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Abstract: Hypertension of the eye fundamentally results from an imbalance between the production and extrusion of 

aqueous humor (AQH) within the anterior segment of the eye. Vitreous humor (VH) (in the posterior segment of the eye) and 

AQH are responsible for maintaining the shape of the eye-ball in order that light is correctly focused on the retina for good 

vision. However, as we age, cells of the AQH drainage system (trabecular meshwork, TM) die and cellular debris accumulates 

within the TM and the canal of Schlemm thereby slowing, and in some cases, preventing AQH efflux. This results in increased 

resistance and elevation of hydrostatic pressure within the anterior segment, also termed as elevated intraocular pressure (IOP) 

or ocular hypertension (OHT). Sustained OHT exerts mechanical pressure on the retinal ganglion cells (RGCs) and the optic 

nerve fibers at the back of the eye leading to their progressive demise by apoptosis, thereby distorting and diminishing visual 

acuity over time, and eventually leading to irreversible blindness. In some patients even “normal” IOP is destructive because 

their RGCs and their axons projecting to the brain are genetically or chemically predisposed to early cell death. These 

pathologies are termed “glaucomatous optic neuropathy (GON)” and OHT is often associated with glaucoma, especially 

primary open-angle glaucoma (POAG). Today, there are several pharmacological and minimally invasive surgical 

interventions / devices that constitute therapeutic modalities to treat OHT and glaucoma. OHT etiology and treatments will be 

discussed in more detail in this review article.  
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1. Introduction 

Aqueous humor (AQH) in the anterior segment and 

vitreous humor (VH) in the posterior segment of the eye, 

encased in a tough fibrous materials (the sclera), provide the 

necessary pressure to help maintain the shape of the human 

eye globe (Fig. 1A). Level of AQH is maintained by an equal 

rate of AQH production (2µl/hour by the ciliary body) and 

the rate of its efflux through the trabecular meshwork (TM) 

via the canal of Schlemm located at the corner of the iris-

corneal junction [1] (see Figs. 1A/1B below).  

As in the rest of the body, hypertension within the eye is 

caused by increased resistance, but in this case due to 

accumulation of cellular debris and various components of 

extracellular matrix (ECM) in the TM and Schlemm’s canal 

(SC) drainage system [2-5]. The latter dysfunction is age-

related but some patients are more predisposed to this than 

others [6, 7]. Indeed, such ocular hypertension (OHT), due to 

elevated intraocular pressure (IOP), is one of the major risk 

factors associated with the optic neuropathies known as 

“glaucoma” [2-7]. Whilst many forms of glaucoma exist [10-

12], primary open-angle glaucoma (POAG) has the highest 

prevalence globally, and it causes irreversible blindness if left 

untreated [3-5]. In fact POAG ranks as the second leading 

cause of preventable blindness (after cataracts) afflicting 

millions of people, with projections ranging from ~80 million 

by 2020 to >112 million by 2040 [13, 14]. Associated with 

such global visual impairment is poor quality of life, lost 

revenue and a huge medicinal and/or surgical treatment 

burden on nations around the world [3-5; 13, 14]. As the 

search for genetic markers [15] and potential cures [16-18] 

for POAG and the related OHT continues, a number of 
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pharmacological agents [19-23], surgical procedures [24-26] 

and devices [27-31] have become available to at least treat 

the symptoms of POAG, vis-à-vis mitigation of OHT. Before 

tackling the treatment modalities it is important to understand 

how elevated IOP is believed to cause visual impairment 

leading to blindness. 

 

A 

 

B 

Figure 1. Outline of the basic overall anatomy of the human eye illustrating some of the key features discussed in the text. LG denotes lateral geniculate; ONH 

denotes optic nerve head; SC denotes superior colliculus (Fig. 1A). In Fig. 1B, the key elements of the AQH synthetic machinery (ciliary epithelium), and AQH 

outflow via the trabecular meshwork (conventional outflow) and via the uveoscleral pathway from the anterior chamber are shown. Note: none of the elements 

shown are to scale. Original figures were obtained from various on-line sources and then modified to fit the needs of the current article.  
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Pathophysiology of OHT and POAG Leading to Blindness  

While the prominent and pervasive trigger in POAG is the 

elevated IOP [2-4], it is the down-stream events and 

associated factors that actually cause the damage to the visual 

system that culminates in blindness. The mechanical effects 

of too high a fluid pressure in the anterior segment of the eye 

is transmitted throughout globe and heavily impacts the 

retinal ganglion cells (RGCs), their axons and the optic nerve 

[32, 33] where it exists the rear of the eye. Elevated IOP is 

thought to excessively stretch the axons of the most 

peripheral RGCs (closest to the sclera) and cause them to 

break leading to the demise of their cell bodies, thereby 

adding stress to the next layer of axons. As this trauma 

progresses, the optic nerve begins to thin and to bow like 

heavy wires on an electric pylon, thereby bending and 

crimping the surrounding blood vessels [33-38]. Such 

mechanical stress at the lamina cribosa and ONH triggers 

local macrophages and/or glial cells to release matrix 

metalloproteases (MMPs) that begins to digest the ECM 

thereby thinning and excavating the area where the optic 

nerve exits the eye [39-43]. The resultant constriction of the 

ciliary and central arteries and their capillaries causes varying 

amounts of additional local hypoxia / ischemia and 

reperfusion [34-38]. This oxidative and neurochemical stress 

disturbs the metabolic profile of the various retinal cell types 

and reactive astroglial activation initiate release of various 

noxious chemicals. The latter includes reactive oxygen 

species, nitric oxide, glutamate and a variety of inflammatory 

cytokines (e.g. various interleukins) and chemokines ensues 

[39-46]. It is believed that retina with its high metabolic rate, 

begins to deplete its mitochondrial energy sources [47-52], 

and since RGCs are highly sensitive to hypoxia and to these 

damaging chemicals [52-57], which also include endothelin 

[49-54], they are unable to sustain cellular homeostasis. The 

ensuing ionic over-load leads to swelling and eventual RGC 

death. As the demise of some of the RGCs progresses they 

empty the contents of their cytoplasm and this leads to more 

damage of the RGCs in the immediate vicinity of the dying 

cells. This process continues unabated, albeit very slowly. 

The dead RGC axons undergo phagocytosis and pruning by 

macrophages [52-60], and the thinning of the retinal nerve 

fiber layer (RNFL) and the optic nerve continues [39-45]. 

Concomitantly, the fragile area where the RGC axons merge 

to form the optic-nerve-head (ONH; [lamina cribosa]) also 

feels the physical pressure and weakened RGC axons break, 

thereby killing their respective RGC neurons in a retrograde 

manner. As this process continues, the ONH of the optic 

nerve and the associated blood vessels bend even more [38, 

46, 52] leading to further ischemia and retardation of 

anterograde and retrograde axonal transport of nutrients and 

growth factors. The combination of the resultant oxidative 

stress [47-52], neurotrophin deprivation [52, 61], 

neurotoxicity [48-50, 54] and local inflammation [43, 44, 48] 

lead to further demise of the RGCs and their axons. Such 

axonal atrophy thins the optic nerve causing it to buckle even 

more, that then kills even more RGCs. The end result of this 

vicious cycle is a severe loss of retinal connections to the 

lateral geniculate and the visual cortex of the brain leading to 

visual impairment [63-66]. Even though these deleterious 

processes may take years, since there is no overt pain or other 

warning signal perceived by the patient, the insidious and 

progressive damage continues unabated. During early to mid-

stages of POAG induced by OHT the first signs perceived by 

the patient are dark spots in the images of the outside world 

giving the impression of missing details within the images, 

loss of depth of perception and decreased contrast sensitivity. 

This is followed by a loss of overall peripheral vision giving 

a “tunnel vision” syndrome [3-8, 67-70]. As the damage and 

disease progress over several more years, vision continues to 

deteriorate and eventually total blindness results. Sadly, most 

patients only realize the visual deficits setting in after demise 

of about 40% of their original 1 million RGCs. Thus, OHT 

causes a slow but progressive loss of vision that develops 

over several decades. Due to lack of symptoms and suitable 

diagnostic tools, many people do not even know they have 

POAG until significant damage has already occurred in their 

visual system. Thankfully since other risk factors for POAG 

(apart from OHT) [3-8], including increasing age, race 

(especially African and Asian heritage), myopia, genetic 

factors, diabetes and vascular dysfunctions have become 

known, at least there is increasing public awareness of their 

risk for visual impairment. Accordingly, regular visual exams 

and consultation with ophthalmologists are leading to earlier 

diagnosis and treatment for POAG and associated OHT. 

In recent years, it has also become clear that it is not just 

elevated IOP that causes the damage to the visual system in 

glaucoma. Since the retina and optic nerve are connected to 

the central nervous system (CNS) [68-70], and the optic 

nerve is bathed in cerebrospinal fluid (CSF) [71, 72] and 

surrounded by three layers of thin membranes, disturbances 

within this microenvironment also have grave effects on the 

health of the optic nerve and its components. Thus, the 

hydrostatic pressure gradient between the intraocular space 

(high pressure) and the retrobulbar space (low pressure) 

adversely affects the fragile lamina cribosa of the ONH 

causing it to undergo remodeling and breakage. Since a low 

CSF pressure [71, 72] is mirrored by a low systemic blood 

pressure, especially at night, this causes a high trans-lamina 

cribosa pressure differential and abnormal fluctuations 

(“spikes”) in IOP [52, 64] that adversely impact RGCs and 

the ONH. Therefore, there is now an emerging link between 

systemic blood pressure and low ocular blood flow [33-39], 

CSF pressure [71, 72], and IOP [1-5, 20-31]. Vascular 

dysregulation [33-38] is thus, in part, responsible for the 

onset and/or progression of glaucomatous optic neuropathy 

leading to eventual loss of sight. 

Ocular Hypotensive Therapies 
Elevated IOP is intimately linked to glaucomatous damage 

[2-5] and thus ophthalmologists have targeted this readily 

measurable and treatable biomarker [17] in an effort to treat 

POAG [20-31, 73]. Due to the high correlation of high IOP 

with RGC death and glaucoma [32, 40, 44, 62-64] a number 
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of useful tools have been developed to reliably and 

reproducibly measure IOP in patients and laboratory animals 

in order to guide and provide appropriate treatment(s) [75]. 

The ultimate goal is to achieve an IOP < 12-13 mmHg in 

order to preserve RGC function and maintain good visual 

acuity even though the “normal range” of IOP is considered 

to be 12-22 mmHg [2-5, 75]. Very few drugs or devices 

actually achieve this level of sustained IOP reduction but 

every mmHg decrease in IOP reduces the progression of 

POAG by 13% and is therefore considered beneficial as 

illustrated by multiple clinical trials [3-5, 76, 77]. Likewise, 

it’s been shown that a 50% reduction in rate of visual field 

loss can be achieved by lowering of IOP by only 20-40% [3-

5, 63, 64]. These desired levels of IOP reduction need to be 

considered when comparing relative efficacies of drugs and 

devices, along with their overall therapeutic indices. 

 

Figure 2. A pictorial view of the outside world seen through normal eyes without visual impairment, and then the same photo as seen through glaucomatous 

eyes where the peripheral vision is diminished, thus often resulting in “tunnel vision”. The original figures were obtained from the National Eye Institute (NEI) 

website online and modified to fit the needs of the current article. 

Reduction of AQH production and/or acceleration of AQH 

drainage from the anterior chamber by pharmaceutical means 

are primarily used to reduce and control IOP [1-5, 24-31]. 

However, the inadequacies of these medicines either in terms 

of overall efficacy, duration of action, local and/or systemic 

side-effects necessitate the discovery and development of 

new drugs that lack these problems or where such liabilities 

are reduced. However, patients who are refractory to 

pharmacotherapy, or are on multiple drug treatment 

regimens, often require more invasive procedures such as 

surgical/laser-induced ablation of some of the TM and SC 

[25, 26]. Drainage of AQH can also be achieved using 

shunts, valves and micro-invasive-glaucoma-surgeries 

(MIGS) [27-31]. IOPs of glaucoma patients are routinely 

monitored and prescription medicines are applied topically to 

the cornea to either suppress AQH production using inflow 

inhibitors [1, 20-23], or to stimulate AQH outflow via the 

trabecular meshwork (TM) (“conventional outflow”) [73, 78, 

79], and/or via the uveoscleral (UVSC) pathway (through 

spaces between CM fibers and the sclera) [20-23, 73, 78, 79]. 

The resultant IOP reduction has been demonstrated to 

diminish RGC death, thereby slowing the development and 

progression of POAG [3-5; 52; 60; 63-65; 68-70]. 

Pharmaceutical intervention to lower IOP further in ocular 

normotensive [76-78, 78-80] patients is still desirable since 

the trajectory of their visual impairment and declining 

peripheral visual acuity continues. This is one reason why the 

normotensive patients may require retinoprotectant regimens 

on top of ocular hypotensive medications [76, 77]. Various 

neuroprotective agents have been proposed and consist of 

anti-oxidants like α-lipoic acid [81, 82], Na
+
 and Ca

2+
-

channel blocker treatment [47, 83, 84], polyamines [85-87] 

and N-methyl-D-Aspartate receptor-coupled channel 

blockers [47-52].  

2. OHT / POAG Pharmacotherapy 

Today 

One of the earliest pharmacological agents to be used, 

back in 1875, to treat POAG and associated OHT was the 

miotic muscarinic agonist pilocarpine [19-23, 88]. However, 

the inadequate IOP-control by pilocarpine and its side-effects 

(pupillary constriction and browe-ache) prompted 

pharmaceutical research that culminated in discovery of 

carbonic anhydrase inhibitors (CAIs; acetazolamide; 

dorzolamide; brinzolamide; oral and topical ocular [t. o.]) 

[20-23, 89]. Whilst CAIs lower IOP they cause conjunctival 

allergy and hyperemia. The discovery and clinical use of 

beta-adrenergic antagonists (timolol; betaxolol) [20-23, 90, 

91] in the seventies was followed by the introduction of 

alpha-adrenoceptor agonists (brimonidine; para-amino-

clonidine) [20-23] in the nineties that primarily impact ciliary 

body/processes to cut down generation of AQH (Table 1). 

Unfortunately, even though beta-blockers are potent and 

efficacious ocular hypotensives, they cause local burning and 

stinging and worsening of pulmonary insufficiency, and 

reduce cardiac contractility and heart rate [20-23]. Likewise, 

alpha-2 agonists are prone to initiate conjunctival allergies, 

and cause arrhythmias, elevated blood pressure, headaches, 

fatigue, hyperemia, dry mouth and even drowsiness [20-23, 

92] as they lower IOP. Furthermore and unfortunately, 
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reducing AQH production is insufficient, and despite twice- 

or three-times daily instillation of inflow inhibitors, IOP-

lowering is achieved only for a few hours and only by a few 

mmHg. It is also not advisable to reduce the AQH production 

too much since the nutrients and oxygen within this fluid are 

essential for the healthy maintenance of corneal endothelial 

cells, lens and TM cells amongst other structures of the 

anterior segment.  

A revolutionary paradigm shift in POAG/OHT treatment 

occurred in the 1990s and 2000s when FP-receptor-selective 

prostaglandin analog agonists (PGAs) (e.g. Latanoprost; 

Travoprost; Tafluprost) [93] (Table 1) were approved. This 

represented a novel class of pharmacological agents that 

promoted AQH outflow through the uveoscleral [UVS] 

pathway to lower IOP. The PGAs utilized an extracellular-

matrix (ECM) remodeling mechanism of action by releasing 

matrix metalloproteinases (MMPs) that digested the ECM 

within the ciliary muscle bundles and the scleral tissue [20-

23, 93]. Since the PG pro-drugs possess a longer duration of 

action than the inflow inhibitors, they are only dosed to the 

eye once daily [20-23; 93-95]. This reduced overall drug and 

preservative exposure to the ocular surface and ultimately 

enhanced patient adherence to therapy. Nevertheless, 

compliance remains a major challenge, and FP PGAs also 

have side-effects such as causing hyperemia, ocular surface 

irritation, darkening of the iris and periorbital tissues, 

lengthening of eyelashes and occasionally causing cystoid 

macular edema [93-95]. While pilocarpine represents the 

only approved drug that facilitate AQH outflow through the 

TM and down the canal of Schlemm (conventional outflow; 

CNV outflow), recent evidence suggests that FP-PGAs 

reduce IOP by activating AQH egress from the anterior 

chamber via both UVSC and CVN outflow pathways since 

FP receptors are present in both CM and TM [96]. Since 

enhancing AQH drainage via the TM is the preferred mode 

of treatment for OHT, another three classes of agents that 

specifically targets the TM, by relaxing this tissue, include 

rho kinase inhibitors [97-98], a bifunctional molecule that 

releases both a PGA and nitric oxide (NO) (latanoprostene 

bunod) [100, 101], and an adenosine A1 receptor agonist 

[102]. Some of these small molecules have reached late-stage 

clinical trials and look quite promising. However, the 

therapeutic index associated with these potential drug 

candidates remain to be described in more detail prior to 

approval by health authorities. Additionally, whether they 

deliver the same or superior efficacy, over a protracted period 

of time, to the current gold-standards (FP-PGAs) remains to 

be seen.  

Unfortunately, patients whose IOP remains uncontrolled 

by one medicine, or those who are no longer responsive to a 

given medication, require adjunctive therapy. This involves 

beta-blocker or CAI eye-drop instillation during the day, and 

PGA eye-drops instilled at night. Some patients ultimately 

require three or more different classes of drugs to lower and 

control their IOP, and perhaps even surgery as a last resort. 

Various fixed-dose combination drug products [103, 104] in a 

single bottle have been approved by some world health 

authorities for such ocular hypertensive patients. Some 

examples of combination formulations include Azarga 

(brinzolamide 1% + timolol 0.5%), Cosopt (dorzolamide 2% 

+ timolol 0.5%), Combigan (brimonidine 0.2% + timolol 

(0.5%), Duotrav (travoprost 0.004% + timolol 0.5%), 

Simbrinza (brinzolamide 1% + brimonidine 0.2%) and 

tafluprost + timolol combination [103, 104]. A triple fixed-

dose combination formulation consisting of dorzolamide + 

brimonidine + timolol has recently been shown to lower IOP 

to a significant extent beyond the efficacy provided by each 

of the drugs in the combination product and is approved in 

Mexico [104]. While other combination products are on the 

horizon, such a triple fixed-dose combination product has yet 

to be approved by any ministry of health where dual 

combinations are approved (β-blocker + CAI; CAI + α2-

agonist; β-blocker + α2-agonist; PGA + β-blocker; etc.). 

Another novel approach has been to generate multifunctional 

molecules that possess dual activity by virtue of conjugation 

of a PGA with other IOP-lowering agents [105]. Whilst there 

is much hope pinned to these novel approaches, an older drug 

nipradalol that has intrinsic beta-blocker and NO-releasing 

properties has not gained much prominence in clinical 

practice [20-23;73]. This may be due to its rather low IOP-

lowering efficacy.  

The clinical management of IOP associated with POAG 

and OHT has clearly advanced in recent years. However, due 

to the side-effect profiles of many of the approved 

pharmaceutical agents described above, there still remains a 

need to find even better medications for OHT treatment. 

Some of the ocular and/or systemic side-effects that limit the 

utility of the current topical ocularly utilized medicines 

involve their overall effectiveness, duration of action, 

posology and/or significant side-effects (local 

irritation/stinging/redness and/or bradycardia and 

exacerbation of asthma). The duration of action is a key 

hurdle for some of the afore-mentioned non-PG drugs, since 

they only provide efficacy for ≤ 12 hours. Thus, CAIs (e.g. 

dorzolamide and brinzolamide) have to penetrate 

cornea/conjunctiva/ciliary epithelial cell membranes and then 

block almost 100% of the CA-enzyme activity within the 

NPE cells to reduce AQH generation. Additional hurdles 

include the prevalence of several isoforms of the CA with 

each having a different replenishing rate as the enzymes are 

synthesized from scratch. These aspects necessitate 

twice/thrice daily instillation regimen to achieve sufficient 

IOP reduction and control, and the burden of attendant local 

ocular irritation and redness (hyperemia). Sharp stinging and 

burning of the ocular surface is associated with topical ocular 

β-blockers such as betaxolol and timolol. Additionally, such 

β–adrenoceptor antagonists reach the systemic circulation 

from the ocular-nasal duct and produce pulmonary and 

cardiac side-effects that then limit their utility in asthmatic 

and hypertensive patients. While FP-receptor PG agonists 

(PGAs) potently and efficaciously reduce and control IOP for 

up to 24 hrs and represent first-line ocular hypotensives, they 

are responsible for local hyperemia, thickening and 

elongation of eye-lashes, and darkening of the iris and 
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periorbital area, plus cystoid macular edema in some cases. 

Even though the latter side-effects are apparently reversible 

upon PGA drug discontinuation, the long-term consequences 

of the latter side-effects remain unknown and due caution is 

still required in the use of these agents. Therefore, the search 

for better tolerated and more effective ocular hypotensive 

drugs continues around the globe. These are discussed more 

fully in the section below. 

Table 1. Selected IOP-lowering agents and their reported or potential mechanisms of actions. 

Compound classes Investigative agent or approved drug Reported or potential mechanism(s) of action 

Conventional Outflow (via 

TM pathway) Promotors 
 

Muscarinic receptor Agonists Pilocarpine [88]; Acecledine; Carbachol 
Contract ciliary muscle /TM to promote outflow of AQH via the 

TM-SC pathway 

Inhibitors of chloride 

transport 
Ticrynafen, Ethacrynic acid; Indacrinone [172] 

Inhibition of Na+-K+-Cl--transporter activity in the TM changes 

cell shape & volume and thus AQH efflux is increased 

Kinase inhibitors 

ROCK inhibitors [97-99]: Y-27632; Y-39983; H-7; 

ML-9; Chelerythrine; Staurosporin; K-115; AR-12286; 

LIM-K inhibitor [165], Myosin-II ATPase inhibitor: 

Blebbistatin Sc kinase inhibitor [166] 

Modification of actomyosin contractility that leads to changes in 

actin cytoskeleton of TM and this leads to AQH efflux; direct 

relaxation of the TM may also be involved. 

Marine macrolids Latrunculins A and B; Bumetanide; Swinholide [79] 
Promote sequestration of actin monomers and dimers in TM; 

cause cell TM shape change and thus AH efflux 

Guanylate cyclase activators 

NO Donors 

Soluble guanylate cyclase 

activators 

Natriuretic peptides: ANP; CNP [167] 

sodium nitroprusside; Hydralazine; 3-

morpholinosyndnonimine; (S)-

nitrosoacetylpenicillamine; NCX-125 [100, 101] IWP-

953 [119] 

Type-A and type-B receptor activation leads to cGMP production,  

TM relaxation and AQH efflux via TM 

κ-opioid receptor agonists Bremazocine; dynorphin [168] 
Release natriuretic peptides and thus raise cGMP in TM leading 

to its relaxation & thus AQH efflux 

Cannabinoid receptor agonists WIN55212-2; CP55940; SR141716A [169] 
Receptor stimulation opens BKC-channels and relaxes TM which 

then causes AQH efflux via TM and SC. 

FP-class PG-receptor agonists 
Latanoprost; Travoprost; Bimatoprost; Tafluprost; 

Unoprostone isopropyl ester [93-96; 170] 

Some clinical evidence of promoting conventional outflow in 

addition to UVS outflow 

Serotonin-2 receptor 

antagonists 
BVT-28949; ketanserin and its analogs [171] 

Unknown and unverifiable mechanism(s) of action (may block 

beta-adrenergic receptors indirectly?) 

Releasers of MMP & AP-1 
FP-class PGs [93-96]; t-butylhydroquinone (t-BHQ); 

β-naphthoflavone; 

Local production of MMPs; ECM degradation; stimulation of 

AQH efflux via TM 

Uveoslceral Outflow 

promotors (via CM bundles 

and sclera) 

 

FP-class PG-receptor agonists 
Latanoprost; Travoprost; Bimatoprost; Tafluprost; 

Unoprostone isopropyl ester [93-96;170] 

FP receptor activation in CM causes release of MMPs that 

breakdown ECM (“clog”) around CM bundles and within sclera 

thus causing UVS outflow of AQH 

EP2- and EP4- PG-receptor 

agonists 

AL-6598 [93, 121]; Butaprost; ONO-AE1-259-01; PF-

04217329 [122]; DE-117 (Omidenepag Isopropyl) 

[110, 123]; PF-04475270 [120] 

Receptor activation increases cAMP that relaxes CM & TM; EP2 

agonists also cause release of MMPs that breakdown ECM 

(“clog”) around CM bundles and within sclera thus causing UVS 

outflow of AQH 

Serotonin-2 (5HT-2) receptor 

agonists 
(R)-DOI; α-methyl-5HT; AL-34662 [124-126] 

Contraction / relaxation of CM and TM by activation of 5HT2 

receptors. May also release MMPs and/or PGs or other local 

mediators that promote CM remodeling and thus promote UVS 

outflow 

Bradykinin B2-receptor 

agonists 
Bradykinin; FR-190997; BKA278 [135-146] 

B2-receptor activation causes PI hydrolysis production of IPs and 

DAG; cause PG release and release of MMPs that digest ECM 

and this promote UVS outflow in cynomolgus monkey; 

conventional outflow also stimulated in isolated bovine /porcine 

anterior eye segments [177, 178]. 

Dual pharmacophore PGs FP/EP3 receptor agonist (ONO-954) [127, 128] Promote UVSC outflow and TM outflow 

Inflow inhibitors 

(reduce AQH production) 
 

β-adrenergic antagonists 
Betaxolol; Levobetaxolol; Timolol; Levobunolol; 

Metipranolol [19-23] 

Block β-adrenergic receptors in the ciliary process, decrease 

cAMP generation and thus decrease AQH formation 

α2-adrenergic agonists Brimonidine; Clonidine; Apraclonidine [19-23] 

Intracellular cAMP reduced in CP that decreases AQH 

generation; may also prevent NE release. 

Brimonidine also promotes TM outflow 

Carbonic anhydrase inhibitors Dorzolamide; Brinzolamide [89] 
Inhibit ciliary process CA-II and CA-IV and thus reduce 

bicarbonate production that in turn reduces AQH generation 

Chloride channels inhibitors 5-nitro-2-(3-phenylpropylamino)-benzoate [172] Ion flux of CP NPE cells causes reduction of AQH formation 

Na+-K+-ATPase inhibitors Ouabain; Digoxin analogs [173] 
Ciliary process Na+-K+-ATPase inhibited leading to inhibition of 

AQH production 
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Compound classes Investigative agent or approved drug Reported or potential mechanism(s) of action 

Dopamine receptor agonists 

PD128907; CHF1035; CHF1024; SDZ GLC-756; (S)-

(-)-3-hydroxyphenyl)-N-n-propylpiperidine (3-PPP) 

[174] 

Inhibit release of NE & prevent AQH production; may also 

release natriuretic peptides 

Na+-K+-ATPase inhibitors Ouabain; Digoxin analogs [173] 
Ciliary process Na+-K+-ATPase inhibited leading to inhibition of 

AQH production 

Aquaporin Inhibitors 
Various aromatic sulfonamides and 

dihydrobenzofurans [180] 
Inhibit release of NE & prevent AQH production 

Other IOP-lowering agents  

Mas receptor stimulator 

Angiotensin-II receptor 

antagonists 

DIZE via ACE-2 activation [131] 

CS-088 [129] 

Prevent ECM (including TGFβ) accumulation (outflow 

stimulation ?) 

Various mechanisms of action; not robust IOP-lowering 

Ca2+-channel inhibitors 
Lomerazine; Nivaldipine; Nifedipine; Nimodipine; 

Verapamil; Brovincamine; Iganidipine [84] 

Enhance retinal blood flow; some may lower IOP; work well in 

normal tension glaucoma patients 

Alpha-adrenergic receptor 

antagonists 
Oxymetazoline; 5-methylurapidil; Ketanserin [175] Work mostly via outflow mechanism but this needs to be defined 

Other prostaglandin receptor 

agonists 

PG-conjugates [101, 105] 

AL-6598 (DP/EP2 receptor agonist); AGN192093 (TP 

receptor agonist); BW245C (DP receptor agonist); 

Sulprostone (EP3 receptor agonist) [19-23; 121] 

Latanoprostene Bunod (NO donor coupled to 

latanoprost) [101] 

These work through multiple mechanisms of action involving 

cAMP production, Ca2+ mobilization leading to relaxation / 

contraction of ciliary muscles/ TM 

Combination of NO-cGMP production and FP-receptor activation 

Combination products 

Brinzolamide-brimonidine; Brinzolamide-brimonidine; 

Acetozolamide-Timolol-Brimonidine; Travoprost-

brimonidine; Bimatoprost-brimonidine; Tafluprost- 

Timolol [103, 104] 

Complementary mechanisms of action encompassing inflow-

outflow inhibition, and inflow-uveoscleral outflow inhibition. 

 

POAG / OHT  Pharmacotherapy: Tomorrow and Beyond 

The continued and concerted efforts of researchers in 

academia and industry is providing new targets and pathways 

for pursuit of new ocular hypotensive drugs and agents that 

could potentially protect the RGCs in a more direct manner. 

Development of more robust and translatable animals models 

of OHT/glaucoma involving numerous animal species [10-

12, 23, 88, 93, 106-110], ex-vivo ocular models (e.g. 

perfused anterior eye segments [107]), and new screening 

assays and techniques [20, 40, 42, 46, 47, 62, 65, 74, 75], 

including biomarkers [17] are helping advance our 

knowledge of the etiologies of OHT and POAG. Similarly, 

development and use of methods to detect RGC death in real-

time [111], ocular metabolomics [112], ocular proteomics 

[113], radiowave telemetric recording of IOP [114] and 

refined computer modelling of visual filed progression [115] 

is proving of immense value in the diagnosis and prognosis 

of OHT and POAG. This in turn is helping discover new 

ways and novel agents to treat these diseases. 

Pharmacological agents that have shown promise in 

combating OHT in various assays and animal models include 

NO- and hydrogen sulfide- donors [116-118], soluble 

guanylate cyclase activators [119], rho-kinase inhibitors (e.g. 

Y-39983, K-115, AR-12286, AR-13324, and AMA0076) [79, 

97-99], PG-NO donor conjugates (e.g. Latanoprostene bunod 

[BOL-303259-X]) [101], adenosine receptor agonists (e.g. 

OPA-6566; CF-101; Trabodenosone) [102], EP4 PG-agonists 

(e.g. 7-dithia PGE1; PF-04475270) [120], EP2 receptor PG-

agonists (e.g. AL-6598; ONO-AE1-259-01; PF-04217329; 

DE-117 (Omidenepag Isopropyl™) [93, 121; 122-124], 

serotonin-2 (5-hydroxy-tryptamine-2 [5-HT2]) receptor 

agonists (e.g. R-DOI; AL-34662) [125, 126], dual 

pharmacophoric PGs, having both FP- and EP3-receptor 

agonist activities (e.g. ONO-9054) [127, 128], dopamine 

receptor agonists, melatonin receptor agonists, cannabinoid 

agonists, receptor-coupled-guanylate cyclase activators, etc 

(Table 1).  

An area of research that overlaps between the systemic 

hypertension and OHT relates to the renin-angiotensin and 

kallikrien-kinin systems. Local intrinsic location and 

production of various components and products of the renin-

angiotensin system (RAS) that activate distinct receptor-

effector pathways have now been delineated in anterior uveal 

ocular cells and tissues. Furthermore, angiotensin converting 

enzyme (ACE) inhibitors, angiotensin (AT) receptor 

antagonists [129], a novel angiotensin-derived peptide (Ang-

1-7) [130] and a novel ACE-2-activator [131] have 

demonstrated ocular hypotensive [129-132] and 

neuroprotective [131] activity in various animal models [129-

133]. However, at present less is known about translation of 

these findings to the human OHT patient population, but 

warrants further investigation. 

Recent research has provided strong evidence for an 

endogenous local enzymatic system that generates various 

kinins in cells of tissues involved in IOP regulation [134-

138]. Indeed, bradykinin (BK) and various BK-related 

peptides (and some BK-mimetic non-peptidic agents FR-

190997; BK2A78] [139, 140]) stimulate B2-receptors in 

animal and human cells derived from ciliary body (both 

epithelial and smooth muscle) [141, 142] and TM [138, 144] 

to generate intracellular inositol phosphates, intracellular 

Ca
2+

 and promote secretion of PGs and MMPs [141-146]. 

Such cellular and molecular cascades are now believed to be 

responsible for causing profound lowering and controlling 

IOP with a long duration of action in ocular OHT 

cynomolgus monkey eyes [145, 146]. Again, whilst 

translation of these observations in OHT patients is eagerly 

awaited, the afore-mentioned lead compounds (FR-190997; 
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BK2A78 [145, 146]) represent new drug candidates and 

potential novel templates for further studies in this arena.  

3. Microinvasive Glaucoma Surgeries 

(MIGS) and Devices 

As mentioned earlier, it is the elevated IOP due to AQH 

accumulation in the anterior chamber of the eye that causes 

glaucomatous damage to the optic nerve. Obviously if the 

AQH can be drained in a controlled manner, and on a slow 

continuous basis, an homeostatic state would be achieved 

thereby normalizing IOP and preventing RGC death. To this 

end, laser-induced TM ablation and surgical procedures [24-

26] have been enhanced by implantation of tiny devices 

(microshunts) [27-31] into the anterior chamber of the eye. 

The classic laser-treatment and surgery that pertains to 

removal of some of the TM tissue is quite an effective 

procedure because endogenous ocular hypotensive agents are 

released into the AQH that promote AQH efflux from the 

anterior chamber [24-26]. However, the latter procedures are 

confounded by the rather short duration of IOP-lowering 

efficacy and robust ocular healing process that seals the 

opening and scars the sclera, thereby necessitating further 

lasering and surgery. Consequently, it was believed that once 

an oriface is created from the anterior chamber for AQH 

egress, that implantation of a device that remains in the 

anterior chamber and extrudes the AQH fluid out to the 

sclera, conjunctiva and sub-tenons space would be more 

effective than the surgery alone. Indeed several devices have 

been tested in animals and humans and one recently 

approved by the FDA, iStent [27-31]. Another very efficient 

device is the InnFocus MicroShunt™ that lowers the IOP in 

POAG/OHT patients down to 10-12 mmHg and maintains 

the IOP close at to this level for up to 3-years [29] (see Figs. 

3-4 below).  

 

Figure 3. Top portion of the figure depicts an InnFocus Microshunt™ (IFMS; dimensions and its positioning inside the front of the eye to drain the AQH from 

the anterior chamber to the sub-tenons space). The lower portion of the Figure shows the location of an implanted IFMS in a human eye (front view). Modified 

from ref 29. 

AQH 
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Figure 4. This figures depicts the lowering and controlling of IOP in numerous patients who had the InnFocus Microshunt™ (IFMS) implanted into their eyes 

in absence or in conjunction with cataract surgery. The IOPs were monitored and recorded over many months and years as shown to demonstrate the 

longevity of the ocular hypotension induced by this device. No hypotony was observed. Modified from ref 29.  

Due to the extraordinary ocular hypotensive effect and the 

maintenance of low IOPs for years (Fig. 4), such micro-

devices are going to revolutionize the treatment for ocular 

OHT, POAG and other forms of glaucoma. These MIGS-

coupled devices have the potential for replacing some of the 

topical ocularly applied medications. This is indeed an 

exciting time for ophthalmology and the patients afflicted 

with OHT and glaucoma. Preservation of vision by any safe 

and effective means continues to be a goal for all 

ophthalmologists and researchers involved in cutting-edge 

research. We should be encouraged by these new findings 

and hope for more rapid progress in this arena of tackling the 

undesirable effects of old age and other ocular pathologies 

connected with POAG and OHT. 

OHT and Neuroprotection 

Since some patients continue to lose vision despite having 

their IOP under control, such as in ocular normotensive 

glaucoma [33, 39, 76, 77], there is a need to reduce or 

prevent the apoptotic death of RGCs. Consequently, direct 

protection of RGCs, independent of lowering IOP, has 

become an important avenue of glaucoma/OHT research. 

However, despite many drug candidates having demonstrated 

efficacy in isolated cells and in animal models of RGC 

demise, none have proven effective in human clinical trials 

thus far. Agents that have been investigated and shown 

positive results in animal studies include anti-oxidants (e.g. 

α-lipoic acid) [81, 82] glutamate / N-methyl-D-Aspartate 

receptor-channel antagonists (e.g. MK-801; memantine) [47, 

50, 52, 55, 60, 147], caspase and NOS inhibitors [52, 55, 60, 

67, 148], neurotrophic factors (e.g. nerve growth factor; 

brain-derived growth factor) [149-151], alpha-2 agonists (e.g. 

brimonidine) [150, 152, 153], beta-blockers (e.g. betaxolol) 

[149, 154, 155], d elta opioid agonists [156], etc. Continued 

research effort in this area to mitigate glaucomatous optic 

neuropathy would eventually be rewarded. Drugs that 

directly protect the RGCs and their axons and thereby 

preserve vision are thus eagerly awaited.  

4. Conclusions 

In conclusion, hypertension of the eye is intimately 

involved in causing serious and blinding visual impairment 

around the world. It is believed that physical and mechanical 

effects of the elevated IOP leads to apoptotic death of RGCs 

which in turn leads to loss of their axonal connections to the 

brain thereby negatively impacting vision. Since every 

mmHg of IOP reduction is important, many pharmaceutical 

small molecule drugs have become mainstay treatment 

modalities for combating OHT, with FP-class PGAs being 

the most preferred due to their extraordinary efficacy. 

Hopefully the new non-PG EP2-receptor agonists such as 

omidenepag isopropyl (DE-117), and ROCK inhibitors such 

a Netarsudil [97] will continue to demonstrate long duration 

of IOP-lowering efficacy with reduced or minimal side-

effects. Combination products have also been introduced into 

clinical management of OHT since some patients are 

refractory to certain medications and/or whose IOP is not 

controlled by one drug. Furthermore, fixed-dose ocular 

hypotensive combination products have alleviated some of 

the compliance issues associated with topical ocular drugs. In 

recent years implanted valves/shunts and MIGs to promote 

efflux of AQH from the anterior chamber have also become 
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important tools to overcome the destructive effects of 

elevated IOP. It is hoped that steady progress in the 

discovery, development and regulatory approvals of novel 

medications and devices will continue in order to help 

preserve vision of POAG patients. Clearly, advances in 

ocular genetics and metabolomics-wide association studies 

[157], a better understanding of AQH dynamics and 

lymphatics [158-160], refinement of clinical trials, both for 

OHT [161] and neuroprotection [55, 147], will also be very 

useful. Likewise, use of novel molecules such as vitamin B3 

[18], micro-RNAs [162] and transplantation of stem cell 

[163, 164] could also prove of value in the fight against 

OHT/glaucoma, including glaucomatous optic neuropathy 

(GON).  
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