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Abstract: This first show was that the spin system, the two nearest neighbour spin in the Entanglement of measuring 

compliance by the ground conditions are achieved Berry stage to the relation when it is a closed path developed is. It noted the 

need to share the stage in a kind of geometric phase as explained to go to which any deformations involved is not and it’s the 

first Stiefel-Whitney class which is to Zz–cohomology value takes. However for polarized fermions we can relate the exchange 

phase as the celebrated Berry phase as in this case the Zz-cohomology becomes irrelevant and is consistent with the first Chern 

class which involves curvature. This follows from the depiction of a fermion as a scalar particle attached with a magnetic flux 

line. As in this framework the measure of entanglement of two nearest neighbor spins in a spin system given by concurrence is 

found to be associated with the Berry phase acquired by a spin state when it evolves in a closed path we can consider that 

entanglement is a consequence of Fermi statistics. It has been noted that in terms of quantum field theory, the berry phase is 

related to the perpetual inconsistency caused by the breaking of the perpetual symmetry. As mentioned earlier the quantization 

procedure of a fermion in the framework of Nelson’s stochastic quantization procedure introduces an internal variable which 

appears as a direction vector and gives rise to spin degrees of freedom. It's pointing to is that when a spin- 1 state of two spin 

1/2 state is a Entangle system as considered to be that, the most widely covered state longitudinal elements with the matching 

it. 
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1. Introduction 

Entanglement is a specific feature of quantum mechanics. 

It is known that quantum mechanics is nonlocal and exhibits 

a peculiar correlation between two physically distant parts of 

the total system. Indeed it has been observed that the Bell 

inequality (BI) [1] can be violated in quantum mechanics but 

has to be satisfied by all local realistic theories. The violation 

of BI demonstrates the presence of entanglement. It is 

expected that this specific feature of quantum mechanics is 

induced through the quantization procedure. Klauder [2] has 

pointed out that quantization can be achieved in terms of a 

universal magnetic field acting on a free particle moving in a 

higher dimensional space when quantization corresponds to 

freezing the particle in its lowest Landau level. The 

significant aspect of this quantization procedure is that it has 

the specific property of coordinate independence and is 

governed by geometry. It has been pointed out that this 

formulation is equivalent to the geometric quantization [3] 

where the Hermitian line bundle takes a significant role. Also 

it has been shown that this procedure has its relevance in the 

quantization of a fermion [4, 5] in the framework of Nelson’s 

stochastic quantization procedure [6] when a spinning 

particle is endowed with an internal degree of freedom 

through a direction vector (vortex line) which is topologically 

equivalent to a magnetic flux line. In view of this specific 

feature of the role of magnetic field in all these formulations 

of quantization procedure it is expected that the peculiar 

property of entanglement in quantum mechanics has its 

relevance with the magnetic flux associated with the 

quantization procedure. In a seminal paper Berry [7] has 

shown that when a quantum particle moves in a closed path 

in a parameter space it attains a geometric phase apart from 

the dynamical phase. The geometric phase belongs to the 

Chern class and corresponds to the holonomy [8]. It is given 

by the integral over the closed path of the relevant gauge 

potential. Essentially this phase is proportional to the number 

of magnetic flux lines enclosed by the path. In some recent 

papers [9-11] it has been shown that the measure of 
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entanglement given by concurrence for a bipartite system of 

two nearest neighbor spins in a spin system effectively 

corresponds to the Berry phase factor attained by the ground 

state when the system is rotated in a closed path. It has also 

been shown that the quantification of spin entanglement in 

terms of Berry phase generalizes the relationship between the 

entanglement of distinguishable spins and that of delocalized 

identical fermions [11]. 

In sec. 2 we shall briefly review the relationship between 

entanglement, Berry phase and chiral anomaly. In sec. 3 we 

shall consider the Berry phase in an entangled state and the 

role of renormalization group (RG) flow associated with this. 

2. Entanglement, Berry Phase and Chiral 

Anomaly 

In some recent papers [9-11] it has been pointed out that in 

a spin system the measure of entanglement for two nearest 

neighbor spins given by concurrence effectively corresponds 

to the Berry phase factor acquired by a spin state when each 

spin is rotated about the quantization (z-) axis. In fact when a 

fermion is depicted as a scalar particle attached with a 

magnetic flux line quantum entanglement of two nearest 

neighbor spins in a spin system can be visualized as to be 

caused by the deviation of the internal magnetic flux line 

attached with one particle in presence of the other. This helps 

us to consider the measure of entanglement given by 

concurrence in terms of the Berry phase acquired by a spin 

state arising due to the rotation of the spin around the z-axis 

induced by the internal magnetic field associated with the 

other particle. It has also been shown that the spatial 

entanglement between two identical fermions at different 

spatial regions is associated with the corresponding spin 

entanglement [11]. In a recent paper [15] it has been shown 

that the Pauli sign of the spin-statistics relation of fermions 

essentially corresponds to this geometric phase and given by 

concurrence is found to be associated with the Berry phase 

acquired by a spin state when it evolves in a closed path we 

can consider that entanglement is a consequence of Fermi 

statistics [16, 17]. This helps us to consider spin as an 

(2)SU  gauge bundle [5, 12-15]. In fact we can now write 

the extended space-time coordinate as well as momentum as 

gauge covariant operator acting on functions in phase space 

( ( ))Q i A p
p

µ µ
µ

∂= − +
∂

 

( ( ))P i B q
q

µ µ
µ

∂= − +
∂

                           (1) 

with the gauge field 2( )A B SUµ µ ∈  and ( )q pµ µ  denoting 

the mean position (momentum). It is observed that space-

time coordinates as well as momentum variables given by 

eqn.(1) represent noncommutative geometry as their 

components do not commute. In fact the noncommutativity 

parameter is given by 

[ , ] ( )Q Q F pµ ν µν=  

[ , ] ( )P P F qµ ν µν=                                (2) 

where Fµν represents the non-Abelian gauge field strength. 

The functional dependence of the noncommutativity 

parameter effectively corresponds to the existence of 

monopoles [18, 19]. This implies that the effect of 

monopoles is implicit in this formulation. 

The angular momentum of a charged particle in the field of 

a magnetic monopole is given by: 

ˆJ r p rµ= × −
� � �

                                     (3) 

where µ  takes the value 
1 3

0, , 1, ,...............
2 2

µ = ± ± ±  This 

suggests that a fermion can be viewed as a scalar particle 

having orbital momentum 1/2 in this space. As 
1

2
µ =  

corresponds to one magnetic flux line a fermion can be 

depicted as a scalar particle attached with a magnetic flux 

quantum. It may be mentioned that this formulation is 

analogous to the boson-fermion transformation in (2+1) 

dimensions which is achieved through the introduction of the 

Chern-Simons field. In 3-dimensional manifold the non-

Abelian Chern-Simons action is given by 

3

2
( ) ( )

8 3
M

k
S A Tr A dA A A A

π
= ∧ + ∧ ∧∫            (4) 

where k is a integer and A is the one-form associated with the 

Chern-Simons gauge field. The Chern-Simons invariant 

given by eqn.(4) is related to the Pontryagin index through 

the relation 

( )
4 3

( ) ( 2 3 )

M M

Tr F F Tr A dA A A A∧ = ∧ + ∧ ∧∫ ∫     (5) 

where F is the two-form related to the field strength. The 

Pontryagin index q is associated with this 4-dimensional 

integral and is related to the magnetic monopole charge µ  

through the relation 2q µ= . Noting that SU(2) is the 

covering group of SO(3) and (2, )SL C  is the covering group 

of the Lorentz group SO(3,1) we can generalize the non-

Abelian gauge field Aµ as (2, )SL C ) gauge field. In deed the 

generators of the (2, )SL C group in the tangent space are 

given by: 

1 0 0

1 0
g

 
=  
 

, 2 1 0

0 1
g

 
=  − 

, 3 0 1

0 0
g

 
=  
 

          (6) 

We consider the topological Lagrangian in terms of the 

(2, )SL C gauge fields in affine space 

( )1 4 aL Tr F Fµνλ
µν λσε= −                       (7) 
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This gives rise to the topological current [20] 

a a
aJ a F fµνλ µνλ

µ ν λσ ν λε ε
→

= × = ∂
���

              (8) 

where we have taken (2, )SL C  gauge fields 

.A a gµ µ
→

=
�

 and .F f gµν µν
→

=
�

                   (9) 

It is noted that chiral anomaly appears when a chiral 

fermionic current interacts with a gauge field. The 

Lagrangian for the interaction of the Dirac field with the 

(2, )SL C  gauge field (neglecting the mass term) is given by  

1

4
L D Tr F F

αβγδ
µ µ αβ γδψγ ψ ε= − −             (10) 

where Dµ  is the (2, )SL C  gauge covariant derivative given 

by D igAµ µ µ≡ ∂ −  where g is some coupling constant. Here 

Dµ  is the gauge covariant derivative defined by 

D igAµ µ µ≡ ∂ − , g being the coupling constant. If we split 

the Dirac massless spinor in chiral form and identify the 

internal helicity +1/2 (-1/2) with left (right) chirality 

corresponding to ( )L Rψ ψ  we can write 

1 2 2 3( )
2

a a

R R R R L L L L

D ig A g

ig
A A A A

µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ

ψγ ψ ψγ ψ ψγ ψ ψγ ψ

ψ γ ψ ψ γ ψ ψ γ ψ ψ γ ψ

= ∂ = = ∂

− − + +
  (11)

 

This gives rise to the following three conservation laws 

[13]

 
11

[ ( ) ] 0
2

R Rig Jµ µ µψ γ ψ∂ − + =  

21
[ ( ) ] 0
2

L L R Rig ig Jµ µ µ µψ γ ψ ψ γ ψ∂ − + + =  

31
[ ( ) ] 0
2

L Lig Jµ µ µψ γ ψ∂ − + =                      (12) 

where ( 1,2,3)iJ iµ =  are gauge field currents given by 

eqn.(8). 

These three equations represent a consistent set of 

equations if we choose 
1 1

2

z
J Jµ µ= − , 

3 1

2

z
J Jµ µ= + . This 

guarantees the vector current conservation. From this we can 

write 

2[ ] 0R R Jµ µ µψ γ ψ∂ + =  

2[ ] 0L L Jµ µ µψ γ ψ∂ − =                          (13) 

Thus we have 

5 2
5( ) 2J Jµ µ µ µ µ µψγ γ ψ∂ = ∂ = − ∂                    (14) 

The chiral anomaly 
5 0Jµ µ∂ ≠  is expressed here in terms 

of the gauge field current 
2Jµ . The charge corresponding to 

this current is 

2 3 2
0

ijk
i jk

surface
q J d x d Fσ= = ∈∫ ∫ , i,j,k=1,2,3          (15) 

Visualizing 2
jkF  to be the magnetic field like component 

for the vector potential 
2Aµ  we see that q actually 

corresponds to the magnetic pole strength µ given by 

2q µ= . Thus we find that the chiral anomaly essentially is 

associated with the magnetic monopole charge. The fact that 

chiral anomaly is related to the Berry phase follows from this 

relationship of chiral anomaly with monopole charge. In fact 

the Berry phase factor is proportional to the number of 

magnetic flux lines enclosed by the loop traversed by the 

particle when it evolves in a closed path. It is noted that when 

the internal coordinate µξ  representing the direction vector is 

attached to the space-time point xµ , for the complexified 

coordinate z x iµ µ µξ= + , we should take into account the 

polar coordinates r, θ, φ for space components of the vector

xµ  and the angle χ to specify the rotational orientation of the 

direction vector µξ . The eigenvalue of the operator 
i

χ
∂

∂
 

corresponds to the monopole charge. Indeed the angle χ  

effectively takes care of the extension of the canonical 

system with certain internal structure. For compactified space 

this enlarges the configuration space 2 3s s→  and the angle 

χ  acts like U(1) gauge degree of freedom that represents 

Hopf fibration of 2 3s s→ . It is observed that a quantized 

Dirac monopole can be treated as the Hopf bundle U(1) over
2s  [20, 21]. The angular part of the spherical harmonics 

associated with the angle χ  is given by i xe µ−  [12]. So from 

the relation
 

i x i xi e eµ µµ
χ

− −∂ =
∂

                            (16) 

we note that when χ  is changed to χ δχ+ , we have the 

relation 

( )

( ) ( )

i x i ii e i e eµ µ χ δχ µδχ

χ δχ χ δχ
− − +∂ ∂=

∂ + ∂ +
     (17) 

This implies that the wave function will acquire an extra 

factor ie µδχ due to the infinitesimal change of the angle χ . 

For one complete rotation the phase is 

2
2

0

i i
e e

πµ πµδχ =∫                             (18) 

which is the Berry phase [12]. So from the relation 
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2

2 3 2 4 5 4
0

0

1
2

2
q J d x J d x J d x

π

µ µ µ µµ= = = ∂ = − ∂∫ ∫ ∫     (19) 

we note that the Berry phase is related to the integral of the 

anomaly. From this analysis it is now observed that the measure 

of entanglement for two nearest neighbor spins in a spin system 

given by concurrence which is shown to be related to the Berry 

phase factor acquired by the spin state when it evolves in closed 

path essentially relates it to the chiral anomaly which is 

generated when the associated chiral fermion interacts with a 

gauge field. In fact the change of the alignment of spin 

orientations caused by entanglement gives rise to this anomaly. 

Thus entanglement in a spin system corresponds to the effect of 

chiral symmetry breaking leading to chiral anomaly which is 

manifested through the Berry phase. 

3. Entanglement, Berry Phase and 

Renormalization Group Flow 

A general bipartite state can be written as 

00 01 10 11ψ α β γ δ= + + +                 (20) 

where α, β, γ, δ are complex coefficients satisfying the 

normalization condition. The state 0 and 1  correspond to 

the down and up spins respectively. The measure of 

entanglement viz. concurrence C is given by [22] 

2( )C αδ βγ= −                                 (21) 

As mentioned earlier we consider that under the influence 

of the magnetic flux line associated with one spin, the 

magnetic flux line of the other will deviate from the z-axis. 

We may view that the magnetic field is rotating with an angle 

θ. The time dependent magnetic field is given by 

( ) ( , )B t Bn tθ=
� �

                                 (22) 

Where ( , )n tθ�  is a unit vector which can be chosen as 

0

0( , ) sin

sin cos t

n t sin t

cos

θ ω
θ θ ω

θ

 
 =  
 
 

�
 

The interaction is described by the Hamiltonian 

.
2

k
H Bn α= �

                                 (23) 

where α�  is the vector of Pauli matrices and Bk gµ= , Bµ , 

being the Bohr magneton and g is the Lande factor. The 

instantaneous eigenstate of a spin operator in direction 

( , )n tθ� expanded in the zα  basis is given by 

0; cos sin
2 2

i t
n t e

ωθ θ↑ = ↑ + ↓  

0; sin cos
2 2

i t
n t e

ωθ θ↓ = ↑ + ↓                (24) 

For the time evolution from t = 0 to t = T where
0

2
T

π
ω

=  

each eigenstate will acquire a geometric phase apart from the 

dynamical phase. We can write 

( ); 0 ; ; 0i i
n n nt t T e e tγ θ ν+ +↑ = → ↑ = = ↑ =  

( ); 0 ; ; 0i i
n n nt t T e e tγ θ ν− −↓ = → ↓ = = ↓ =      (25) 

where γ ±  is the geometric phase and ν±  is the dynamical 

phase. The geometric phase is found to be given by [9-11] 

( ) (1 cos )γ θ π θ+ = − −                              (26) 

( ) (1 cos ) ( ) 2γ θ π θ γ θ π− += − + = − −                (27) 

In this entangled state the angle θ corresponds to the 

deviation of the spin axis from the z-axis. It has been pointed 

out earlier that when a scalar particle moves in a closed path 

the geometric (Berry) phase is given by 2ie πµ  where µ 

corresponds to the monopole charge. It is noted that µ = 1=2 

corresponds to one magnetic flux line and when a scalar 

particle encircles one magnetic flux line the system generates a 

π-phase representing a fermion. In an entangled state of spin 

1/2 systems we note that the Berry phase factor / 2γ π  

essentially corresponds to the monopole charge which we 

denote as µɶ . Thus we find that the effective monopole charge 

associated with a spin state in an entangled system is given by 

1
(1 cos )

2
µ θ= −ɶ                              (28) 

which essentially represents the concurrence. The 

entanglement content between two systems A and B in a pure 

state is measured by the entanglement entropy known as the 

Von Neumann entropy associated with the reduced density 

matrix Aρ  (equivalently Bρ ) given by 

2logA AS Trρ ρ= −                            (29) 

Osborne and Nielson [23] have pointed out that the 

entanglement of formation given by concurrence in a mixed 

state reduces to the Von Neumann entropy in a pure state. It 

has been shown by Casini and Huerta [24] that the 

entanglement entropy undergoes a renormalization group 

(RG) flow. Indeed Holzhey et. al. [25] have shown that for an 

one dimensional spin system undergoing quantum phase 

transition the entanglement entropy of a block of L spins with 

the rest of the system at criticality is proportional to the 

central charge c associated with the conformal field theory. In 

an earlier paper [26] it has been pointed out that the 

monopole charge associated with the Berry phase which is 

related to chiral anomaly has its correspondence with the 

central charge associated with the conformal anomaly in 1+1 
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dimensional conformal field theory. Zamolodchikov [27] has 

noted that the central charge c  undergoes a RG flow. In view 

of this we note that the monopole charge µ associated with 

the Berry phase also undergoes a RG flow [28]. 

When µ depends on a certain parameter λ we have: 

1. µ  is stationary at fixed values *λ  of the RG flow. 2. at 

the fixed points *( )µ λ  is equal to the monopole charge given 

by quantized values 
1

( 0, , 1,...............)
2

µ = ± ±  3. it decreases 

along the RG flow ie. 0L
L

µ∂ ≤
∂

 where L is a scale 

parameter. We now identify µ (λ) with µɶ  in eqn.(28) with λ 

corresponding to θ. This suggests that for fixed values 

0, / 2θ π=  and π we have the specific quantized values of 

the monopole charge 0,1 / 2µ =ɶ  and 1 respectively. µɶ  

decreases from the maximum value 1 at θ = π to 0 at θ = 0 

when entanglement entropy vanishes. It is noted that

1
( / 2)

2
µ θ π= =ɶ  is a specific value that gives a π-phase 

when the spin axis becomes orthogonal to the z-axis and 

spin-charge separation occurs [29]. For θ = π the spin state is 

reversed with 1µ =ɶ  defining the maximally entangled state. 

For other values of θ, the effective monopole charge µɶ  

appears to be nonquantized. In fact this is essentially related 

to the RG flow associated with the entangled state. 

It is noted that at θ = 0 the entanglement entropy vanishes 

and we have the product state. From this analysis we observe 

that in this case the Berry phase is trivial with 0µ =ɶ  

indicating that there is no anomaly. Indeed the very 

geometrical feature associated with the product state of spins 

where all spins have there orientations in the same direction 

representing chiral spinors on a lattice does not allow chiral 

anomaly to exist. The vanishing of chiral anomaly on a 

lattice leads to the fermion doubling of chiral spinors on a 

lattice [30-32]. Thus we find that the relationship of the 

entanglement entropy with the Berry phase and consequently 

with chiral anomaly has its relevance in the fermion doubling 

problem on a lattice [33-34]. In fact the disentangled spin 

state with all spins polarized guarantees vanishing of chiral 

anomaly on a lattice which is the root cause of species 

doubling problem. 

4. Discussion 

In the present formulation we have considered that a 

fermion may be viewed as a scalar particle attached with a 

magnetic flux line. Indeed this formulation arises from the 

stochastic quantization of a fermion in the framework of 

Nelson’s stochastic mechanics. In this framework a massive 

fermion appears as a soliton (skyrmion) and the mass arises 

from the inherent magnetic field [14]. It has been pointed out 

that this inherent magnetic flux line is responsible for the 

entanglement of spins in a spin system. It has been shown in 

an earlier paper [11] that the entanglement of two identical 

fermions is related to the entanglement of the two 

distinguishable spins. 

5. Conclusion 

It has been shown that the measure of entanglement in a 

mixed state given by concurrence is related to the Berry 

phase attained by a spin state when it evolves in a closed path 

[9-11]. It has been shown in a recent paper [15] that the Berry 

phase appears as the Pauli phase when two identical fermions 

are interchanged. In view of this we can view that 

entanglement is a consequence of Fermi statistics [17]. In this 

context it may be added that a polarized photon may be 

viewed as a chiral fermion and the entanglement between 

two polarizations of photons can be transcribed in the 

framework of entanglement of spins. 
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