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Abstract: Here we discuss the max-analogues of random infinite divisibility and random stability developed by Gnedenko and 

Korolev [5]. We give a necessary and sufficient condition for the weak convergence to a random max-infinitely divisible law 

from that to a max-infinitely divisible law. Introducing random max-stable laws we show that they are indeed invariant under 

random maximum. We then discuss their domain of max-attraction. 
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1. Introduction 

In the classical summation scheme a characteristic function 

(CF) �(�)  is infinitely divisible (ID) if for every � ≥ 1 

integer there exists a CF ��(�) such that �(�) = {��(�)}� . 

The classical de-Finetti theorem for ID laws states that �(�) 
is ID iff �(�) = lim�→� exp	{−���1 − ℎ�(�)�}  where {��} 
are some positive constants and ℎ�(�) are CFs. 

Klebanov, et al. [1] extended the notion of ID laws to 

geometrically ID (GID) laws using geometric (with mean 1/�) 

sums. According to this, �(�) is GID if for every � ∈ (0,1) 
there exists a CF ��(�)  such that 

�(�) = ∑ !��(�)"
� �(1 − �)(�#$)��%$ , the geometric law 

being independent of the distribution of ��(�)  for every 

� ∈ (0,1). They also proved an analogue of the de-Finetti 

theorem in the context, viz. �(�)  is GID iff �(�) =
lim�→� 1/{1 + ���1 − ℎ�(�)�}, where {��} and ℎ�(�) are 

as above. Consequently, �(�)  is GID iff �(�) = 1/{1 −
log)(�)} where )(�) is a CF that is ID. Subsequently [2] 

(also reported in [3]), [4], [5] and [6] have discussed attraction 

and the first three works that of partial attraction for GID laws. 

Later [2] (also reported in [7]), [4], [5], [6] and [8] extended 

the notion of GID to random (N) ID laws based on *+-sums. 

[2] and [7] defined N-ID laws as: a CF �(�) is N-ID, where 

*+ is a positive integer-valued random variable (r.v) having 

finite mean with probability generating function (p.g.f) ,+  if 

there exists a CF �+(�) such that �(�) = ,+{�+(�)} for every 

-.Θ . We need the distributions of ,+  and �+  to be 

independent for every - . She noticed that when �(�) and 

�+(�) are of the same type, the above is an Abel (Poincare) 

equation. She also gave two examples of non-geometric laws 

for *+. [5] (section 4.6) and [6] went further by proving the 

de-Finetti analogue for N-ID laws viz. a CF �(�) is N-ID iff 

�(�) = lim�→� 0{��(1 − ℎ�(�)}  where 0  is a Laplace 

transform (LT) that is also a solution to the Poincare (Abel) 

equation. They then concluded that a CF �(�) is N-ID iff 

�(�) = 0{− log)(�)} where )(�) is CF that is ID. In this 

description ,+  and 0 are related by ,+(1) = 0{$+0#$(1)}, 0 < 1 ≤ 1, -.Θ, where ,+  is the p.g.f of the r.v *+  that is 

positive integer-valued having finite mean. [8] also arrived at 

the same conclusion under the same assumptions but the 

arguments were based on Levy processes instead of proving 

the de-Finetti analogue enroute. Poincare equation is given by 

0(1) = 	,�0(-1)�, 1 ≥ 0, -.	Θ,	P being a p.g.f. [5], [6] and [9] 

discussed Poincare equation and examples of deriving a p.g.f 

from 0. 

To circumvent the main constraints in the development of 

N-ID laws viz. that *+ is a positive integer-valued r.v having 

finite mean, 0 is a LT that is also a solution to the Poincare 

equation, [10] introduced 0-ID laws for any LT 0 and *+ a 

non-negative integer-valued r.v derived from 0 . The 

important case of compound Poisson distributions was thus 

brought under random-ID laws. [5], [6] and [10] also 

discussed attraction and partial attraction for N-ID/ 0-ID laws. 

The discrete analogue of this was developed in [9]. The r.v *+ 

in N-ID laws has the following property. 

Lemma 1.1 -*+ 4→ 	5 as - ↓ 0, and the LT of U is 0, see 

[5], p.138. 

Coming to the max-analogue, [11] introduced the notion of 

max infinitely divisible (MID) laws. A distribution function 

(d.f) 7 is MID if 7$/� is a d.f for each integer � ≥ 1. Since 
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7$/� is always a d.f in the univariate case all d.fs in R are MID, 

see [13]. Hence a discussion of MID laws is relevant for d.f s 

in 84 , 9 ≥ 2, integer and the max operations are to be taken 

component wise. Thus in this paper all d.fs are assumed to be 

in 84 , 9 ≥ 2  integer, unless stated otherwise. Later [12] 

introduced geometric max infinitely divisible (GMID) laws 

and geometric max stable (GMS) laws, see also [13]. [12] also 

discussed certain connections between GMID/ GMS laws and 

extremal processes. From [11] we have the max-analogue of 

the classical de Finetti's theorem. 

Theorem 1.1 A d.f 7(;) is MID iff for some d.fs {<�} and 

constants {�� > 0} 7(;) = lim�→� exp	{−���1 − <�(;)�}. 
Using the transfer theorem for maximums in [14] we can 

study the limit distributions of random maximums. [15] 

briefly discussed the max-analogue of N-ID laws to obtain 

stationary solutions to a generalized max-AR(1) scheme. 

However, there was an inadvertent omission, as the discussion 

did not stress that the LT 0 should also be a standard solution 

to the Poincare equation. 

Proceeding from [15], we discuss random (N) MID (N-MID) 

laws that is the max-analogue of N-ID laws, in section 2. In 

section 3 we discuss random (N) max-stable laws, generalise 

certain results on GMS laws in [12] to N-max-stable laws and 

their domain of max-attraction. The convergence discussed 

here is weak convergence of d.fs, unless stated otherwise. 

2. Random MID Laws 

We begin by defining N-MID laws analogous to the N-ID 

laws in [5] correcting the omission mentioned above. 

Definition 2.1 Let 0 be a standard solution to the Poincare 

equation and *+ , a positive integer-valued r.v having finite 

mean with p.g.f ,+(1) = 	0 >$+0#$(1)? , -	.	Θ ⊂ (0,1). A d.f 

7(;) in 84  is N-MID if for each -	.	Θ, there exists a d.f 

<+(;)  that is independent of *+ , such that 7(;) =
	,+(<+(;)) for all ;	.	84. 

Theorem 2.1 A d.f 7 which is the weak limit of a sequence 

7� of N-MID d.fs is itself N-MID. 

Proof. By virtue of the continuity of p.g.fs, for every -	.	Θ, 

we have 

7(;) = 	 lim�→� 7�(;) = 	,+(lim�→� <+,�(;)) =	,+(<+(;)). 
We now have an analogue of theorem 1.1, a de Finetti type 

theorem, for N-MID laws. 

Theorem 2.2 Let 0 be a standard solution to the Poincare 

equation. A d.f 7(;) in 84 is N-MID iff for some d.fs {<�} 
and constants {�� > 0}, 7(;) = lim�→� 0	{���1 − <�(;)�}. 

Proof. See the proof of theorem 3.5 in [15]. 

Notice that for a LT 0(1), 1 > 0, 0�A(1 − 1)�, 0 < 1	 ≤
1, A > 0  is a p.g.f. Hence the above representation is 

essentially the weak limit of random-maximums under the 

transfer theorem for maximums. The next result facilitates the 

construction and/ or identification of N-MID d.fs. 

Theorem 2.3 A d.f 7(;)  is N-MID iff 7(;) =
	0{− logB(;)} , where 0  is a standard solution to the 

Poincare equation and B(;) is a MID d.f. 

Proof. We have seen that an N-MID d.f 7(;) admits the 

representation for some d.fs <+, 

7(;) = 	 lim+↓C 0 D
1
- �1 − <+(;)�E. 

Since 0 is continuous we can proceed as 

7(;) = 	 lim+↓C 0{− log 	>exp D
1
- (<+(;) − 	1)E?} 	= 	0(− logB(;))	, 

Where B(;) = 	 lim+↓C exp G$+ 	(<+(;) − 	1)H  is MID. 

Note the fact that every Poisson maximum is MID and every 

MID d.f is the weak limit of Poisson maximums [11]. 

Conversely, consider 

0(− logB(;)) = 	I exp	{� logB(;)}	9Λ(�), � > 0,
�

C
 

where B(;)  is MID and 0  is the LT of the d.f Λ . Now 

0(− logB(;))  is N-MID since the above is the integral 

representation of a d.f that is the weak limit under the transfer 

theorem for maximums. This completes the proof. 

Corollary 2.1 A d.f is N-MID iff it is the limit distribution, 

as - ↓ 0, of a random maximum of i.i.d r.vs. 

Now we proceed to prove the max-analogue of theorem 

4.6.5 in [5]. Let, for every -.Θ, {K+,L} with d.f <+  be i.i.d 

random vectors in 84  and *+  a positive integer-valued r.v 

having finite mean with p.g.f ,+(1) = 	0 >$+0#$(1)?,	that is 

independent of {K+,L} for every -.Θ and M. Let N$+O denote 

the integer part of 
$
+. 

Theorem 2.4 Let 7(;) = 	0(− log <(;)) be N-MID. Then 

lim+↓C ,+�<+(;)� = 	0(− log <(;))      (1) 

iff there exists a d.f <(;) that is MID and 

lim+↓C <+
NPQO(;) = <(;).                (2) 

Proof. The sufficiency of the condition (2) follows from the 

transfer theorem for maximums by invoking the relation 

- N$+O → 1 and -*+ 4→ 	5 as - ↓ 0. Conversely (1) implies 

lim+↓C 0 >$+0#$�<+(;)�? = 	0(− log <(;))	.     (3) 

Since 0  is a LT we have; lim+↓C >$+0#$�<+(;)�? =
	− log <(;) . 

Again, since 0(0) = 1, this implies that 

lim+↓C <+(;) = 1.              (4) 

Since 0 !$#RQ(S)+ " is a d.f that is N-MID for every -.Θ, 

lim+↓C 0 !$#RQ(S)+ "  is also N-MID by theorem 2.1. Hence 

there exists a d.f B(;) that is MID such that 

lim+↓C 0 !$#RQ(S)+ " = 	− logB(;).     (5) 

On the other hand for |U| ≤ 1 we have 
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log <+
NPQO = N$+O log�1 − (1 − <+)� = N

$
+O (<+ − 	1) +

	U N$+O |<+ − 1|V.        (6) 

Hence by (4) and (5) we get from (6) 

lim+↓C <+
NPQO(;) = B(;).              (7) 

Now applying the transfer theorem for maximums it 

follows that 

lim+↓C 0 >$+0#$�<+(;)�? = 	0(− logB(;))	. 
Hence by (1) B(;) ≡ <(;). That is, by (7), (2) is true with 

<(;) being MID, completing the proof. 

3. Random Max-stable Laws 

Theorem 2.4 identifies the weak limit of partial 

*+-maximums of certain component r.vs as a function of the 

weak limit of partial maximums of the same component r.vs 

and vice-versa. This description thus enables us to define 

random max-stable (N-max-stable) laws analogous to the 

N-stable laws in [5] and their domains of N-max-attraction. 

This is facilitated by prescribing N$+O = �	 in theorem 2.4. 

Notice also that here the discussion can be for d.fs in R. 

Definition 3.1 A d.f 7(;)  is N-max-stable iff 7(;) =
0{− logB(;)}	 , where B(;)  a max-stable d.f and 0  is a 

standard solution to the Poincare equation. 

Theorem 3.1 An N-max-stable d.f can be represented as 

7(;) = ,+�7+(;)�, for every -.	Θ, where 7 and 7+ are d.fs 

of the same type. Here 7+ and ,+  are independent for each 

-.	Θ, ,+(1) = 	0 >$+0#$(1)? is the p.g.f of *+ , a positive 

integer-valued r.v having finite mean. 

Proof. Since 7(;) is N-max-stable we have the following 

representation for every -.	Θ . 7 = 0{− logB}	 =
0{$+0#$(0(−- logB))} = 	,+(0(−θ	logB)) =	,+(0(− logB+)) = ,+(7+). 

Notice that B and B+  are d.fs of the same type, [16]. Since 

B  is max-stable, B+  also is max-stable. Thus the above 

representation describes an N-max-stable d.f as an *+-sum of 

d.fs of the same type for every -.	Θ, proving the result. 

We now generalise proposition 3.2 on GMS laws in [12] to 

N-max-stable laws. 

Theorem 3.2 For a d.f 7 on 84 the following statements 

are equivalent. 

(i) 7 is N-max-stable 

(ii) exp{−0#$(7)} is max-stable 

(iii) There exists an ℓ.[−∞,∞)4 and an exponent measure 

\ concentrated on [ℓ,∞) such that for 

; ≥ ℓ, 7(;) = 0(\[ℓ, ;]^). 
(iv) There exists a multivariate extremal process {_(�), � >

0} governed by a max-stable law and an independent r.v ` 

with d.f 7 and LT 0 such that 7(;) = ,{_(`) ≤ ;}. 
Proof. (M) ⇒ (MM)	7  is N-max-stable implies 7 =

0{− logB} , where B  is max-stable. This implies 

exp{−0#$(7)} = B is max-stable. 
(MM) ⇒ (MMM) From the representation of a max-stable d.f by 

an exponent measure \  and from (ii) we have B(;) =
expb−0#$�7(;)�c = exp	{−\[ℓ, ;]^}.  This implies 

0#$(7(;)) = \[ℓ, ;]^ or 7(;) = 0(\[ℓ, ;]^). 
(MMM) ⇒ (Md)  By (iii) we have the exponent measure \ 

corresponding to the max-stable law identified in (ii). Let 
{_(�), � > 0}  be the extremal process governed by this 

max-stable law. That is ,{_(�) ≤ ;} = exp{−�\[ℓ, ;]^}. 
Hence 

,{_(`) ≤ ;} = e exp{−�\[ℓ, ;]^} 97(�) = 0{\[ℓ, ;]^} = 7(;)�
C . 

(Md) ⇒ (M) is now obvious. Thus the proof is complete. 

A notion that is closely associated with max-stable laws is 

their domain of max-attraction. The notion of geometric 

max-attraction for GMS laws was discussed in [12] and [13]. 

We now briefly discuss this for N-max-stable laws. 

Definition 3.2 A d.f <(;)  belongs to the domain of 

N-max-attraction (DNMA) of the d.f 7(;)  (with 

non-degenerate marginals) if there exists constants �L,� =�L(-�) > 0  and fL,� = fL(-�)  such that lim�→� ,�(<�) =7,	meaning that 

lim�→� ,�(<L�) = 7L , for each 1 ≤ M ≤ 9  where<L�(;) =
<L�(�L,�; + fL,�) and -� = $

�. 

Recalling that 0 is continuous and that max-attraction of 

<  to B  is equivalently specified by �b1 − <L��L,�; +
fL,��c → 	− logBL(;) , 1 ≤ M ≤ 9 , we have the following 

result as an immediate consequence of theorem 2.2. 

Theorem 3.3 Let 0 be a standard solution to the Poincare 

equation. A d.f 7(;) = 0{− logB(;)} is N-max-stable iff for 

some d.f <(;)  and constants �L,� = �L(-�) > 0  and 

fL,� = fL(-�), 
0��b1 − <L��L,�; + fL,��c� → 	0(− logBL(;)) =7L(;) , 1 ≤ M ≤ 9. 

Again, from theorem 2.4, choosing <+(;) =
�<L��L,�; + fL,��, 1 ≤ M ≤ 9�  and -  such that N$+O = � , 

where �L,� = �L(-�) > 0  and fL,� = fL(-�) , from the 

classical results on max-stable laws and their domains of 

attraction, we have 

Theorem 3.4 A d.f <(;) belongs to the DNMA of the d.f 

7(;) = 0{− logB(;)} iff it belongs to the DMA of B(;). 
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