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Abstract: The mathematical model and simulation of coal pulverizer has been presented in the paper using first principle mass 

and heat balance equations based on physical insight. The coal mass flow is modelled based on the mass balance model. The 

pulverized coal temperature is modelled by considering the coal and the pulverized coal as a lumped thermal mass. The multi 

variable non-linear model is simulated in Python environment and the parameters are obtained by using the moving horizon 

estimation. The archived data from an operating 660 MW coal fired boiler database are used to identify the parameters and to be 

compared with the model outputs. As the megawatt power output of thermal power generating plant is directly influenced by the 

coal being fired into the boiler, it is necessary to study the dynamic behaviour of the model as their poor dynamic performance 

causes a slow megawatt ramp up or ramp down rate and also causes shutdown of plant in some cases. In view of more and more 

penetration of renewable energy in the power grid, rapid and automatic flexible operation of coal fired boiler is necessary to 

accommodate injection of renewable power or withdrawal of renewable power as both remain connected directly or indirectly to 

the same power grid. Hence, fast response of the steam generating boiler is desired in a coal fired thermal power generating unit 

to generate the megawatt load as per the demand placed on the grid to maintain the power system frequency which calls for 

support of boiler steam flow, pressure and temperature to the steam turbine generator equipment. In order to achieve that, 

performance of combustion control of the boiler is one of the important factors which can be improved by modelling and 

implementing the predictive dynamic behaviour of coal pulverizer under varying coal feed rate in the boiler control system. The 

main focus of the work is to determine the pulverizer response under varying coal flow and coal characteristic condition with an 

objective of keeping minimum differential pressure across it based on a realistic mathematical model of pulverizer so that the 

boiler response can be improved under transient condition of megawatt load demand variation. The simulated model responses 

for various scenarios are also presented in this paper. 
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1. Introduction 

The concept of flexibility in power system is defined as the 

ability to operate reliably with significant shares of variable 

renewable electricity. In other word, it expresses the capability 

of a power system to maintain reliable supply in the face of 

rapid and large imbalances, whatever the cause. It is also 

interpreted as the ability to adapt to dynamic and changing 

conditions, for example, balancing supply and demand of 

electricity by the hour or minute or deploying new generation 

and transmission resources over a period of years. In a coal 

fired thermal power generating station raw coal is used as the 

main fuel in the steam generating boiler in addition to heavy 

fuel oil or light diesel oil as start-up fuel. In order to 

accommodating variable renewable energy in power system, 

flexible operation of boiler with higher megawatt load ramp 

rate becomes the essential need with simultaneous addressing 

the concerns of stable ignition and combustion of coal burner 

to avoid loss of flame in the furnace during minimum loading 

of the pulverizer, pulverizer turn down ratio and capacity, 

maintaining minimum pulverizer outlet temperature, avoiding 

pulverizer in and out of service during megawatt load ramp up 

or down, non-availability of design range of coal with varying 

GCV, minimum volatile matter content in coal being fired etc.  

Generally, the boiler time constant is in the range of five to 

seven minutes and there is a transportation lag from the coal 

feeder to the furnace which depends on the velocity in the coal 
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pipes. In view of more and more penetration of renewable 

energy in the power grid, rapid and automatic flexible 

operation of coal fired boiler is necessary to accommodate 

injection of renewable power or withdrawal of renewable 

power as both remain connected directly or indirectly to the 

same power grid. Fast response of the steam generating boiler 

is desired in a coal fired thermal power generating unit to 

generate the megawatt load as per the demand placed on the 

grid to maintain the power system frequency which calls for 

support of boiler steam flow, pressure and temperature to the 

steam turbine generator equipment. Hence, the coal firing rate 

for actual combustion in the furnace is a major factor which 

affects the higher ramp rate to achieve flexible operation. In 

conventional combustion control, the total coal firing demand 

is equally distributed to all the operating pulverizers without 

observing the healthiness of it whether one or more pulverizer 

are really capable of handling the coal demand and giving full 

throughput to the furnace or not. In a coal fired thermal power 

generating station raw coal is used as the main fuel in the 

steam generating boiler in addition to heavy fuel oil or light 

diesel oil as start up fuel. Raw coal is transported on a coal 

conveyor belt located at the tripper floor from coal handling 

plant and dropped into the variable speed-controlled coal 

feeder for dynamic measurement of the coal being fed into the 

motor driven rotating coal mill called coal pulverizer also, 

through a central feed input pipe that uses gravity to guide the 

coal to fall onto a grinding table of coal pulverizer where it is 

crushed by electro-hydraulically operated heavy metallic 

rollers. Pre-heated primary air is blown from the bottom of the 

mill which dries up the moisturized raw coal and transport 

pulverized fine coal particles and air mixtures into the 

dynamic classifier section of the coal pulverizer. The primary 

airflow temperature is controlled by hot air and cold air 

mixing to regulate the pulverizer outlet temperature so that no 

fire incident happens inside coal mill or coal transporting 

pipes. Only the finest and lighter particles escape the vortex of 

dynamic rotary classifier driven by another motor and goes up 

to the coal burner of the boiler for combustion, whereas the 

rest heavier particles which hits the inside cone of the 

classifier and lose their velocity, falls back onto the grinding 

table. Accumulation of coal on the table top may reflect in to 

combustion of coal inside it and may damage the internal 

component due to high vibration. Also, due to increment in 

fineness of coal, stoichiometric ratio may change which will 

reflect in to moving of unburnt coal to second pass of the 

furnace and may reflect into secondary combustion of the 

furnace. The size distribution of the pulverized coal particles 

are usually required to be less than 75 micron and is 

determined largely by the pulverizer internal behavior and 

classifier settings which is not disturbed during the boiler 

running. The differential pressure across the pulverizer is very 

important to understand the dynamics of recirculating loads of 

pulverizer. The major measurement parameters of coal 

pulverizers are typically pulverizer outlet temperature, coal 

mass flow, primary air flow, inlet primary air temperature, 

motor current and pulverizer differential pressure at various 

MW load. Earlier works on derivation and validation of a coal 

pulverizer model for control has been done [1- 4]. In this paper, 

multi variable non-linear model is simulated in python 

environment and the parameters are obtained by using the 

moving horizon estimation to study the actual performance of 

the pulverizer under varying differential pressure across it as 

the major variable parameters of coal pulverizers. 

2. Pulverizer 

The raw coal being considered for study is having gross 

calorific value of 3400~4000 Kcal/kg, moisture content of 

12~15% at ambient temperature of 27°C, hygroscopic index 

(HGI) of 45~70, volatile matter content of 16%~22%, fixed 

carbon of 21%~29% and ash content of 37%~45%. The 

pulverizer motor rating considered is 800 KW. The total 

desired coal flow for each pulverizer can be calculated as the 

total coal flow (Kg/hour) required to generate the megawatt 

load divided by the number of operating pulverizer. Each 

pulverizer loading can be calculated by dividing the 

pulverizer coal flow (kg/hour) by the pulverizer corrected 

capacity (kg/hour, based on moisture content, HGI, fineness). 

The pulverizer power consumption can be calculated under 

various operating parameters as (Power Consumption (KW) 

= Motor KW Rating x [(0.9 x pulverizer loading) + 0.1] 

X1.05. The operating parameters under various coal and 

megawatt load condition are pulverizer inlet primary air 

temperature in the range of 254 DegC to 282 DegC, desired 

constant outlet temperature of 75 DegC, pulverizer primary 

air flow in the range of 85.7 to 150 tons/hour and inlet 

primary air pressure in the range of 560 to 1100 mmwcl. The 

drying efficiency of pulverizer considered is in the range of 

77% to 80%. 

The physical model of the coal pulverizer with a dynamic 

classifier is shown in Figure 1. Two different types of 

classifier– static and dynamic are found in various power 

plants. The static classifiers possess stationary mesh of 

suitably designed mesh-size to filter-out coarse/fine particles. 

The dynamic classifier (Figure 2) uses slow-rotating 

classifier-mesh, to dynamically control the particle-sizes. 

Large particles of the pulverized coal in the suspended 

mixture in separator gets discarded and falls back on the table 

for grinding. Lighter particles move further in classifier region. 

Swirling behavior of vanes of the classifier causes lighter coal 

particles to be thrown out of the mill according to the mesh 

size of classifier design and heavy particles return on the table. 

Only the finest and lighter particles escape the vortex of 

dynamic rotary classifier and goes up to the coal burner of the 

boiler for combustion, whereas the rest heavier particles 

which hits the inside cone of the classifier and lose their 

velocity, falls back onto the grinding table. The increase in 

speed of rotary classifier will increase the fineness of coal and 

decreases the output of pulverizer and increases coal 

accumulation on the pulverizer table top. The particles that 

drop onto the table are reground. The flow diagram of the coal 

pulverizing process is shown in the Figure 3 and Figure 4. 
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Figure 1. Coal Pulverizer. 

 

Figure 2. Coal Pulverizer Rotary Separator. 
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Figure 3. Coal Pulverizer Flow Diagram. 

 

Figure 4. Coal particle circulation in pulverizer. 
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3. Mathematical Modelling 

Various earlier works has been done for the methodology of 

dynamic modelling of coal pulverizer [11, 12, 14, 15]. The 

model parameters are defined in Table 1. The mass of coal to 

be pulverized depends on the mass flow of the raw coal, wc, 

the return flow of the particles rejected by the classifier, wret, 

and the grinding rate which is proportional to the mass of raw 

coal on the grinding table, mc. 

�
��  ����� = 	���� + 	������ − θ������    (1) 

Table 1. Parameter Definition. 

Sl no Description Symbol 

1 Mass of unground coal on the table (kg) �� 

2 Mass of pulverized coal on the table (kg) ��� 

3 Mass of pulverized coal carried by primary air (kg) ����� 

4 Mass flow of the dry raw coal to the mill (kg/s) 	� 

5 Mass flow of pulverized coal (kg/s) 	�� 

6 Mass flow of pulverized coal out of the mill (kg/s) 	��� 

7 Mass flow of coal returning to the table (kg/s) 	��� 

8 Primary air mass flow (kg/s) 	��� 

9 Primary air differential pressure (mbar) ����� 

10 Primary air inlet temperature (°C) ��� 

11 Classifier temperature (outlet temperature) (°C) ���� 

12 Pressure drop across the mill (mbar) ������ 
13 Power consumed for grinding (%) E 

14 Power consumed for running empty mill (%) �� 

15 Coal moisture (%) �� 

16 Classifier speed (rpm) � 

17 Latent heat of vaporization (J/kg)  ! 

18 Specific heat of air (J/ (kg °C)) "��� 

19 Specific heat of water (J/ (kg °C)) "	 

20 Specific heat of coal (J/ (kg °C)) "� 

21 Optimal model parameters (i = 1 to 11) Θi 

The mass of pulverized coal on the table, mpc, depends on 

the grinding rate and the amount of coal picked up by the 

primary air from the table, wpc. 

�
��  �#���� = θ������ − 	#����      (2) 

The mass of particles in the pneumatic transport upwards in 

the mill, mcair, depends on the mass flow of coal particles 

picked up from the grinding table, the fuel flow out of the mill, 

wout, and the return flow of rejected particles to the table. 

�
��  ��$%���� =&#���� − &'(���� − &������   (3) 

The mass flow of pulverized particles picked up by the 

primary air flow, w air, to be transported towards the classifier 

is proportional to the primary air mass flow and the mass of 

pulverized coal on the table. 

&#���� = θ)&$%���� �#����           (4) 

The mass flow of pulverized coal out of the mill is 

proportional to the mass of coal lifted from the table and 

depends on the classifier speed, ω 

&'(���� = θ*��$%���� +1 − - ���
 ./

0         (5) 

where 0 < ω (t) < θ6. θ6 has the same unit as ω, making the term 

(1 − � (�)/ θ6 a dimensionless rating factor. 

The mass flow of coal returning to the grinding table is 

proportional to the mass of coal in the pneumatic transport 

�����. 

&������ = θ1��$%����             (6) 

The pressure drops, ������, across the mill depends on the 

differential pressure of the primary air, �����, and the amount 

of coal suspended in the air. During normal operation, the mill 

pressure drop is predominately proportional to the primary air 

differential pressure and a small change in coal mass does not 

affect the pressure drop significantly. Also, when the coal 

mass becomes zero, the pressure drop also becomes zero. 

These conditions are guaranteed by the term (1 − �−θ8(�)) ε 

(0,1). 

��2%33��� = θ4�1 − �5.62789:-������$%����   (7) 

The power consumed for grinding is a sum of the power 

needed for rolling over raw and ground coal and the constant 

power need for running an empty mill (Ee). 

���� = θ;�#���� +  θ<����� +  ��     (8) 

Finally, the temperature equation is based on first principles 

(under the assumptions given above). The significant heat 

contribution comes from the primary air, moisture and coal 

flow into the mill ("��� &��� (�) (�), �� &� (�), "� &� (�)), 

and from grinding (θ10�(�)). The heat is used to evaporate 

moisture ((t)) and raise the temperature of the coal and mill 

chassis to the outlet temperature �"��� &��� ������� ���, "� 
&��� ������� ���� 

�
��  �'(���� =  �

 .??
 ["$%� &$%� ����%A ���  +  �2 "B &� ����$ +

 "� &� ����$ − "$%� &$%� ����'(� ��� −
 "� &'(� ����'(� ���  −  �2 &� �t� D +  θ�E����]     (9) 

The resulting model is a fourth order nonlinear model of the 

form 

GH���
G� = I�H���, ����� 

J��� = ℎ�H���, �����               (10) 

With 

H��� =  
L
M
M
N �����

�#����
��$%����
�'(���� O

P
P
Q

, ���� =  

L
M
M
M
N ����
��$%����
&$%� ���
�%A ���
&� ��� O

P
P
P
Q

, J��� =
L
M
M
N &'(� ���
��2%33��� 

����
�'(� ��� O

P
P
Q
 

and 11 tuning parameters θ1,..., θ11. 
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4. Parameter Estimation Methodology 

with Actual Plant Operating Data 

Moving Horizon Estimation (MHE) is an optimization 

approach that uses a series of measurements observed over 

time, containing noise (random variations) and other 

inaccuracies. It produces estimates of unknown variables or 

parameters. Unlike deterministic approaches like the Kalman 

filter, MHE requires an iterative process that relies on linear 

programming or nonlinear programming solvers to find a 

solution. In addition to this, increased interest in MHE has 

resulted from its proven superiority over traditional 

estimation approaches of the extended Kalman filter [5]. The 

main practical advantages of MHE is that it allows to handle 

complex nonlinear dynamic models directly and to 

incorporate constraints. MHE is used to estimate the 

measured or unmeasured states of dynamical systems in 

general. MHE adjusts the model's initial circumstances and 

parameters to match measured and projected values. MHE is 

based on the optimization of a process model and 

observations over a finite horizon. At time t, the present 

process state is sampled, and a minimizing strategy for a 

relatively short time horizon in the past is determined 

(through a numerical minimization algorithm): [t-T,t]. 

Specifically, an online or on-the-fly calculation is used to 

explore state trajectories that find (via the solution of Euler–

Lagrange equations) an objective-minimizing strategy until 

time t. Only the last step of the estimation strategy is used, 

then the process state is sampled again and the calculations are 

repeated starting from the time-shifted states, yielding a new 

state path and predicted parameters. The estimation horizon 

keeps being shifted forward and for this reason the technique 

is called moving horizon estimation. Although this approach 

is not optimal, in practice it has given very good results when 

compared with the Kalman filter and other estimation 

strategies. The application of MHE is generally to estimate 

measured or unmeasured states of dynamical systems. Initial 

conditions and parameters within a model are adjusted by 

MHE to align measured and predicted values. MHE is based 

on a finite horizon optimization of a process model and 

measurements. Moving horizon estimation (MHE) is a 

multivariable estimation algorithm that uses: 

1) an internal dynamic model of the process 

2) a history of past measurements and 

3) an optimization cost function J over the estimation 

horizon, 

4) to calculate the optimum states and parameters. 

The MHE calculates the average value of past data that have 

been sampled at a specified interval. A sliding window with M 

steps back from the actual time instance (tk), is considered. In 

every sample step (Ts), this window is shifted one-step 

ahead—in Figure 5, this is illustrated for one measurement 

variable, ym. At the filter initialization (t0), only one 

measurement is available, and therefore the measurement 

storage must be filled with r<M steps before the window starts 

to move. Afterwards, the window length is kept constant, and 

all the past M measurements are considered (the window with 

M measurements is colored in green in the Figure 5 below). 

 

Figure 5. Schematic Representation of Estimation Horizon. 

The concept of parameter estimation with MHE 

optimization has been applied for the pulverizer model under 

consideration [3, 5, 13]. It is implemented in Python language 

using the “SciPy” library. It provides many user-friendly and 

efficient numerical routines, such as routines for numerical 

integration, interpolation, optimization, linear algebra, and 

statistics. 

4.1. Parametric Properties of the MHE Problem 

Tuning of the mathematical model typically involves 

adjustment of objective function terms or constraints that limit 

the rate of change, penalize the rate of change, or set absolute 

bounds [10]. Measurement availability is indicated. The 

optimizer can also include or exclude a certain adjustable 

parameter or manipulated variable. Another important tuning 

consideration is the time horizon length. Including more 

points in the time horizon allows the estimator to reconcile the 

model to more data. In a typical power plant studied in this 

paper consist of total eight coal pulverizers (numbered as A, B, 

C, D, E, F, G, H) and only six normally remain in operation for 

full 660 MW operation under design coal. 

Lower and upper parameters bounds are declared as 

follows: 

Table 2. Parameter Bounds. 

Parameter LB UB 

θ1 0.02 0.05 

θ2 0.01 0.06 

θ3 0.04 0.085 

θ4 0.7 0.91 

θ5 0.001 0.005 

θ6 0.5 3 

θ7 3 5 

θ8 0.05 0.2 

θ9 0.3 0.6 

θ10 3 15 

θ11 4230000 4400000 

The solver used is IPOPT. It minimizes the sum of the 

absolute value of the difference between the CV and the set 

point. Maximum number of major iterations for solution by 

the solver is 260. 

The feedback status is set to zero (means the measurement 

should not be used either in estimation or in updating a 

parameter in the model) for all 11 parameters (θ1 – θ11), Wout, 

Delpmill and Energy consumption (E) except Tout. 
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1) All 11 (θ1 – θ11) parameters are configured such that 

optimizer can adjust the values for same. Input and 

output variables are not allowed to be adjusted by the 

optimizer. 

2) Maximum that a manipulated can move each cycle - 

1.0e20 

3) Cost function is set to minimization. 

The measurement gap defines a dead-band region around 

the measurement. If the model prediction is within that 

dead-band, there is no objective function penalty. The value of 

this measurement gap is set to 1. 

The objective function value of this MHE problem over 

each iteration is plotted as above in Figure 6. 

 

Figure 6. Objective Function Values. 

Actual plant operating data of pulveriser number E with 

date range from 14-10-2020 00:04 Hrs to 14-10-2020 23:59 

Hrs is used to perform parameter estimation. There are 250 

data points at approximately 6 min intervals. Plots of the 

measured data are given in Figures 7, 8, and 9. 

1) Specific heat capacity of air, moisture, and coal ("���, 

"	,), coal inlet temperature (Ta), moisture content in 

coal (��) and latent heat of vaporisation (Lv) is assumed 

to be constant as referred from the pulverizer design 

document parameters. 

2) Coal mill DP (������) is calculated as the measured 

difference between coal pulverizer E lower house 

pressure and outlet pressure. 

3) Classifier speed (�) is calculated using Coal flow v/s 

classifier speed function curve available in the design 

document. 

4) Power consumed for running empty mill is calculated by 

using the measured mill current. 

5) Both E and Ee are calculated as the percentage of the Mill 

power consumption at t 100% mill loading. 

6) Pulverised coal flow rate (WOut) is assumed to be 

uniformly distributed between 99.9% - 100% of Coal 

feeder flow rate (Wc) 

7) The model accounts for the effect of moisture variation 

in coal also. 

 

Figure 7. Measured data for Model inputs - (&�, &���, ���, �����). 
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Figure 8. Model inputs – �. 

 

Figure 9. Measured data for Model outputs - (����, &���, ������, �). 

Table 3. Model Constants- (Ta, ��, Lv, Ee). 

Constants Value 

 T$  27 

 ρ%A 
  ρ'(�   10.9 

 LD  2260000 

 E�  25 

 C$%�  718 

 CX  4184 

 CY  1260 

From the actual plant operating data, parameters of the 

pulveriser number E are estimated as follows. 

Table 4. Parameter estimated for Pulverizer. 

Parameters Pulveriser E parameters Unit 

 θ�  0.0312 s-1 

 θ;  0.0100 kg-1 

 θ<  0.0850 kg-1 

 θ*  0.9100 s-1 

 θ)  0.0016 kg-1 

 θZ  0.9624 rad s⁄   

 θ4  5.0000  

 θ\  0.0721 kg-1 

 θ1  0.3000 s-1 

 θ�E  3.0000 J s-1 

 θ��  4230000 °C J⁄   

4.2. Simulation Methodology 

Dynamic model equations are given in the continuous time 

form as differential algebraic equations (DAE). Solution of the 

system of DAE is based on orthogonal collocation on finite 

elements which is a direct, simultaneous, full discretization 

approach. The continuous time variables are discretized to 

transform the infinite-dimensional optimal control problem to 

a finite dimensional nonlinear programming (NLP) problem. 

Both the control inputs and the states are discretized. The full 

discretization is realized with orthogonal collocation on finite 

elements. It is implemented in Python language using the 

“SciPy” library. It provides many user-friendly and efficient 

numerical routines, such as routines for numerical integration, 

interpolation, optimization, linear algebra, and statistics. 

4.3. Simulation Result 

The pulveriser E model output as compared to its measured 

values is as shown in figure 10. The simulation result shows 

that the predicted model output resembles with the actual 

measured values from the operating plant. 



 International Journal of Mechanical Engineering and Applications 2021; 9(4): 58-71 66 

 

 

 

Figure 10. Predicted and Measured data for Model outputs - (�'(�, &'(�, ��2%33, �). 

5. Optimization of Pulverizer Loading 

A method to optimize loading of coal pulveriser system is 

proposed and several test cases are performed to validate the 

method. It is ensured that the total coal demand for full 660 

MW under design coal condition is met. The nominal capacity 

(90.70 Kg/Hr) and corrected capacity (83.50 Kg/Hr, based on 

moisture content, HGI, fineness) of each pulverizer shall not 

be crossed while loading more the healthy one in case of 

degradation of other operating pulverizer wherein loading 

becomes less. Six operating pulverizers as –A, B, C, D, E, F 

are considered for the same. The problem is formulated as a 

steady state linear programming problem. Relation between 

Primary air flow rate versus its pulverizer DP and Primary air 

flow rate versus pulverizer outlet coal flow rate are established 

for each of the coal pulverizer A, B, C, D, E and F using linear 

regression analysis as shown in Figure 11 below. These curves 

are based on historical data of the mills as well as dynamic 

modelling of the pulverizer. Mill B is assumed to be degraded. 

Hence its Delpmill v/s Wair is made not to coincide with rest 

of the operating pulveriser. 

Wout v/s Wair curve of mill A, B, C, D, E, F are made 

identical to each other. This relationship between Wout and 

Wair is not directly introduced into the optimization problem 

as a constraint. Instead, it is considered for calculated the Total 

Wair demand corresponding to the total coal demand. And, for 

calculating the Mill outlet coal flow in each mill from its 

optimized Wair. 

����� &$%�= f (����� &'(�) 

The total sum of DP of all coal mill is set as the objective 

function and this is to be minimized. Simplex LP algorithm is 

used for the optimization. 

Objective function to minimize is (��2%33,]  
  ��2%33,^  


 ��2%33,Y 
  ��2%33,_  + ��2%33,`  + ��2%33,a), Where, ��2%33= 

f (&$%�). 

The objective function is subjected to a few constraints. 

Appropriate assumptions are made for maximum and 

minimum primary air flow rate. The total primary air flow rate 

in all coal mill is set equal to the total primary air needed to 

meet the total coal demand. 

The upper bound of &$%�  in each mill are estimated 

dynamically. Based on HGI, fineness and moisture (obtained 

from pulveriser design data) and the corrected capacity of 

each mill is estimated based on the following formula: 

Corrected Capacity = Nominal capacity * bc* bd*b2 

Where, 

bc - Mill capacity correction factor due to HGI = 1.000 

bd - Mill capacity correction factor due to fineness = 0.985 

b2 - Mill capacity correction factor due to moisture = 0.935 

From the corrected capacity of each mill, upper bound for 

&$%�  is calculated based on the &$%�  v/s &'(�  curve 

mentioned above in Figure 12. &$%�  corresponding to 

Nominal mill capacity is 159.5 and the same was corrected to 

be 147.55. 

Bounds: 80 < &$%�,]< 147.55 

80 < &$%�,^< 147.55 

80 < &$%�,Y< 147.55 

80 < &$%�,_< 147.55 

80 < &$%�,`< 147.55 

80 < &$%�,a< 147.55 

Initial values: 

&$%�,] – Total primary air required / 6 
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&$%�,^ - Total primary air required / 6 

&$%�,Y - Total primary air required / 6 

&$%�,_ - Total primary air required / 6 

&$%�,` - Total primary air required / 6 

&$%�,a - Total primary air required / 6 

Constraints: 

&$%�,] +  &$%�,^ 
 &$%�,Y 
  &$%�,_ +  &$%�,` 
 &$%�,a  = 

Total primary air required 

Simulation Result of Optimized Model of Pulverizer 

Total coal demand is kept constant (350 Tons per hour) and 

three different cases are simulated as follows. 

1) No pulverizer is degraded. 

2) One pulverizer is degraded. 

3) Two pulverizers are degraded. 

 

Figure 11. Delpmill V/s Wair curve of mill A, B, C, D, E, F. 

 

Figure 12. Wout V/s Wair curve of mill A, B, C, D, E, F. 

5.1. Case I – No Pulverizer Is Degraded 

The optimized results are compared against the conditions in which all six operating pulverizers are loaded equally with coal. 
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Table 5. Comparison of results when no pulverizer is degraded. 

 
Optimized Equally Distributed 

Coal flow (TPH) DelpMill (mmWc) Coal flow rate (TPH) DelpMill (mmWc) 

Pulverizer A 58.33 145.00 58.33 145.00 

Pulverizer B 58.33 145.00 58.33 185.00 

Pulverizer C 58.33 145.00 58.33 145.00 

Pulverizer D 58.33 145.00 58.33 145.00 

Pulverizer E 58.33 145.00 58.33 145.00 

Pulverizer F 58.33 145.00 58.33 145.00 

Total 350.00 870.00 350.00 870.00 

5.2. Case II – One Pulverizer Is Degraded 

Degradation is simulated in operating pulverizer B. The optimized results are compared against the conditions in which they 

are loaded equally. 

Table 6. Comparison of results when one pulverizers is degraded. 

 
Optimized Equally Distributed 

Coal flow (TPH) DelpMill (mmWc) Coal flow rate (TPH) DelpMill (mmWc) 

Pulverizer A 61.40 168.00 58.33 145.00 

Pulverizer B 43.00 68.00 58.33 185.00 

Pulverizer C 61.40 168.00 58.33 145.00 

Pulverizer D 61.40 168.00 58.33 145.00 

Pulverizer E 61.40 168.00 58.33 145.00 

Pulverizer F 61.40 168.00 58.33 145.00 

Total 350.00 908.00 350.00 910.00 

5.3. Case III – Two Pulverizer Are Degraded 

Degradation is simulated in pulveizer B and C. The optimized results are compared against the conditions in which they are 

loaded equally. 

Table 7. Comparison of results when two pulverizers are degraded. 

 
Optimized Equally Distributed 

Coal flow (TPH) DelpMill (mmWc) Coal flow rate (TPH) DelpMill (mmWc) 

Pulverizer A 66.00 202.50 58.33 145.00 

Pulverizer B 43.00 68.00 58.33 185.55 

Pulverizer C 43.00 68.00 58.33 185.55 

Pulverizer D 66.00 202.50 58.33 145.00 

Pulverizer E 66.00 202.50 58.33 145.00 

Pulverizer F 66.00 202.50 58.33 145.00 

Total 350.00 946.00 350.00 951.10 

6. Distribution of Optimized Coal Flow 

A total coal demand trend over 24 hrs as 15 min blocks is assumed. The distribution of coal among 6 mills are obtained using 

the optimization model discussed above. The total coal demand trend per block is given in Figure 13. 

 

Figure 13. 24-hour trend of total coal demand. 
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The optimization algorithm is run on 3 different cases. 

1. No pulverizer is degraded. 

2. One pulverizer is degraded. 

3. Two pulverizers are degraded (Degradation in the pulverizers are not identical). 

6.1. Case I – No Pulverizer Is Degraded 

Figure 14 shows the coal distribution among the six pulverizers when none are degraded. Since there is no degradation, the 

total coal demand is distributed equally among the six pulverizers. 

 

Figure 14. Coal distribution among six pulverizers when no pulverizers are degraded. 

Following figure 15 shows the comparison of objective function (total pulverizer DP) over 96 blocks. 

 

Figure 15. Comparison of objective function over 96 blocks. 

6.2. Case II – One Pulverizer Is Degraded 

Figure 16 shows the coal distribution among the six pulverizers when one pulverizer (pulverizer B) is degraded. Coal is 

distributed equally among the five non degraded pulverizers and less coal is allocated to the degraded pulverizer. 

 

Figure 16. Coal distribution among six pulverizers when one pulverizer is degraded. 
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Following figure 17 shows the comparison of objective function (total mill DP) over 96 blocks. 

 

Figure 17. Comparison of objective function over 96 blocks. 

6.3. Case III – Two Pulverizers Are Degraded 

Figure 18 shows the coal distribution among the 6 mills when two pulverizers (pulverizer B & C) are degraded. Degradation in 

pulverizer C is higher than pulverizer B. Coal is distributed equally among the four non degraded pulverizers and less coal is 

allocated to the degraded pulverizers. Worser the degradation, lesser the coal allocated to that pulverizer. Hence, more coal is 

allocated to pulverizer B compared to pulverizer C. 

 

Figure 18. Coal distribution among six pulverizers when two pulverizers are degraded. 

Following figure 19 shows the comparison of objective function (total mill DP) over 96 blocks. 

 

Figure 19. Comparison of objective function over 96 blocks. 

7. Conclusion 

The first principle model-based dynamic simulation of 

multi variable non-linear model of pulvizer in python 

environment are developed by determining the parameters 

obtained by using the moving horizon estimation and reveals 

the actual open loop performance of the pulverizer for varying 

differential pressure across it as the major variable parameters 

and under varying coal flow demand and the constraint of 

maximum pulverizer loading capacity. Hence, coordinated 
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control of all operating pulverizer can be achieved by 

optimum loading of each pulverizer based on their real 

operating performance attributed to operating differential 

pressure across it. This simulation studies also reveals that the 

actual performance of each of the pulverizer can be considered 

in the model predictive coordinated control of pulverizer in 

boiler combustion optimization system. 

Hence, the proposed multivariable nonlinear model of 

dynamic classifier type coal pulverizers reflecting the real 

operational behaviour of the coal pulverizers will improve 

significantly the heat rate, NOx reduction, primary air flow, 

average oxygen demand, unburnt carbon under varying coal 

flow demand and under the constraint of maximum pulverizer 

loading capacity to finally achieve the operational flexibility 

and stability towards higher megawatt load ramp rate of coal 

fired power generating plant. Future work can also be done to 

further make the model more realistic by incorporating other 

factors which impacts the performance of the pulverizers. It is 

also recommended that all the latest digital control system 

applied for coal fired steam generators should incorporate 

similar models as a standard feature of combustion control to 

address the requirement of flexible operation with higher 

megawatt load ramp rate. 
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