1 m=2 m=3 m=4 

1 38 41 28 38 38 38 

2 17 22 25 17 20 21 

3 10 10 15 14 8 9 

4 9 5 7 5 8 5 

5+ 6 2 5 6 6 7 

Total 80 80 80 80 80 80 

Estimated values of 

parameters  

1
ˆ 0.275

ˆ 0.426

ρ =

θ =
 

1

2

ˆ 0.894

ˆ 1.207

ˆ 0.284

ρ =
ρ =

θ =

 

1

2

ˆ 1.594

ˆ 1.407

ˆ 0.164

ρ =
ρ =

θ =

 

1

2

ˆ 0.842

ˆ 0.448

ˆ 0.284

ρ =
ρ =

θ =

 

1

2

ˆ 0.47

ˆ 0.207

ˆ 0.375

ρ =
ρ =

θ =

 

Chi- square value  12.556 8.57 4.343 1.075 4.216 

p-value 
 

0.014 0.073 0.362 0.898 0.378 

 

Acknowledgements 

Authors wish to express their sincere gratitude to the 

Editor-in Chief and anonymous referees for fruitful 

comments. 

 

References 

[1] Shanmugam, R. (1985) An intervened Poisson distribution 
and its medical application, Biometrics 41, 1025-1029. 

[2] Shanmugam, R. (1992) An inferential procedure for the 
Poisson intervention parameter, Biometrics 48, 559-565. 

[3] Haung, M., Fun, K. Y. (1989) Intervened truncated Poisson 
distributions, Sankhya Series, 51, 302-310. 

[4] Scollnik, D. P. M. (2006) On intervened generali-zed Poisson 
distributions, Communication in Statistics - Theory and 
Methods, 35, 953-963. 

[5] Dhanavanthan, P. (1998) Compound intervened Poisson 
distributions, Biometrical Journal, 40, 641-646. 

[6] Dhanavanthan, P (2000) Estimation of parameters of 
compound intervened Poisson distributions, Biometrical 
Journal, 42, 315-320. 

[7] Kumar, C. S., Shibu, D. S. (2011) Modified intervened 
Poisson distributions, Statistica, 71, 489-499. 

[8] Kumar, C. S., Shibu, D. S. (2011) Estimation of the 

parameters of a finite mixture of intervened Poisson 

distribution. Statistical Methods in Interdisciplinary Studies, 

Dept. of Statistics, Maharajas College, Cochin, 93-103. 

[9] Kumar, C. S., Shibu, D. S. (2012a). Some finite mixtures of 

intervened Poisson distribution. The Aligarh Journal of 

Statistics, 32, 97-114. 

[10] Kumar, C. S., Shibu, D. S. (2012b). Generalized intervened 

Poisson distribution. Journal of Applied Statistical Sciences, 

19, 131-141. 

[11] Kumar, C. S., Shibu, D. S. (2012c). An alternative to truncated 

intervened Poisson distribution. Journal of Statistics and 

Applications, 5, 131-141. 

[12] Kumar, C. S., Shibu, D. S. (2013) On some aspects of 

intervened generalized Hermite distribution, Metron, 71, 9-19. 

[13] Kumar, C. S., Shibu, D. S. (2013) Finite mixtures of extended 

intervened Poisson distribution, In Collection of Recent 

Statistical Methods and Applications, Department of Statistics, 

University of Kerala Publishers, Trivandrum, 69-82. 

[14] Kumar, C. S., Shibu, D. S. (2013) An extended version of 

intervened Poisson distribution, Research Journal of Fatima 

Mata National College Kollam, 4, 29-40. 

[15] Kumar, C. S., Shibu, D. S. (2014) On finite mixtures of 

modified intervened Poisson distribution and its applications, 

Journal of Statistical Theory and Applications, 13(4), 344-355. 



 International Journal of Statistical Distributions and Applications 2016; 2(1): 8-13 13 

 

[16] Bartolucci, A. A., Shanmugam, R., Singh, K. P. (2001) 
Development of the generalized geometric model with 
application to cardiovascular studies, System Analysis, 
Modelling simulation, 41, 339-349. 

[17] Kumar, C. S., Sreejakumari. S. (2014) Modified intervened 
geometric distribution, The Aligarh Journal of Statistics, 34, 
1-12. 

[18] Jani, P. N., Shah, S. M. (1979). On fitting of the generalized 
logarithmic series distribution. Journal of the Indian Society 
for Agricultural Statistics. 30, 1-10. 

 

 


