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Abstract: Producing industrial goods with origami structure, such as cans or bottles which can be folded neatly after 

drinking up, is an idea anyone could easily think of. However, this idea has not been put in practical use yet. Recently, 

Tachi-Miura polyhedron (TMP) is gaining attention as a 3-dimensional version of Miura-Ori. Meanwhile, Nojima 

Polyhedron (NP) has been found to be similar as TMP and it is considered that both are able to be analyzed from the point of 

pairing origami structures proposed by Nojima. The pairing origami is generated by sticking the symmetry 2-dimensional 

parts to each other to create 3-dimensional shapes. In this study, NP and TMP are focused on and the possibility of the idea is 

examined. NP which is a mirror symmetry structure and TMP which is a glide symmetry structure, both can be folded not 

only in the axial but also in the radial direction, and so it would be convenient if they can be applied to beverage containers. 

In this study, whether both structures are rigid folding or not is investigated geometrically, and then how this gives influence 

on the energy absorbing characteristics is considered quantically. In the generation of the model, since NP is not rigid folding, 

a model with accurate coordinates cannot be established because deformation occurs on the surface at the folding stage, so 

the coordinates are determined by approximation. On the other hand, in the case of TMP, the coordinates of each point can be 

accurately indicated by parameters, so a model with accurate coordinates is established. Moreover, an engineering possibility 

to apply both structures in beverage containers is explored by studying their crushing characteristics on simulation. As a 

result, whether a rigid folding or not has some influence on its deformation mode, however it is shown that it has no influence 

on the purpose to investigate its possibility for industrialization. This is the first step to make sure the effective usages of the 

foldable pairing origami structure. 

Keywords: Origami Engineering, Energy Absorption Property, Rigid Folding, 4 Folding Lines Type, 6 Folding Lines Type, 

Reversed Spiral Origami Structure, Nojima Polyhedron, Tachi-Miura Polyhedron 

 

1. Introduction 

In recent years, origami engineering has received much 

attention and many related papers have been published. In 

general, the origami structure has 2 major features: light but 

stiff and deployable. Therefore, in the industrial world, they 

utilize one of these features, light but stiff, such as in 

honeycombs and octet truss structures [1-3]. 

As far as the deployable feature, there are many researches 

such as space structures [4–8], robot arm [9], waterbomb [10] 

and splendid metamaterials [11]. Here the energy absorption 

properties of origami structures with deployable features are 

discussed. There are also many researches concerned with 

energy absorption of origami structure here discussed. There 

are 2 types of researches in energy absorption problems 

where one is to maximize energy absorption as much as 

possible like vehicle crash problem and another is to 

minimize the maximum load as small as possible like crush 

problem of beverage can. As far as the former one, Xiang et 

al. introduce mainly 4 research groups [12] led by Lu and 

Chen [13], You [14-16], Wang [17, 18] and Xie [19, 20]. All 
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of them use 4 folding lines type “Bellows Fold” which has 4 

folding lines at every intersection. On the other hand, 

Hagiwara and collaborators treat 6 folding lines type 

“Reversed Spiral Origami Structure (RSO) [21-23]” which 

has 6 ones at every intersection. 

Anyway, forming methods, which is not expensive, for 

industrialization with 2 types of origami structures have not 

been obtained. But recently, Zhao et al. have developed a 6- 

folding type “Reversed Torsional Origami Structure (RTO)” 

method which is very cheaply by partial-heating torsion 

forming method [24]. 

As far as the latter one, if it is possible to fold empty cans 

and Polyethylene Terephthalate (PET) bottles after drinking, 

new industrialization will be possible. Some researchers have 

attempted to put this industrialization in practical use. For 

example, Nojima has tried to obtain such PET bottles using 

his invented RSO [25]. Kamata et al. [26] and Ario [27] have 

also tried to apply the RSO to foldable PET bottles. However, 

none of them succeeded in practical use mainly because 

spring back caused it to return to its original height even if it 

was successfully folded. Recently Hagiwara et al. have 

succeeded to solve this problem with 6 folding lines type 

origami structure RSO [28]. And so, it is expected for 

practical use. In such a way, it has been obtained expectable 

results with 6 folding origami structures for crush energy 

absorption with RTO and for foldable pet bottle with RSO. 

Before full-scale industrialization of these, the possibilities of 

foldable can using pairing origami proposed by Nojima [29, 

30] should be considered. 

Recently, Tachi-Miura polyhedron [31] is gaining 

attention as a 3-dimensional version of Miura-Ori. 

Meanwhile, Nojima Polyhedron has been found to be similar 

as Tachi-Miura Polyhedron and it is considered that both are 

able to be analyzed from the point of pairing origami 

structures. Both Polyhedrons can be folded not only in the 

vertical direction but also in the radial direction. Here, the 

applicability of the pairing origami structures to foldable cans 

is studied. It is believed that this study is useful because these 

structures can basically be produced at low cost by accordion 

type folding. In chapter 2, it is reviewed that the pairing 

origami structures and the geometrical features of Nojima 

polyhedron and Tachi-Miura polyhedron are examined, then 

it is described that the difference between them in terms of 

rigid folding. In addition, the production methods for these 

two structures from the viewpoint of the origami engineering 

method currently developed is described. In chapter 3, it is 

considered that formulations for obtaining the coordinates of 

the nodes necessary for model creation and formulations that 

always hold between folding angles in any folding state in 

each method. In chapter 4, an optimal analysis is performed 

to reduce the force required at the time of crushing by the 

finite element method (FEM) for the aluminum can model 

created by pairing origami method. And why these two 

polyhedrons are less likely to bend during crushing is 

explained. In chapter 5, the feasibility of application of 

pairing origami to aluminum cans is considered. 

2. Nojima and Tachi-Miura Polyhedrons 

2.1. Pairing Origami 

Since pairing origami is described in detail in some research, 

the outline of this is explained here [28, 29]. Pairing origami is 

generated by sticking the symmetry 2-dimensional parts to 

each other to create 3-dimensional shapes. The condition of 

fold is automatically held in the pairing part. And, in 

symmetric pairing origami, basically, in the case of one unit of 

polyhedron, as shown in Figure 1(a), the patterns of Miura-Ori 

are arranged symmetrically, and they are laminated as shown 

in (b). When one unit of polyhedron is joined together, it 

becomes as (c) and it can fold in zigzag as shown in (d). In this 

study, the Nojima Polyhedron and the Tachi-Miura 

Polyhedron are considered from the viewpoint of the pairing 

origami. 

2.2. Geometrical Characteristics of Nojima and 

Tachi-Miura Polyhedrons 

Table 1. shows the geometrical characteristics of Nojima 

Polyhedron (NP) and Tachi-Miura Polyhedron (TMP) as 

described in some research [32, 33]. NP has one hinge at the 

pairing part, while TMP has 2 hinges. NP is mirror symmetry 

which sticks together 2 origami parts which are the same 

exactly. TMP is glide symmetry which sticks together 2 

origami parts which are not the same exactly but staggered one 

by one to face each other. 

The most characteristic difference between NP and TMP is 

that the relationship between the angles α and β. In NP, it is β 

= 2α as shown in Figure 3(a). In TMP, that is β = α as shown in 

Figure 4(a). 

Figure 2 shows the crease patterns and the folding process 

of both Polyhedrons. If they are folded according to folding 

lines and pasted together, it is possible to fold them in both the 

horizontal and the vertical directions. The solid lines and the 

dashed lines indicate the mountain fold lines and the valley 

fold lines respectively. Figure 3(a) shows the unit components 

of NP. In the state of (b) in which the shape is slightly formed 

into a 3-dimensional shape, the parameter is defined with the 

half angle of the dihedral angle θ as shown in the figure. As the 

folding state changes, θ changes from 0° to 90° and 2α – δ 

changes from 2α to 0° (δ changes from 0° to 2α). Similarly, 

Figure 4(a) shows the unit component of TMP. Again, in the 

state (b) in which the shape is slightly formed into a 

3-dimensional shape, the parameter is defined with the half 

angle of the dihedral angle θ. As θ changes from 0° to 90°, 2α 

- δ changes from 2α to 0° (δ changes from 0° to 2α). Both NP 

and TMP have relationships of angles in the respective states 

as shown in Table 2. 
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Figure 1. Pairing origami structure. (a) Minimum unit development of symmetry pairing origami; (b) Pasted together model of (a); (c) Model of connected 

minimum units; (d) Model from folded (c). 

Table 1. Geometrical characteristics of NP and TMP. 

 NP TMP 

Composed of 2 sheets 2 sheets 

Parameters 
d, l, m, α, θ, N 

β = 2α 

d, l, m, α, θ, N 

β = α 

Pairing region Single hinge Double hinge 

Main region 

Mountain lines: 16 

Valley lines: 10 

Mountain lines: 17 

Valley lines: 9 

V-M-V / V-M-V or 

M-V-M / M-V-M 

M-V-M / V-M-V or 

V-M-V / M-V-M 

Symmetry Mirror symmetry Glide symmetry 

 

Figure 2. The folding process of origami structures. (a) The crease pattern of NP; (b) The vertically flat folded NP from top; (c) The 3D shape of NP from 

diagonally above; (d) The horizontally flat folded NP from side; (e) The crease pattern of TMP; (f) The vertically flat folded TMP from top; (g) The 3D shape 

of TMP from diagonally above; (h) The horizontally flat folded TMP from side; Solid lines: mountain fold, dotted lines: valley fold. 

 

Figure 3. The geometric characteristics of NP (a)~(c). 

 

Figure 4. The geometric characteristics of TMP (a)~(c).  
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Table 2. Relationships between each angle. 

 
Folded 

horizontally 
In between 

Folded 

vertically 

Dihedral angle 0° 90° 180° 

θ 0° 45° 90° 

2α-δ 2α α 0° 

δ 0° α 2α 

2.3. Comparison of Nojima and Tachi-Miura Polyhedrons 

from the Viewpoint of Rigid Folding 

Next, both Polyhedrons are compared qualitatively from 

geometric points of view, regardless of whether they are rigid 

folding or not. Tachi-Miura Polyhedron is rigid folding. 

Figure 5(a) shows one unit of the crease pattern of TMP. The 

parts in light blue are the gluing parts. When folded, the line 

segment A1B1 coincides with the line segment A7B8. 2 

parallelograms A1B2B3A2 and A5B7B8A6 which are adjacent to 

each other with a pairing part in between are focused on and 

their movements are observed. 

In TMP, each one side of 2 adjacent parallelograms is one 

side of a hinge. In parallelogram A1B2B3A2, it corresponds to 

side A1B2, while in parallelogram A5B7B8A6, it corresponds to 

side B8A6. The hinges can move independently crossing at one 

point. First, let's focus on the hinge part (shown in Figure 6(b)) 

which is enclosed in a square in the 3D model (shown in Figure 

6(a)) using the analytical model of TMP created in Chapter 4. In 

Figure 6(b), the line segments A1B2 and B8A6 correspond to the 

2 hinges described above, and the line segment A1B8 is the edge 

portion of bonding (a line segment that coincides when folded). 

As the triangle portion surrounded by the line segments A1B2, 

B8A6, and A1B8 serves as the portion of bonding, and the plane 

on which the line segments A1B2 and B8A6 overlap changes the 

angle while the change in the folded state, the adjacent 

parallelograms can move independently without deforming the 

surfaces. In flat folded state of Figure 5(b), the adjacent 

parallelograms partially overlap each other as shown, and in 

unfolded state of Figure 5(c), they move with contacting on one 

point as shown by point I. 

On the other hand, Nojima Polyhedron also has been 

considered as rigid folding in [29], however it is not rigid 

folding as follows. Figure 7(a) shows one unit of NP's crease 

pattern. The portions painted in light blue become gluing parts. 

When folded, the line segment A1B2 coincides with the line 

segment A6B8. Here the movement of 2 adjacent trapezoidal 

surfaces with bonded parts between them is observed, by 

focusing on the trapezoids A1B2B3A2 and A5B7 B8A6. In NP, 

the surfaces of adjacent trapezoids are joined by one hinge (in 

trapezoid A1B2 B3A2, it corresponds to the side A1B2, while in 

trapezoid A5B7B8A6, it corresponds to the side B6A8, and they 

coincide with each other), and so the trapezoids move 

depending on the change of the folding states. Hence, it causes 

distortions, their surfaces are deformed. 

 

Figure 5. TMP (a) 1 unit of patterns, (b) Top view of flat folded one, and (c) Top view of unfolded one. 

 

Figure 6. TMP (a) 3D structure, and (b) Detail view of hinge parts. 
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Figure 7. NP (a) 1 unit of patterns, (b) Top view of flat folded one, (c) Top view of unfolded one, and (d) Detail view of a hinge part. 

Now, on the assumption that the position of the point A1 

(at the same position as the point A6) does not move due to 

the change of the folding state, some line segments are 

focused on. When defining the point P such that A6B8//A5P 

on the line segment B7B8 and defining the point Q such that 

A1B2//A2Q on the line segment B2B3, in folded state of 

Figure 7(b), the line segment A1B2 coincides with the line 

segment A6B8, and the line segments A5P, A1B2 (equals to 

the line segment A6B8) and A2Q are parallel. In unfolded 

state of Figure 7(c), the line segment A5P moves to the line 

segment A5’P’, and the line segment A6B8 parallel thereto 

moves to the line segment A6B8’. Likewise, the line segment 

A2Q moves to the line segment A2’Q’, and the line segment 

A1B2 parallel thereto moves to the line segment A1B2’. Since 

the line segments A5’P’ and A6B8’ are parallel and the line 

segments A2’Q’ and A1B2’ are parallel, in the area 

surrounded by a rounded rectangle I, the line segments that 

coincide in folded state of Figure 7(b), do not coincide with 

each other in unfolded state of Figure 7(c). In Figure 7(d) 

enlarging the part surrounded by I in Figure 7(c), since 

adjacent trapezoids intersect with each other, it is impossible 

to move while keeping their shapes of surfaces. Therefore, as 

the mid-point between the points B2’ and B8’, a point C 

which is the intersection point of the straight lines obtained 

by extending the line segments B1’B2’ and B9’B8’ is taken. 

Then, the fact that when seen from above, both the points B1’ 

and B9’, and the points B2’ and B8’ are symmetrical with 

respect to the original line segment A1B2 (equals to the line 

segment A6B8) is used. With the assumption that the edges of 

the trapezoids are coincident at the point C, it is possible to 

create an analysis model in 3-dimension by using 

approximate coordinates, not by using exact coordinates. 

    
             (a)                                 (b)                              (c)                          (d) 

Figure 8. Paper model of TMP (a) 1 unit of flat folded one; (b) Unfolded one, and NP (c) 1 unit of flat folded one; (d) Unfolded one. 
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Each example model of a rigid folding TMP and a non-rigid 

folding NP is represented by one paper unit. In the case of 

rigid folding TMP, without any deformation the folding is 

performed smoothly from flat folded to unfolded state as 

shown in Figure 8(a), (b) respectively. In the case of non-rigid 

folding NP, since some part deforms, the folding is not 

performed smoothly, so there are some reaction forces when 

unfolded. In Figure 8(c), the points B2 and B8 coincide with 

each other and become the edge point of the bonding. As 

shown in Figure 8(d), by setting a point C instead of the point 

B2'(moved point B2 when unfolded) as an edge point of the 

bonding, it is possible to make the 3-dimensioned model. 

2.4. Discussion About Production Methods for NP and TMP 

As far as the manufacturing method, the target model is 

not suitable because it is too complicated to manufacture as it 

is. It is conceivable that the flange parts and the main body 

parts are simplified to make the shape more easily 

manufacturable. As far as the flange parts, in the current 

shapes of NP/TMP, analytical models are created for the 

gluing surfaces of flange parts as they are. But in case of 

manufacturing, by omitting these parts, it is possible to 

reduce the material cost and the crushing force will be 

expected to be reduced. On the other hand, as far as the main 

body parts, the number of folding lines of the body parts is 

large in the current NP/TMP, and the both sections when 

viewed from the top look like a hexagon. If the cross-section 

shape is reduced by decreasing the number of folds, the both 

sections when viewed from the top look like a quadrilateral. 

It is expected that creating thus analytical model will have 

the effect of reducing the number of processes and reducing 

the crushing force. However, exploring them in detail here is 

omitted and it is left as a future issue. 

Moreover, in consideration of its application to beverage 

cans, it is important to set the initial shape so that the 

deformation of the bottom shape due to the axial 

compression is slight. 

Both TMP and NP can be folded in both axial and radial 

directions. As for TMP, there are already several reports, but 

the following things are not mentioned anywhere. For the 

discussion below, since both TMP and NP can be discussed 

similarly, only NP will be described in detail here. Once the 

bottom edge is constrained, it can be only folded in the axial 

direction. However, even if the lower end is fixed, the 

sections not directly restrained are spread to the radial 

direction under compression of axial direction. This behavior 

varies depending on the value of angle θ shown in Figure 9. 

For example, in the case of θ=0°, as it is compressed in the 

axial direction, it can be said that the distortion greatly 

spreads in the radial direction and the distortion on the upper 

end side by fixing the lower end becomes very large. On the 

other hand, when θ of the initial value is near to the angle of 

the largest one 150° to a certain extent, distortion becomes 

relatively small. For example, in the case of θ=145° shown in 

Figure 9(a) to θ=150°shown in Figure 9(b), the rate of 

change of θ is about 3%, which is applicable to an actual 

beverage can. It is important to take the change rate of the 

value of θ as small as possible when considering to do so, as 

it is done this time. Figure 10 shows the state of deformation 

by axial compression of NP and TMP for reference. 

 

Figure 9. Top shape (a) before crushing, (b) after crushing. 

 

(a) 

 

(b) 

Figure 10. Deformation under compression of axial direction (a) NP, (b) 

TMP. 

3. Parametric Expressions of Both 

Polyhedrons 

3.1. Parametric Expression of Nojima Polyhedron 

Figure 11 shows one unit pattern of NP. Figure 12 shows 

the slanted view of 3D NP unit cell. In Figure 11, the nodes 

(A1, A2, B1, B2, B3) and (A3, A4, B4, B5, B6) are symmetric 

with respect to the y-z plane. In Figure 12, the nodes (B1, B2, 

B3, B4, B5, B6) and (C1, C2, C3, C4, C5, C6) are symmetric with 

respect to the x-y plane. Therefore, by using 5 nodes (A1, A2, 

B1, B2, B3), other nodes are automatically obtained. These 5 

nodes are called as key nodes. The key nodes can be 

represented by 4 parameters (d, l, m, α) as follows. As shown 

in Figure 13, the lengths of each side and the angles of each 

corner in the development drawing are fixed values as 

follows. 
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 |A�A�| � |A�A�| � m, |A�B�| � |A�B�| � d, |A�A�| � l,∠B�A�A� � α,∠B�A�A� � β � 2α. 

The lengths of each side are also constant as shown in Eq. (1). 

|A�B�| � |����|������� � ��������  

|B�B�| � |A�A�| � �������� � m� ��������  

|B�B�| � |A�A�| � �������� � l � ��������                                 (1) 

Eq. (2) is obtained when the points A1 and A2 are expressed using varying δ according to the change in dihedral angle θ when 

the flat model is raised to a 3-dimensional shape. 

A�  x � |�"�#|� � |A�A�| cos� 2α � δ� � (��mcos� 2α � δ�y � 0z � 0   

A�  x � |�"�#|� � (�y � |A�A�| sin� 2α � δ� � msin� 2α � δ�z � 0                              (2) 

 

Figure 11. One unit pattern of NP. 

 

Figure 12. The geometric characteristics of TMP (a)~(c). 

The points B2 and B3 are expressed in Eq. (3). From the points shown in Chapter 2, the coordinates are defined as follows; 

B� ./
0x � |�#�1|� � |B�B�| cos� 2α � δ� � (2 "3456�7�� � �m � ��������� cos� 2α � δ�y � 0z � d sin� θ�   

B� .9/
90 x � |�#�1|� � (2 "3456�7��y � |B�B�| sin� 2α � δ� � �m � ��������� sin� 2α � δ�z � d sin� θ�

                       (3) 

Here, y coordinate of the point B2 is always 0, and the length |B2B3| is constant. 

The point B1 is on the same straight line as the line segment B2B3, and so the coordinates are determined as shown in Eq. (4). 
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K � |���"|;|�"�#||�"�#|   

B�B�<==> � KB�B�<==>
  

B�  x � K�x�� � x��� � x��y � K�y�� � y��� � y��z � d sin� θ�                                    (4) 

The length |A1B2| is obtained from Eqs. (2) and (3). Since this value is equal to the value of Eq. (1), Eq. (5) can be obtained. 

This is the equation held between the 3 angles α, δ and θ. 

cos� 2α � δ� � 2 cos�� α� � ?1 � �sin� θ� sin� 2α���                          (5) 

The coordinates are determined by approximation from the 

reason why the solid model with the accurate coordinates is 

not formed because the surfaces are deformed while folding, 

since NP is not rigid folding. As a result, in the trapezoid 

A1A2B3B2 shown in Figure 13, the length |A2B3| should be 

originally constant, but depending on the dihedral angle θ, the 

length changes from the exact one. The length |A2B3| is 

different on condition of θ=0 ° or 90 °, and on condition of 

0°<θ<90°, and so 2 equations as follows are obtained. 

When θ=0° or 90°, Eq. (6) is obtained by referring to Figure 13. 

|A�B�|ABC°,EC° � FG �������H� � d�           (6) 

When 0°<θ<90°, the distance between the points A2 and B3 

is given by Eq. (7) from the parameters of each coordinate. 

|A�B�|0<θ<90°
� FG �������H� � G������2I�������� dH� � Jd sin� θ�K�                          (7) 

Relationship between the dihedral angle θ and the length |A2B3|, when α=30 ° and d=1mm, is shown in Figure 14. Around 

θ=50°, the error of the length |A2B3| from Eq. (7) becomes maximum. The above is confirmed by substituting numerical values 

into the equation. According to Eq. (5) 

sin�� 2α � δ� � 1 � J2 cos� α� � ?1 � Jsin� θ� sin� 2α�K�K� 

By substituting this into Eq. (7) 

|A�B�|0<θ<90°
� � f�θ� � 2 sin� θ � 4F1 � �� sin� θ  

When calculating the maximum value of f(θ), it is when sin θ 

=F N��, i.e. θ = 49.79703411, and the maximum value of f(θ) is 
�O� . 

This results in max |A�B�|0<θ<90°=Ff��O� �	 = 2.041241452. 

By Eq. (6), |A�B�|ABC°,EC° = 2, and so the length |A2B3| is 

increased about 2.1% at maximum. 

As described above, since the coordinates of some points 

cannot be indicated accurately by the parameters in the case of 

NP, they are obtained by approximation. The length |A2B3|, 

which is one side of the trapezoids A1A2B3B2 and A2A3B4B3, 

may change depending on the dihedral angle θ. However, the 

value of its length is about 2% of all values at most, so it is 

within the allowable error for this FEM simulation. 

 

Figure 13. The geometric characteristics of TMP (a)~(c). 

 

Figure 14. The geometric characteristics of TMP (a)~(c). 

3.2. Parametric Expression of Tachi – Miura Polyhedron 

As the same as NP, the key nodes of TMP shown in Figure 

15 are expressed by 4 parameters (d, l, m, α) as follows. 

 

Figure 15. Slanted view of 3D TMP unit cell. The key-nodes of the unit cell 

and the glide symmetry structural relationship are represented. 
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 |B�B�| � m  

|B�B�| � |A�A�| � �������� � l � ��������  

|A�A"| � |A"B"| � |����|� ������� � ���������  

A� Rx �
|�"�#|� � |A�A�| cos� 2α � δ� � (��mcos� 2α � δ�y � |����|� cos� θ� � � �� cos� θ�z � 0   

A� R x � |�"�#|� � (�y � |���"|2|���"|� cos� θ� � � �� cos� θ�z � 0   

B� ./
0x � x� � (��mcos� 2α � δ�y � �y� � �� cos� θ�z � d sin� θ�   

B� .9/
90x � |�#�1|� � |B�B�| cos� 2α � δ� � (2 "3456�7�� �mcos� 2α � δ�y � y� � �� cos� θ�z � d sin� θ�

  

B� .9/
90 x � |�#�1|� � (2 "3456�7��y � �|B�B�| � |A"B"|� sin� 2α � δ� � �m � ���������� sin� 2α � δ�z � d sin� θ�

  

Eq. (8) obtained from the difference between the y coordinates of the points A2 and B3 is an equation held between the 3 

angles α, δ and θ. y� � y�, �d cos� θ� ⇒ sin� 2α � δ� � cos� θ�	sin�2α�                         (8) 

In the case of TMP, the length|T�U�| is obtained as in the case of NP. When θ=0°or 90°, Eq. (9) is obtained by referring to 

Figure 16. 

|A�B�|VBC°,EC° � FG �������H� � d�                                   (9) 

When 0°<θ<90°, the distance between the points A2 and B3 is given by Eq. (10). 

|A�B�|0<θ<90° � FG �������H� � G������2I�������� dH� � Jd sin� θ�K�                         (10) 

When substituting Eq. (8) into Eq. (10) results in Eq. (9), the length |A2B3| is constant and so it does not depend on θ. 

|A�B�| � d, |A�B�| � FG �����α�H� � d�	, |B�B�| � �����α�  

Here, in the case of TMP, the length of each side of the 

shape, that is, the length of each side of triangle A1B1B2, 

parallelogram A1A2B3B2 or trapezoid A2A3B4B3 does not 

depend on θ. Since d, l, m and α are constant, the length of 

each side of the triangle A1B1B2 is as follows and does not 

depend on θ. Figure 16 shows one unit pattern of TMP. 
 

Figure 16. One unit pattern of TMP. 
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Similarly, the length of each side of the parallelogram 

A1A2B3B2 is as follows and does not depend on θ. 

|A�B�| � |A�B�| � FG �������H� � d�  

|A�A�| � |B�B�| � m 

Equivalently, the length of each side of the trapezoid 

A2A3B4B3 is as follows due to the symmetry, not dependent 

on θ. 

|A�A�| � l |A�B�| � |A�B�| � FG �����α�H� � d�  

|B�B�| � l � ������α�  

From the above, no deformation occurs on the each surface. 

In this way, in the case of TMP, it can be said that the 

coordinates of each point can be accurately represented by 

parameters. 

4. Availability for Folding Aluminum 

Cans of NP and TMP 

4.1. Analysis Model and Method 

Figure 17 shows the analysis model generated using 

LS-Pre-Post. The finite element system used is LS-DYNA [34] 

and the model has around 20000 nodes and 20000 

quadrilateral reduced integration Belytschko-Tsay shell 

elements [35]. The penalty contact condition is defined 

between the structure and the rigid wall and also defined for 

structure itself with the coefficient of friction is 0.1. For the 

material, aluminum which has the characteristics of Table 3 is 

used. As the load condition, the initial velocity of 2000 mm/s 

is given to the rigid wall, and the structure is compressed. And 

the boundary condition is that the bottom nodes of the 

structure are fixed completely. Crushing analysis of pairing 

origami structure is carried out in the time direction explicit 

method in finite element method. Although problem here is 

originally a static problem, it is a strong nonlinear problem 

including contact and large deformation, and so it does not 

easily converge by static analysis [36]. Therefore, it is 

executed as quasi-static analysis. 

 

Figure 17. (a) The analysis model (b) Few steps of the model. 

Table 3. Material properties of the structure. 

Young’s modulus 70 GPa 

Poisson’s ratio 0.33 

Density 2.7×10-6 kg/mm3 

Yield stress 100 MPa 

Tangent modulus 280Mpa 

Thickness 0.1mm 

4.2. Optimization Analysis 

The target problem is to minimize the maximum crushing force 

of each pairing structure by using 3 design variables of (l, α, θ) 

between the points as follows. The load displacement diagram for 

optimal models is shown in Figure 18. As shown in Figure 18, at 

first the load value rises, and next remains almost unchanged, and 

then the load rises again and at last reaches a status, where the load 

rises high and the deformation hardly changes due to its bulkiness. 

In the automobile company, it is referred to as “bottoming 

phenomenon” and its last is called “deformation stop line”. The 

target problem is between the points A and B. The point A is the 

point after the load value rises at first, and the point B is the point 

just before the load rises again. For the optimization, the design of 

experiments method L9 which is one of the response surface 

optimization methods is used. The conditions of the optimization 

analysis are shown as below. 

(a) Design variables 

l [40, 60]; The length of one side of the horizontal cross 

section. α [30, 40]; The base angle of the trapezoid whose 

base side length is “l”. θ [30, 50]; The dihedral angle. 

(b) Constraints 

Weight less than the standard commercially available cans 

of aluminum. The standard weights are about 15g per a 350 

ml can and about 20g per a 500ml can, so the weight is set 

lighter than 40g by proportional calculation because there is a 

request for bigger capacity which is from 1000 ml to 1500 ml. 

The design variables l [40, 60] above is set by this constraint. 

(c) Objective function 

To minimize the maximum crushing force. As for the ranges 

of the design variables, they are set so that the horizontal cross 

section shape is as close to a circle shape as possible. 

The flowchart of the optimization is shown in Figure 19. 

The 9 data sets shown in Table 4 are used for the sample data. 

After solving by LS-DYNA, the solution is obtained by 

optimization software LS-OPT. 

The design variables (l, α, θ) and the results (crushing force, 

weight) are summarized and calculation of optimization by the 

response surface optimization method are performed, but at 

least 10 sampling points are necessary to create the second 

order response surface. It becomes the response surface of the 

primary order in Figure 20. As a result, all optimum solutions 

are obtained at boundary values. After analyzing with 

LS-DYNA, the optimal design variables (l, α, θ) and the 

results (maximum crushing force) are obtained. All the results 

including volumes and weights are shown in Table 5. 

l is the maximum value of 60 mm in both NP and TMP, 

and α is the maximum value of 40 ° in NP, and the 

intermediate value of 35 ° in TMP. It is considered that the 

combinations of the parameters make the maximum cross 
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section area with respect to the circumferential length 

respectively. θ is 30° of the minimum value in both NP and 

TMP, seems to be due to the fact that the smaller the dihedral 

angle is, the less the crushing force is required for crushing. 

 

Figure 18. Relationship between Displacement and Force. The curve with + shows optimal TMP, and another curve shows optimal NP. 

 

Figure 19. Flow chart of optimization. 

Table 4. L9 analysis table. 

No. l(mm) α(°) θ(°) 

1 40 30 30 

No. l(mm) α(°) θ(°) 

2 40 35 40 

3 40 40 50 

4 50 30 40 

5 50 35 50 

6 50 40 30 

7 60 30 50° 

8 60 35 30 

9 60 40 40 

Table 5. Optimal dimensions, volume, weight and maximum crushing force. 

 Optimal NP Optimal TMP 

l[mm] 60 60 

α[°] 40 35 

θ[°] 30 30 

Volume[ml] 1242.5 1293.3 

Weight[g] 32.8 29.0 

Maximum crushing force[N] 51.9 89.8 

 

 

Figure 20. Result of optimization analysis. 
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The weight is 32.8g in NP and 29.0g in TMP, both of 

which are less than the constraints and are reasonable. The 

volume is also 1242.5ml in NP and 1293.3ml in TMP, 

both of which are within the constraints and are 

reasonable. 

In Figure 18, it seems that the displacement in NP of the 

range from 20 to 150 mm and that in TMP of the range from 

20 to 120 mm are the states mentioned above as between the 

points A and B. 

According to the study by Kamata et al. [26], the 

average value of the force applied by a man when holding 

the can with one hand and compressing it in the axial 

direction with the other hand is about 160N. The results of 

maximum crushing force are 51.9N in NP, 89.8 N in TMP. 

Both are less than 160N, and so they are reasonably 

crushed. 

 

Figure 21. The position of beads can control the buckling wave form. There are three types of beads shown in (a). Edge bead means cutting a corner of the 

section (edge of the member); concave bead means projection toward the inside of the member; convex bead means projection toward the outside of member. 

The most effective bead arrangement is illustrated in (b). Concave beads, convex beads, a couple of edge beads should be placed on the concave parts, on the 

convex parts, the first concave part of the buckling wave respectively. Ideal axial crush is obtained when the crush happens at the interval of from the upper 

side of the existing rectangular section as shown in (c). As shown in (d), when the bending in the existing rectangular section occurs, the reaction force will 

not transmit downward and the amount of energy absorption. 

Here, in the energy absorbing material of the hollow cross 

section used in existing automobile vehicles, the reaction 

force immediately decreases as the bending occurs, but the 

reaction force itself does not change in both case of NP and 

TMP. Compared with the rectangular cross-section hollow 

structure of Figure 21 which simulates the energy absorbing 

material used in the current vehicle, there is a difference as 

follows. As shown in Figure 21(c), where crushing occurs is 

at the interval of (a+b)/2 from the upper end. If the collapse 

occurs at this interval, the crush propagates to the lower end 

with the same period length, but if collapse begins to occur at 

a position deviated from this interval, it becomes bent from 

there, and the reaction force does not propagate to the lower 

end. Hagiwara et al., showed that members can be induced to 
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accordion-like crush by arranging corner beads and concave / 

convex beads as shown in Figure 21(a) according to buckling 

mode [37-39]. For this reason, the bead shown in Figure 21(a) 

is provided in the energy absorbing material of the current 

vehicle. On the other hand, in both NP and TMP, the interval 

between the collapsed lines is shorter than the current energy 

absorbing material by 0.2 times. As a result, as shown in 

Figure 21(d), the load displacement characteristic of the 

energy absorbing material of the current vehicle is (a+b)/2, 

and there is periodicity of length of buckling half wavelength, 

whereas no periodicity is observed in NP and TMP, and even 

when one collapsed line becomes a fold line, it is shown that 

reaction force tends to propagate downward. 

In the case of NP, the load value begins to rise near 150 

mm in Figure 18(D), and when it exceeds 175 mm in Figure 

18(E), it also increases sharply. In the case of TMP, the load 

value begins to rise near 120 mm in Figure 18(C), and it 

increases sharply when it exceeds 170 mm in Figure 18(F). 

This is called a state of “deformation stop line”, and it seems 

that such a state will be obtained when the displacement 

reaches about 90% of its original length. 

The load value of TMP is higher than that of NP overall, 

and TMP reaches bottoming phenomenon with a shorter 

displacement than NP. Here, the reason is considered. 

 

Figure 22. Crush deformations of each pairing structure at different displacement; 2 rows from the left show NP (Front view on the left, and right-side view 

on the right) and 2 rows from the right show TMP (Front view on the left, and left-side view on the right). 

For the deformation of NP and TMP in Figure 22, the 

displacements ranging from 40 to 160 mm are shown as from 

(a) to (d) every 40 mm. (e) and (f) are diagrams showing the 

deformation in the vicinity where the bottoming phenomenon 

of NP and TMP starts (at the displacement of 175mm in NP, 

and 170mm in TMP). (a) to (f) in Figure 22 correspond to 

from A to F in Figure 18, respectively. 

In the NP model on the left side of Figure 22, viewed from 

the front (the left one of two illustrations), it seems to be 

folded straight. However, viewed from the right side (the 

right one of two illustrations), it starts to deform so that the 

central portion of the height bends laterally when the 
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displacement shown in Figure 22(a) reaches nearly 40mm. It 

bends most horizontally when the displacement shown in 

Figure 22(b) reaches nearly 80mm. As the compression 

progresses, the bending goes straight back and it becomes 

straight completely when the displacement shown in Figure 

22(d) reaches nearly 160mm. It folds almost straight in the 

end. Looking at the bending part at this time, deformation 

that bends at the hinge part of pairing origami structure has 

occurred, and there is no deformation that bends at the other 

main body parts. This is because NP is not rigid folding. The 

distortion is concentrated particularly on the weakest hinge 

part of the structure. 

In the TMP model on the right side of Figure 22, viewed 

from the front (the left one of two illustrations), it is folded 

straightly while deforming into a shape in which the width of 

the central part swells when the displacement shown in Figure 

22(a) reaches nearly 40mm. On the other hand, viewed from 

the left side (the right one of two illustrations), the transverse 

width of the central part is deformed to a concave shape 

when the displacement shown in Figure 22(b) reaches nearly 

80mmIn the end, it is folded straightly. It seems that TMP is 

folded relatively straightly without deforming like NP having 

some distortion in the hinge part, because it is a rigid folding. 

Also, in the case of NP, when comparing figures viewed 

from the right side, the lowermost wall rises upward on 

Figure 22(d), whereas it downs on Figure 22(e). On the other 

hand, in the case of TMP, comparing the figure viewed from 

the left side, the lower half of the model has a rounded shape 

as shown in Figure 22(c). As the displacement approaches 

from (d) to (f) in Figure 22, it becomes a trapezoidal shape 

which linearly spreads downward. 

It is supposed that both NP and TMP have some difficulty 

in folding due to complete fixing of the bottom surface, and 

this is thought to be greater influence in case of TMP than of 

NP. Figure 23 shows a view of both models from the bottom 

at the end of compression. Compared with NP, TMP has 

larger crushed portion and protrudes from the wall of the 

bottom surface (the dark displayed parts). Therefore, to 

compare NP and TMP, by using the formula of Chapter 3, we 

calculate the length and width of the bottom surface before 

and after crushing, respectively and observe the changes. 

Table 6. shows the changes in length and width of the bottom 

surfaces before and after crushing with NP and TMP. Rate of 

change is a numerical value which normalized the length 

after crushing with the length before crushing. In NP, the 

length changes little in the vertical direction and decreases by 

10% in the horizontal direction, otherwise in TMP the length 

increases by 20% in the vertical direction and decreases by 

20% in the horizontal direction. This is also considered as the 

cause of the load value becoming higher as a whole in TMP 

compared with NP. 

 

Figure 23. Bottom view of each pairing structure after crushing. Left side is 

NP and right side is TMP. 

Table 6. Comparison of change rate in vertical and horizontal length between NP and TMP. 

NP Before crushing After crushing Rate of change 

Vertical length 105.1 108.6 1.0 

Horizontal length 87.3 75.6 0.9 

 

TMP Before crushing After crushing Rate of change 

Vertical length 90.6 104.6 1.2 

Horizontal length 112.3 90.8 0.8 

 

5. Summary 

Results are as follows. 

1. 2 kinds of pairing origami structures for foldable cans, 

NP and TMP are investigated for the first time. They 

can be manufactured cheaply by accordion type folding 

and showed the possibility for practical use. Both TMP 

and NP are promising because folding up to about 70% 

in TMP, 80% in NP of its original length is possible 

with a force of 160 N or less which is an equivalent 

force of human hands. 

2. "A rigid folding or not" is a popular interest in the 

world of origami engineering, however, it is difficult to 

distinguish it. Here, the rigid foldability of both NP and 

TMP by an easy method of examining the figure 

geometrically and by a quantitative analysis focused on 

the length of each side, are investigated and it is shown 

that TMP is a rigid folding, and by contrast, NP is not a 

rigid folding. 

3. It is demonstrated that the rigid folding has an 

advantage to represent always the structural shape with 

design variable parametrically even though the 

structural shape changes at each step in an optimization 

routine. NP, which is not a rigid folding, could express 

the structural shape approximately the same way with 

TMP, however, its credibility is needed to be confirmed. 

As the result of examination with NP this time, it is 

found that the maximum error is 2%, which is within 

the allowable range. 

4. An analysis on an optimized model which minimizes 

the maximum crushing force is carried out. Then it is 

found that No-rigid-folding NP had deformations at the 

hinge parts, but Rigid-folding TMP had none. In both 
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cases, the main body portion is folded until the end. In 

other words, whether a rigid folding or not has some 

influence on its deformation mode, but it is shown that 

it has no influence on the purpose to investigate its 

possibility for industrialization. 

5. This is the first step to make sure that the pairing 

origami structure is effective as foldable can. Although 

it is possible to fold, it is concerned that the strength in 

the radial direction maybe weak and the shape may not 

be always easy to hold. As our future work, it is 

necessary to check the strength in the radial direction 

and consider the comfortableness when it is held and 

folded. 
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