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Abstract: Here we discuss the max-analogues of random infinite divisibility and random stability developed by Gnedenko and
Korolev [5]. We give a necessary and sufficient condition for the weak convergence to a random max-infinitely divisible law
from that to a max-infinitely divisible law. Introducing random max-stable laws we show that they are indeed invariant under
random maximum. We then discuss their domain of max-attraction.
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1. Introduction

In the classical summation scheme a characteristic function
(CF) f(¢t) is infinitely divisible (ID) if for every n>1
integer there exists a CF f,(t) such that f(t) = {f,(O)}".
The classical de-Finetti theorem for ID laws states that f(t)
is ID iff f(t) = lim,_ exp{—an(l - hn(t))} where {a,}
are some positive constants and h, (t) are CFs.

Klebanov, et al. [1] extended the notion of ID laws to
geometrically ID (GID) laws using geometric (with mean 1/p)
sums. According to this, f(t) is GID if for every p € (0,1)
there exists a CF fo(®) such that

n

fo =Y, (fp(t)) p(1—p)™ ™V | the geometric law
being independent of the distribution of f,(t) for every
p € (0,1). They also proved an analogue of the de-Finetti
theorem in the context, viz. f(t) is GID iff f(t) =
lim,_, 1/{1 + an(l - hn(t))}, where {a,} and h,(t) are
as above. Consequently, f(t) is GID iff f(t) =1/{1—
logw(t)} where w(t) is a CF that is ID. Subsequently [2]
(also reported in [3]), [4], [5] and [6] have discussed attraction
and the first three works that of partial attraction for GID laws.

Later [2] (also reported in [7]), [4], [5], [6] and [8] extended
the notion of GID to random (%) ID laws based on Ng-sums.
[2] and [7] defined A-ID laws as: a CF f(t) is A-ID, where
Ny is a positive integer-valued random variable (7:v) having
finite mean with probability generating function (p.g.f) Py if
there exists a CF fy(t) such that f(t) = Py{fp(t)} for every
0e® . We need the distributions of Py and f, to be
independent for every 6. She noticed that when f(t) and
fo(t) are of the same type, the above is an Abel (Poincare)

equation. She also gave two examples of non-geometric laws
for Ng. [5] (section 4.6) and [6] went further by proving the
de-Finetti analogue for A-ID laws viz. a CF f(t) is M-ID iff
f(®) =lim,_, @{a,(1 —h,(t)} where ¢ is a Laplace
transform (LT) that is also a solution to the Poincare (Abel)
equation. They then concluded that a CF f(t) is AM-ID iff
f(t) = p{—logw(t)} where w(t) is CF that is ID. In this
description Py and ¢ are related by Py(s) = (p{%(p‘l(s)},
0<s <1, 0e0, where Py is the p.g.f of the nv Ny that is
positive integer-valued having finite mean. [8] also arrived at
the same conclusion under the same assumptions but the
arguments were based on Levy processes instead of proving
the de-Finetti analogue enroute. Poincare equation is given by
@(s) = P(p(8s)),s = 0,0¢ 0, Pbeingap.g.f. [5], [6] and [9]
discussed Poincare equation and examples of deriving a p.g.f’
from ¢.

To circumvent the main constraints in the development of
MN-ID laws viz. that Ny is a positive integer-valued 7v having
finite mean, ¢ is a LT that is also a solution to the Poincare
equation, [10] introduced ¢-ID laws for any LT ¢ and Ny a
non-negative integer-valued »v derived from ¢ . The
important case of compound Poisson distributions was thus
brought under random-ID laws. [5], [6] and [10] also
discussed attraction and partial attraction for A-ID/ ¢-ID laws.
The discrete analogue of this was developed in [9]. The v Ny
in A-ID laws has the following property.

Lemma 1.1 6Ny i U as 610, and the LT of Uis ¢, see
[5], p-138.

Coming to the max-analogue, [11] introduced the notion of
max infinitely divisible (MID) laws. A distribution function
(df) F is MID if FY/™ is a d f for each integer n > 1. Since
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F'/™ is always a d.fin the univariate case all d.fs in R are MID,
see [13]. Hence a discussion of MID laws is relevant for d.f's
in R%,d > 2, integer and the max operations are to be taken
component wise. Thus in this paper all d.fs are assumed to be
in R% d > 2 integer, unless stated otherwise. Later [12]
introduced geometric max infinitely divisible (GMID) laws
and geometric max stable (GMS) laws, see also [13]. [12] also
discussed certain connections between GMID/ GMS laws and
extremal processes. From [11] we have the max-analogue of
the classical de Finetti's theorem.

Theorem 1.1 A d.f F(x) is MID iff for some d.fs {G,} and
constants {a,, > 0}

F(x) = lim,_, exp{—a,(1 — G,(x))}.

Using the transfer theorem for maximums in [14] we can
study the limit distributions of random maximums. [15]
briefly discussed the max-analogue of A-ID laws to obtain
stationary solutions to a generalized max-AR(1) scheme.
However, there was an inadvertent omission, as the discussion
did not stress that the LT ¢ should also be a standard solution
to the Poincare equation.

Proceeding from [15], we discuss random () MID (A-MID)
laws that is the max-analogue of M-ID laws, in section 2. In
section 3 we discuss random (V) max-stable laws, generalise
certain results on GMS laws in [12] to A-max-stable laws and
their domain of max-attraction. The convergence discussed
here is weak convergence of d.fs, unless stated otherwise.

2. Random MID Laws

We begin by defining A-MID laws analogous to the N-ID
laws in [5] correcting the omission mentioned above.

Definition 2.1 Let ¢ be a standard solution to the Poincare
equation and Ny, a positive integer-valued 7v having finite

mean with p.g.f Py(s) = ¢ (%(p‘l(s)) ,0e0c(01). Adf

F(x) in R® is A-MID if for each 6 € ©, there exists a d.f
Gg(x) that is independent of Ny , such that F(x) =
Py(Gy(x)) forall x € RY.

Theorem 2.1 A d.f F which is the weak limit of a sequence
E, of N-MID d.fs is itself \-MID.

Proof. By virtue of the continuity of p.g.fs, for every 6 € 0,
we have

F(x) = limy o Fy(x) = Po(limy e Gon(x)) =
Pp(Gp(x)).

We now have an analogue of theorem 1.1, a de Finetti type
theorem, for A~-MID laws.

Theorem 2.2 Let ¢ be a standard solution to the Poincare
equation. A d.f F(x) in R% is A-MID iff for some d.fs {G,}
and constants {a, > 0}, F(x) = lim,_, <p{an(1 - Gn(x))}.

Proof. See the proof of theorem 3.5 in [15].

Notice that for a LT ¢(s),s > 0,<p(/1(1 - s)),O <s <
1,A>0 is a p.gf Hence the above representation is
essentially the weak limit of random-maximums under the
transfer theorem for maximums. The next result facilitates the
construction and/ or identification of A-MID d.fs.

Theorem 2.3 A df F(x) is MMID iff F(x) =
@{—logH(x)}, where ¢ is a standard solution to the
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Poincare equation and H(x) is a MID d.f.
Proof. We have seen that an A-MID d.f F(x) admits the
representation for some d.fs Gg,

F(x) = li ! 1-G
@) = lime fz(1 - Go)}
Since ¢ is continuous we can proceed as
) 1
F) = limo(=log (esp {5 (6ot - D))
= ¢(=logH(x)),

Where  H(x) = limgy exp {2 (Go(x) — 1)} is MID.
Note the fact that every Poisson maximum is MID and every
MID d.f is the weak limit of Poisson maximums [11].
Conversely, consider

o(~logH() = |

0
where H(x) is MID and ¢ is the LT of the d.f A. Now

@(—logH(x)) is A-MID since the above is the integral
representation of a d.fthat is the weak limit under the transfer
theorem for maximums. This completes the proof.

Corollary 2.1 A d.fis N-MID iffit is the limit distribution,
as 6 | 0, of a random maximum of i.i.d r.vs.

Now we proceed to prove the max-analogue of theorem
4.6.5 in [5]. Let, for every 0€0,{Xy;} with d.f Gy be i.i.d
random vectors in R and Ny a positive integer-valued 7v

[oe]

exp{tlog H(x)} dA(t),t > 0,

having finite mean with p.g.f Po(s) = ¢ (%(p_l(s)) that is
independent of {Xj;} for every 8e® and i. Let [%] denote
the integer part of %.
Theorem 2.4 Let F(x) = @(—logG(x)) be N-MID. Then
limgyo Po(Gy(x)) = @(—logG(x)) (1
iff there exists a d.f G(x) that is MID and

1
limaio G2 () = G0, @
Proof. The sufficiency of the condition (2) follows from the
transfer theorem for maximums by invoking the relation
d
0 [%] — 1 and ONy —» U as 0 1 0. Conversely (1) implies

limgio @ (207 (6o(0)) = @(~logG()) . ()

Since ¢ is a LT we have; limgy, (%(p‘l(Ga (x))> =
—logG(x).
Again, since ¢@(0) = 1, this implies that
limglo Ge (X) =1. (4)

Since ¢ (%9(@) is a d.f that is A-MID for every €0,

limgmtp(l_ag(x)) is also A-MID by theorem 2.1. Hence

there exists a d.f H(x) that is MID such that

1-Gg(x)

limgyo ¢ (577) = ~logH@). ()

On the other hand for |k| < 1 we have
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log Gg[%] = [%] log(l -(1- Gg)) = [%] (Gg— 1)+
K[%]|G9—1|2. (6)

Hence by (4) and (5) we get from (6)

limg,, Gg[%] (x) = H(x). 7

Now applying the transfer theorem for maximums it
follows that

limguo @ (507 (6o(0) ) = (= logH ().

Hence by (1) H(x) = G(x). That is, by (7), (2) is true with
G (x) being MID, completing the proof.

3. Random Max-stable Laws

Theorem 2.4 identifies the weak limit of partial
Ng-maximums of certain component 7vs as a function of the
weak limit of partial maximums of the same component 7.vs
and vice-versa. This description thus enables us to define
random max-stable (H-max-stable) laws analogous to the
N-stable laws in [5] and their domains of A-max-attraction.

This is facilitated by prescribing [%] =n in theorem 2.4.

Notice also that here the discussion can be for d.fs in R.
Definition 3.1 A df F(x) is N-max-stable iff F(x) =
@p{—logH(x)}, where H(x) a max-stable d.f and ¢ is a
standard solution to the Poincare equation.
Theorem 3.1 An N-max-stable d.f can be represented as
F(x) = Pg(Fy(x)), for every O€ ©, where F and Fy are d.fs
of the same type. Here Fy and Py are independent for each

e, Py(s) = ¢ (%(p‘l(s)) is the p.g.f of Ny, a positive
integer-valued »v having finite mean.

Proof. Since F(x) is A-max-stable we have the following
representation for every 6Oe 0 F = ¢p{—logH} =
P07 (@(—0log H))} = Py(p(—0logH)) =
Py (¢ (—log H?)) = Py(Fo).

Notice that H and H? are d.fs of the same type, [16]. Since
H is max-stable, H? also is max-stable. Thus the above
representation describes an A-max-stable d.f'as an Ng-sum of
d.fs of the same type for every 8¢ 0, proving the result.

We now generalise proposition 3.2 on GMS laws in [12] to
N-max-stable laws.

Theorem 3.2 For a df F on R% the following statements
are equivalent.

(i) F is A-max-stable

(if) exp{—@~1(F)} is max-stable

(iii) There exists an £e[—,0)? and an exponent measure
u concentrated on [£, ) such that for

x 24, F(x) = oult,x]).

(iv) There exists a multivariate extremal process {Y (t),t >
0} governed by a max-stable law and an independent rv Z
with df F and LT ¢ suchthat F(x) = P{Y(Z) < x}.

Proof. (i) = (ii)) F is N-max-stable implies F =

@{—logH} , where H is max-stable. This
exp{—¢@ 1(F)} = H is max-stable.
(it) = (iii) From the representation of a max-stable d.f by

an exponent measure y and from (ii) we have H(x) =
exp{—@ 1 (F(x))} = exp{—ul¢,x]}. This implies
@~ (F(x)) = ul#, x]¢ or F(x) = (ult,x]%).

(iit) = (iv) By (iii) we have the exponent measure u
corresponding to the max-stable law identified in (i7). Let
{Y(t),t > 0} be the extremal process governed by this
max-stable law. That is P{Y (t) < x} = exp{—tul[¥, x]‘}.

Hence

implies

P{Y(2) < x} = [ exp{—tul, x]°} dF (£) = p{ul, x]°} = F(x).

(iv) = (i) is now obvious. Thus the proof is complete.

A notion that is closely associated with max-stable laws is
their domain of max-attraction. The notion of geometric
max-attraction for GMS laws was discussed in [12] and [13].
We now briefly discuss this for A-max-stable laws.

Definition 3.2 A d.f G(x) belongs to the domain of
MN-max-attraction (DAMMA) of the df F(x) (with
non-degenerate marginals) if there exists constants a;, =
a;(6,) >0 and b;, = b;(6,) such that lim,_, P,(G™) =
F, meaning that

lim,,_,o, B, (G") = F;, for each 1 <i < d whereG/*(x) =
GP(aynX + byy) and 6, = -

Recalling that ¢ is continuous and that max-attraction of
G to H is equivalently specified by n{l - Gi(ai,nx +
bin)} = —logH;(x),1<i<d, we have the following
result as an immediate consequence of theorem 2.2.

Theorem 3.3 Let ¢ be a standard solution to the Poincare
equation. Ad.f F(x) = ¢{—1log H(x)} is N-max-stable iff for
some d.f G(x) and constants a;, = a;(6,) >0 and
bin = b(6,).

o(n{1 = Gi(aynx + biy)}) = @(=logH;(x)) =
Fi(x),1<i<d.

Again, from theorem 2.4, choosing Gg(x) =
(Gi(airnx + bi‘n), 1<i< d) and 6 such that [%] =n,
where a;, = a;(6,) >0 and b;, = b;(6,) , from the
classical results on max-stable laws and their domains of
attraction, we have

Theorem 3.4 A d.f G(x) belongs to the DAWMA of the d.f
F(x) = ¢{—log H(x)} iff'it belongs to the DMA of H (x).
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