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Abstract: In response to the importance of the industry great need to the hydrostatic thrust spherical bearing, this study is 

performed. The stochastic modified Reynolds equation (developed by the author in his previous papers) applied to this type of 

bearings has become more developed to deal with the bearing static performance under the effect of the fluid film viscosity 

variation. The study showed the effect of the viscosity variation on the pressure, the load, the flow rate, the frictional torque, 

the friction factor, the power factor, the stiffness factor and the central pressure ratio as well as the effect of the speed 

parameter and the eccentricity on the temperature rise. The partial differential equation of the temperature gradient is derived 

from the fluid governing equations, integrated and applied to this type of bearings to calculate and predict the temperature 

distribution along the fluid film. The application of this temperature equation proved the excellence of the aforementioned 

optimum design of this bearing in our previous papers where the temperature of the outlet flow was less than 14 degrees 

centigrade over its inlet temperature. 

Keywords: Hydrostatic Bearings, Spherical Bearings, Surface Roughness, Inertia Effect, Variable Viscosity Effect, 

Temperature Rise of the Fluid Film 

 

1. Introduction 

Expanding the author’s previous studies on the hydrostatic 

thrust spherical bearing, the viscosity variation has been 

considered in re-developing the stochastic modified Reynolds 

equation “modified by Dowson and stochastically developed 

by the author” [1] to be thermally valid to deal with such type 

of bearings. 

Dowson and Taylor [2, 3] stated that running the bearing at 

high speeds considerable temperature variation along the film 

in (Ɵ) direction was observed, where it caused viscosity 

variation affecting the bearing performance. 

Essam Salem and Farid Khalil [4, 5] adopted a simple 

form of the viscosity variation expression where it has been 

introduced in the pressure gradient equation and numerically 

solved to get the pressure and the temperature distribution. It 

is found that temperature rise reduces the load and the 

frictional torque while increases the flow rate. 

Rowe and Stout [6] studied the design and the 

manufacturing of the hydrostatic spherical bearing. It is 

stated that the most critical situations encountered involve 

high speeds and high flow rates when a reasonable estimate 

of the temperature rise is obtained by assuming that all the 

heat is carried out in the oil whereas the in slow moving 

calculations this method tends to overestimate temperature 

rise. 

Keith Brockwell et al [7] studied the temperature 

characteristics of a (PSJ) pivoted shoe journal bearing where 

it is stated that the temperature with (load between pad) 

reaches 100 C at 5000 rpm and a load of 22.24 KN and for 

the same maximum temperature and load configuration the 

offset pivot extends the bearing speed to be just under 6500 

rpm. Generally it was found that differences between offset 

and center pivot bearing temperature (both maximum and 

75% pad locations) increased with speed and load. 

Minhui He et al [8] stated that the fluid film journal 

bearing is critical to machine’s overall reliability level and 

concluded that the viscosity shearing generates heat in the 

fluid film which lead to reduce the viscosity and to increase 

the temperature and the power losses. 

Srinivasan V. [9] studied the annular recess conical bearing 

considering the inertia and the viscosity variation concluding 

that the speed increase leads to raise the temperature and 

pressure. 
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Shigang Wang et al [10] studied the temperature effect on 

the hydrostatic bearing performance in both cases of 

sufficient and deficient fluid film using the “Fluent 6.5 

Software” to simulate the temperature field. According to the 

obtained results, it is concluded that the oil will affect the 

temperature distribution and the temperature rise. 

Xibing Li et al [11] stated that during working the 

viscosity changes as the temperature increases then the 

bearing performance will be affected; therefore control 

thermal deformation hydrostatic bearing and high efficiency 

cooling is the prime problem to solve. 

The present study could be considered as an extension to 

the study of reference [1] whereas the lubricant viscosity has 

been treated as a constant in turn it couldn’t be possible to 

find out the bearing thermal behavior in general and to check 

thermally the design of such pattern of bearing presented in 

this reference. 

This research has opened the door widely to study the 

behavior of this type of bearings under the lubricant variable 

viscosity in the presence of the centripetal inertia and the 

surface roughness. The un- recessed fitted type of bearings 

with its different configurations has been handled in this 

paper. 

Nomenclature 

A = )6(
3

ipeq πµ−  

a =Bearing projected area (
2

Rπ ).    

C = )6( πµ qi− . 

vc = Lubricant specific heat 

iod =Bearing inlet orifice diameter. 

E (f) =Expected value of. 

e = Eccentricity. 

f = Dimensionless friction factor. 

F = Friction factor. 

H = Dimensionless film thickness. 

h = Film thickness. 

oh = Deterministic part of the film thickness ( θcose ). 

sth = Random stochastic part of the film thickness. 

fh = Power factor
 

vK  = Constant of viscosity variation
 

eK  = ( Re ). 

M  = Dimensionless frictional torque     ( 42 Remo Ωπµ ). 

m = Frictional torque.  

om = Deterministic part of the frictional torque. 

stm = Random stochastic part of the frictional torque. 

N = Shaft speed (rpm). 

P = Dimensionless pressure (
ipp ). 

p = Mean pressure along the film thickness. 

ip = Inlet pressure. 

sp =Supply pressure ( 25105 mNx ). 

Q = Dimensionless volume flow rate ( AQ −= ). 

q = Flow volume flow rate 

R  = Bearing radius (50 mm). 

S = Speed parameter (

ip

R22

40

3 Ωρ
). 

SF = Stiffness factor  

T = Temperature 
u, v, w = Velocity components in the 

r, θ , ϕ  directions. 

W  = Dimensionless load carrying capacity (
ipRw 2π ). 

w = Load carrying capacity. 

z = )( Rr −  

β = (
si pp ). 

θ = Angle co-ordinate. 

bφ = Seat outer rim angle. 

iθ =Inlet flow angle. 

eθ = Outlet flow angle.  

ρ = Lubricant density ( 42.867 msN ). 

σ = Dimensionless surface roughness parameter. 
2

oσ = Variance of the film thickness. 

λ = Bearing stiffness. 

µ =Lubricant viscosity ( 2.068.0 msN ) 

Ω =Rotational speed. 

2. Theoretical Analysis 

The modified form of Reynolds equation derived by 

Dowson and Taylor [2-3] and their suggested equation for the 

lubricant viscosity variation applicable to the hydrosphere 

Figure (1) have been adopted in this study.  

 

Figure 1. Bearing configuration. 

The modified form of Reynolds equation derived by 

Dowson and Taylor [2-3] and their suggested equation for the 

lubricant viscosity variation applicable to the hydrosphere 

Figure (1) have been adopted in this study. 

3 2 23
( sin 2 )

20 sin
− Ω =dP C

h R
d

ρ θ
θ θ

                     (1) 

(1 sin )= −i vKµ µ θ                                 (2) 

Following Yacout and Dowson [1-3], the modified 
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Reynolds equation becomes:  

3 2 2 (1 sin )3
[ sin 2 ]

20 sin

−− Ω = vC Kdp
h R

d

θρ θ
θ θ

          (3) 

Taking the expectation for both sides: 

3 2 2 2 (1 sin )3
( 3 )[ sin2 ]

20 sin

−+ − Ω = v
o o o

C Kdp
h h R

d

θσ ρ θ
θ θ

       (4) 

2 2

3 2

(1 sin ) 3
sin 2

20( 3 ) sin

−= + Ω
+

v

o o o

C kdp
R

d h h

θ ρ θ
θ σ θ

       (5) 

Putting the following dimensionless group and rearranging 

give: 

iP p p= ; oH h e cos= = θ ; o eσ = σ , 3
iA C e P= , 

2 2S (3 40) R= ρ Ω , 2 23 bσ = , d (1 sin ) dHθ = − θ , 

iC 6 Q= − µ π  

3 2 2

v
1

3 2 2 2

A
P dH 4S HdH

(H b H)(1 H )
Ak

dH

(H b H)(1 H )

−= −
+ −

+

+ −

∫ ∫

∫
                    (6) 

3. Theoretical Solutions 

3.1. Pressure Distribution 

The integration of the 1
st
 two parts of the pressure equation 

(6) could be found in Yacout [1] as: 

2 2 2

2 2

1
{ ln(1 sec ) ln(tan( )} 2 cos

1 2
+ + − +

+
A

b S B
b b

θ θ θ       (7) 

And the integration of the 3rd part of the equation could be 

found in the appendix (A1) as: 

2

2 2 2

1 1 sin 1 1 sin
[ln ln ]

1 sin2 1 1 sin

+ + −= − +
− + + +

b
Intg

b b b

θ θ
θ θ

    (8) 

Restoring the 1
st
 form again: 

2 2

2 2

2
2

2 2 2

1
{ ln(1 sec ) ln(tan( )}.....

1 2

1 sin 1 1 sin
{ln( ) ln( )} 2 cos

1 sin2 1 1 sin

= + +
+

+ + −− + − +
− + + +

v

A
P b

b b

k A b
S B

b b b

θ θ

θ θ θ
θ θ

  (9) 

Applying the boundary conditions: 

At = iθ θ → 1=P  

At = eθ θ → 0=P  

2 2

2 2

2 2 2 2

2

2 2

2 2 2

1 2 (cos cos )

1 sec tan1 1
{ ln( ) ln( }.....

tan1 2 1 sec

1 sin 1 sin
{ln( * ).......

1 sin 1 sin2

1 sin 1 sin1
ln( * )}

1 1 sin 1 sin

+ −=
+ +

+ +
+ −−
− +

+ − + ++
+ + + + −

i e

i i

eo

v i o

i o

i e

i e

S
A

b

b b b

k

b

b b

b b b

θ θ
θ θ

θθ
θ θ
θ θ

θ θ
θ θ

 

2

2 2

2 2

2

2 2 2

2 cos .....

1
{ ln(1 sec ) ln(tan( )}.....

1 2

1 sin 1 sin1
{ln( ) ln( )}

1 sin2 1 1 sin

=

− + +
+

+ + −+ +
− + + +

e

e e

v e e

e e

B S

A
b

b b

k A b

b b b

θ

θ θ

θ θ
θ θ

 

3.2. Load Carrying Capacity 

Following Yacout and Dowson [1-3]: 

e

i

e

i

e

i

2 2 2
i i

2

2
i

2

2

w R sin p 2 R p sin cos d

w
W sin 2 P sin cos d

R p

W sin 2 P sin cos d

W sin 2F

θ

θ
θ

θ
θ

θ

= π θ + π θ θ θ

= = θ + θ θ θ
π

= θ + θ θ θ

= θ +

∫

∫

∫

           (10) 

e

i

e

i

e

i

2 2

2 2

2 v

2

2

2 2

1 2

F Psin cos d

A 1
[ { ln(1 b sec ) ln(tan( )}
b 1 2b

k A 1 sin
2Scos B]sin cos d {ln( )

1 sin2b

1 b 1 sin
ln( )}sin cos d

b 1 b 1 sin
a a

θ

θ
θ

θ
θ

θ

= θ θ θ

+ θ + θ
+

+ θ− θ + θ θ θ −
− θ

+ − θ+ θ θ θ
+ + + θ

= −

∫

∫

∫
 

Where: 

2 2
1 2 2

2

2 2

2

2 2

1
[ { ln(1 sec ) ln(tan( )}

1 2

2 cos ]sin cos

1 sin
{ln( )

1 sin2

1 1 sin
ln( )}sin cos

1 1 sin

= + +
+

− +

+=
−

+ −+
+ + +

∫

∫

e

i

e

i

v

A
a b

b b

S B d

k A
a

b

b
d

b b

θ

θ

θ

θ

θ θ

θ θ θ θ

θ
θ

θ θ θ θ
θ

 

The Integration of (a1) could be found in Yacout [1] as: 

2 2
2 2

1 2 2

2 2
4

2 2

2

cos
[ ln ( cos )
4 ( 1)

sin cos
ln (sin ) ln (cos )] [cos ]

22( 1) 2

[cos ]

+= +
+

− − +
+

−

i e

e i

e

i

b
a A b

b b

S

b b

B

θ θ
θ θ

θ
θ

θ θ

θ θθ θ θ

θ

 

And the integration of (a2) in Appendix (A2) as: 

e

i

2 2 2 2
2 v

2 2 2

k A (cos ) (1 sin ) b cos ( b 1 sin )
a [ ln ( )ln ]

2 (1 sin )4b 2 b 1 ( b 1 sin )

θ
θ

θ − θ + θ + − θ= −
+ θ + + + θ
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Then: 

2

1 2

W sin 2F
F a a

= θ +
= −

 

3.3. Temperature Distribution 

From the appendix (A3): 

2
2

i

v

2 4 2
v

dP dP (S sin 2 )
( ) 4S( ) sin(2 )

dT p d d 0.21( )
dPd c

(2 sin 2 )
d

(Const) sin sec (1 k sin )
X

dP
(2 sin 2 )

d

θ− θ +
θ θ=

θ ρ θ −
θ

θ θ − θ+ =
θ −

θ

 

n n 1

1 i
2
i

2 4
i e

i

T
X

T T X
T T

160S
Const ( )

p R K
(1 K sin )

−

∆ =
∆θ

= + ∆θ
=

µ=
ρ

µ = µ − θ

                         (11) 

3.4. Frictional Torque 

Following Yacout and Dowson [1-3]: 

4 32 sinΩ= =∫ ∫
e e

i i

R
m dm d

e h

θ θ

θ θ

π µ θ θ                          (12) 

(1 sin )= −i vkµ µ θ  

3

4

(1 sin )sin

2

−=
Ω ∫

e

i

v

i

kme
d

hR

θ

θ

θ θ θ
π µ

 

3
(1 sin )sin−= ∫

e

i

vk
M d

h

θ

θ

θ θ θ  

3
(1 sin )sin−= ∫

e

i

vk
M d

h

θ

θ

θ θ θ  

2 2 2 2

3 3

1 cos
( )

cos

+ += =h
E

h h

σ θ σ
θ

 

Taking the expectation of both sides: 

2 2 3

3

(cos )(1 sin )sin

cos

+ −= ∫
e

i

vk
M d

θ

θ

θ σ θ θ θ
θ

 

2 2 2

3

(cos )(1 sin )sin
(cos )

cos

+ −= −∫
e

i

vk
M d

θ

θ

θ σ θ θ θ
θ

 

2 2 2

3

(cos )(1 sin )(1 cos )
(cos )

cos

+ − −= −∫
e

i

vk
M d

θ

θ

θ σ θ θ θ
θ

 

2 2 2

3

(cos )(1 sin )(cos 1)
(cos )

cos

+ − −= ∫
e

i

vk
M d

θ

θ

θ σ θ θ θ
θ

 

The Integration could be found in the Appendix (A4) as: 

2 2
2

2

2

2 3

cos
[ ( 1) ln (cos ) ]

2 2cos

[( 1){sin ln (tan sec )}

sin
{ln (sec tan ) sec tan } ]

2 3

= + − + − −

− − + −

+ − −

e

i

e

i

v

M

k

θ
θ

θ
θ

θ σσ θ
θ

σ θ θ θ

σ θθ θ θ θ

            (13) 

3.5. Volume Flow Rate 

From Yacout [1]: 

= −Q A                                       (14) 

3.6. Friction Factor 

From Yacout [1]: 

=F M W                                (15) 

3.7. Power Factor 

From Yacout [1]: 

2 3cos
=f

e

Q
h

W

π
θ

                                         (16) 

3.8. Stiffness Factor 

From Yacout [1]: 

_ _

( )= − +SF W Wβ β                               (17) 

4. Results 

Where the main objective of this study is to find out the 

bearing thermal behavior under the lubricant viscosity 

variation in the presence of the centripetal inertia and the 

surface roughness, and because of the complexity of the 

theoretical solution it was necessary to compare between 

different forms of viscosity equations to adopt the one which 

can help in facilitating the theoretical derivation of some 

equations that represent the bearing characteristics. Deriving 

such equations it was preferably applied to the un-recessed 

fitted type of bearings to predict its behavior. The bearing 

characteristics such as pressure distribution, temperature 

distribution, load carrying capacity, flow rate, frictional 

torque, friction factor and stiffness factor have been 

calculated for the bearing with hemispherical and partially 

hemispherical seats. Figures (2-13) represent the bearing with 

hemispherical and partially hemispherical seats respectively. 

5. Discussion 

It is found to be necessary to study the bearing thermal 

behavior since it hasn’t been accomplished in Yacout [1]. The 

visions of Dowson [2, 3] and Essam and Farid [4, 5] of the 
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lubricant viscosity and temperature gradient for the 

hydrostatic spherical bearing respectively have been adopted. 

The example of the designed bearing offered in Yacout [1] 

has been used as a guide in the research. 

5.1. The Pressure Distribution 

Figures (2, 3) represent the effects of the different 

parameters on the pressure distribution for a bearing with 

hemispherical and partial hemispherical seats. 

5.1.1. The Effect of the Viscosity 

Tthe efect of the viscosity, represented by the viscosity 

variation constant, on thepressure could be easly observed 

where it could be practically considered insignificant and can 

be ignored in the case of the hemispherical seat due the high 

effect of the inertia whereas in the partial case it is clearly 

appreciable because of the inertialesser effect, Subfigures (2a 

and 3a). 

5.1.2. The Effect of the Inertia 

The inertia represented by the speed parameter Yacout [1] 

and Dowson [2, 3] shows a dominant role where it highly 

increases the pressure specially with the hemispherical seat 

despite its lesser effect with the partial hemispherical one 

subfigures (2b, 3b). 

5.1.3. The Effect of the Eccentricity 

Subfigures (2c, 3c) show the eccenrticity effect on the 

pressure where it is clear that the pressure decreases with the 

increase in the eccentricity. This insignificant decrease 

inthepressure despite the presence of the vicosity variation 

gives an indication of a highly stiffened bearing 

configuration, the bearing design example Yacout [1]. 

5.1.4. The Effect of the Surface Roughness 

It is obviously clear from the subfigures (2d, 3d) that the 

two bearing configurations haven’t been significantly 

affected by the surface roughness. Comparing these results 

with those in Yacout [1] no remarkable difference could be 

observed despite the viscosity variability which leads to the 

prediction that the bearing stiffness will not be significantly 

affected by the viscosity variation. 

 

Figure 2. Hemispherical seat 

 

Figure 3. Partial hemispherical seat. 

5.2. The Load Carrying Capacity 

Figures (4, 5) represent the load carrying capacity for a 

bearing with hemispherical and partial hemispherical seats. 

 

Figure 4. Hemispherical seat. 

 

Figure 5. Partial hemispherical seat. 
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5.2.1. The Effect of the Viscosity 

Subfigures (4a, 5a) show the load decrease with the 

increase in both of the viscosity variation costant and the 

surface roughness. Normalizing the load, Subfigures (4b, 5b) 

show that the decrease in the load- due to the viscosity 

variation constant increase- is increasing as the surface 

roughness increases, i.e, at a point with certain value of the 

surface roughness parameter the decrease in the load due to 

the viscosity variation will increase at another point with 

higher value. And the relatively whole loss in the load along 

the surface parameter scale will increase as the vicosity 

variation constant increases. 

5.2.2 The Effect of the Inertia 

As seen from subfigures (4c, 5c), the load is positively 

affected by the inertia and negatively by the viscosity 

variation. It is also clear that the load decrease due to the 

viscosity variation in the case of hemispherical seat is less 

than that of the partial hemisperical one because of the more 

effective role of the inertia as said before in the pressure.  

Normalizing the load subfigures (4d, 5d), show that the load 

decrease due to the viscosity variation is not affected by the 

increase in the inertia (speed parameter) and the relatively net 

gain in the load due to the inertia will not be affected by the 

viscosity variation.  

5.3. The Volume Flow Rate, the Frictional Factor, the 

Friction Factor and the Power Factor 

Figures (6, 7) represent the volume flow rate, the frictional 

torque, the friction factor and the power factor for the same  

bearing with the hemispherical and the partial hemispherical 

seats. 

It could be seen from the two figures that the volume flow 

rate and the power factor increase with the increase in the 

viscosity variation constant, subfigures (6a, d) and subfigures 

(7a, d) while the frictional torque and the friction factor 

decrease subfigures (6b, c) and subfigures  

(7b, c). It looks reasonable and logical because of the 

viscosity decrease. 

 

Figure 6. Hemispherical seat. 

 

Figure 7. Partial hemispherical seat. 

5.4. The Temperature Distribution and Rise 

Figures (8, 9) represent the effects of the viscosity 

variation, the inertia, the eccentricity and surface roughness 

on the temperature distribution. 

 

Figure 8. Hemispherical seat. 

 

Figure 9. Partial hemispherical seat. 
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It is clear that the temperature decreases with the viscosity 

variation constant increase, subfigures (8a, 9a).  

5.4.1. The Effect of the Viscosity Variation Constant 

It is clear that the temperature decreases with the viscosity 

variation constant increase, subfigures (8a, 9a).  

5.4.2. The Effect of the Inertia 

Subfigures (8b, 9b) shows that the inertia plays an 

important role in raising the temperature.   

5.4.3. The Effect of the Eccentricity 

Subfigures (8c, 9c) shows that the temperature is 

positively affected  with decrease in the eccentricity.   

5.4.4. The effect Of the Surface Roughness 

Subfigures (8d, 9d) shows that the surface roughness has 

the least effect on the temperature where it could be 

practiclly ignored. 

Generally, it could be said that Just a look at the pressure 

equation shows its complicated relation with the inertia, the 

eccentricity, the surface roughness and the viscosity; and 

another look at the equation of the temperature gradient 

shows its complicated relation with the pressure gradient, the 

inertia and viscosity. The study of these complicated relations 

controlling the temperature rise could facilitate the designer 

job. 

5.5. The Stiffness Factor and the Central Pressure Ratio 

Figures (10, 11) represent the effects of the viscosity 

variation constant on the stiffness factor and the central 

pressure ratio. 

5.5.1. The Stiffness Factor 

The bearing with the hemispherical seat shows no 

remarkable effect on the stiffness factor due to the vicosity 

variation whereas  the bearing with the partial  hemispherical 

seat shows decrease with the viscosity variation constant, 

subfigures (10a, 11a). The normalization of the stiffness 

factor shows that the bearing behavior hasn’t been affected 

regardless the seat type i.e, the stiffness factor versus the 

surface roughness has a fixed shape, subfigures (10b, 11b). 

 

Figure 10. Hemispherical seat. 

5.5.2. The Central Pressure Ratio 

Subfigures (10c, 11c) show the effect of the central 

pressure ratio with the viscosity variation. Despite the unsean 

effect in the case of the hemispherical seat Subfigures (10d, 

11d) reveal the the central pressure ratio increase with the 

viscosity variation constant.  

 

Figure 11. Partial hemispherical seat. 

6. Testing the Designed Bearing 

One of the objectives of this study is testing the bearing 

designed by Yacout [1] showing the performance deviation 

when considering the variable viscosity. The bearing has:   

R 50 mm= , 
o

i 5φ = , 1.0η = , 0.05ξ = , N 100 rps= , 

N 100 rps= ,
2 4867 N.s mρ = , 2 3β = , 

20.068 N.s mµ= ,
 

eK 1 17.6056= , vK 0= , vK 0.5=  

 

Figure 12 designed bearing. 
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Figure 13. Designed bearing. 

Table 1. Comparison between the two cases. 

 
Hemi. seat 

Deviation % Observation 
vK  = 0 vK = 0.5 

W 1.144 1.129 -1.3 Decrease Fair 

SF   Unremarkable Insignificant Excellent 

ß   Unremarkable Insignificant Excellent 

T 40.18 32.52 - 41 Decrease Excellent 

Q 0.0091 0.0178 +96 Increase, Fair 

M 2.391 1.265 -47 Decrease excellent 

F 2.094 1.124 -46 Decrease excellent 

fh  120.3 242.2 +101 Increase, fair 

Using the constant of the variable viscosity as zero in the 

calculations gives the same results as in Yacout [1] where the 

viscosity is constant. When using this constant (variable 

viscosity constant) of 0.5 as adopted in this research and in 

Dowson [3] it gives the bearing performance under the 

variable viscosity. 

The test results are represented by figures (12 – 13) in 

addition to table 1. 

As seen from figures (12, 13) and table 1, the increase in 

the volume flow rate, in turn the increase in the power factor, 

is approximately doubled. The load shows 1.3 % max 

difference (could be excellent). The temperature, the 

frictional torque and the friction factor show more than 40% 

decrease while the stiffness factor and the central pressure 

ratio show unremarkable differences. Finally it could be said 

that the lonely drawback of this designed bearing is the 

power factor which can’t be avoided because of the increase 

in the volume flow rate. 

It is worthy to say that the bearing in the experimental 

study of Dowson [3] was running at half of the speed of this 

bearing and the temperature rise was 40 degrees centigrade 

while temperature rise in this design is 30 and 14 degrees 

centigrade in the cases of constant and variable viscosity 

respectively. 

Hence, the bearing designed in Yacout [1] could be 

considered practically excellent. 

7. Conclusion 

Based on the conception of the stochastic Reynolds 

equation (by the author), adopting the viscosity variation 

form suggested by Dowson and the temperature gradient 

equation derived by Essam and Farid (checked by the author 

because of its wrong form in the reference), the isothermal 

stochastic Reynolds equation has been derived and applied to 

the un-recessed hydrostatic thrust spherical fitted type of 

bearings to study its performance. The study shows that: 

1. The load, the frictional torque, the friction factor, the 

stiffness and the temperature rise are less in the case of the 

isothermal solution. 

2. The volume flow rate and the power factor have 

approximately doubled. The central pressure ratio shows 

little increase at high surface roughness.. 

3. The temperature decreases with the increase of variation 

viscosity constant and the eccentricity. 

4. The design technique of this type of bearings in the 

previous study by the author could be considered highly 

trusted. 

8. Future Work 

The 2
nd

 part of the research handles the recessed fitted type 

re- designing the bearing based on the same conditions in 

addition to the mean effective viscosity. 

Appendix 

A1- Integration of the 3rd Part of the Pressure Equation  

v
1

3 2 2 2

A K
dH

( H b H )(1 H )+ −
∫                          (18) 

Put: 

X (sin )= θ  

2 2X (1 H )= −  

1
2 2H (1 X )= −  

1
2 2H (1 X )= −  

1

2 2

X dX
dH

(1 X )

= −

−

 

Eq. (18) becomes: 

3 1 1

2 2 2 22 2 2

1 X
* d X

{ (1 X ) b (1 X ) } X (1 X )

−

− + − −

 

2 2 2

d X

(1 X )[ ( b 1) X )

−
− + −

 

Put: 

2 2(b 1) m+ =  

2 2 2

d X

(1 X )( m X )

−
− −

                      (19) 

Finding the partial fraction of Eq. (19): 
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2 2 2

1 am am a a

1 X 1 X m X m X(1 X )(m X )
= + − −

− + − +− −
       (20) 

2 2 2 2 2 2

2 2 2

am(1 X)(m X ) am(1 X)(m X ) a(1 X )(m X) a(1 X )(m X)

(1 X )(m X )

+ − + − − − − + − − +
− −

 

2 2 2

2 2 2

2am [m X 1 X ]

(1 X )( m X )

− − +
− −

 

2

2 2 2

2 a m ( m 1)

(1 X ) ( m X )

−
− −

 

2
2 a m ( m 1) 1− =  

2

1
a

2 m ( m 1)
=

−
                              (21) 

2 2 2

2

1

(1 X )( m X )
1 1 1 1 1

[ ]
(1 X ) 1 X m ( m X ) m ( m X )2( m 1)

=
− −

+ − −
− + − +−

 

Substituting from (21) into (21), eq. (19) becomes: 

2

1 1 1 1 1
[ ]dX
(1 X) 1 X m(m X) m(m X)2(m 1)

− + − −
− + − +−

      (22) 

The integration of  Eq. (22) gives: 

2

1 (1 X ) 1 ( m X )
In tg [ ln ln ]

(1 X ) m ( m X )2 (1 m )

+ −= +
− +−

       (23) 

Replacing m and X:  

2

2 2 2

1 1 sin 1 1 b sin
Intg [ln ln ]

1 sinb 1 b 1 b sin

+ θ + − θ= − +
− θ + + + θ

         (24) 

Then integration of equation (18) becomes: 

2
v

2 2 2

AK 1 sin 1 1 b sin
[ln ln ]

1 sinb 1 b 1 b sin

+ θ + − θ− +
− θ + + + θ

 

A2- The Load Carrying Capacity Derivation 

Following Yacout and Dowson [1- 3], the modified 

Reynolds equation: 

e

i

e

i

e

i

2 2 2
i i

2

2
i

2

2

w R sin p 2 R psi n cos d

w
W sin 2 Psi n cos d

R p

W sin 2 Psin cos d

W sin 2F

θ

θ
θ

θ
θ

θ

= π θ + π θ θ θ

= = θ+ θ θ θ
π

= θ+ θ θ θ

= θ+

∫

∫

∫

 

e

i

e

i

e

i

2 2

2 2

2

v
2

2

2 2

1 2

F Psin cos d

A 1
[ { ln(1 b sec ) ln(tan( )}
b 1 2b

2Scos B]sin cos d

K A 1 sin
{ln( )

1 sin2b

1 b 1 sin
ln( )}sin cos d

b 1 b 1 sin
a a

θ

θ
θ

θ

θ

θ

= θ θ θ

= + θ + θ
+

− θ + θ θ θ
+ θ−
− θ

+ − θ+ θ θ θ
+ + + θ

= −

∫

∫

∫

 

e

i

2 2
1 2 2

2

A 1
a [ { ln(1 b sec ) ln(tan( )}

b 1 2b

2Scos B]sin cos d

θ

θ

= + θ + θ
+

− θ+ θ θ θ

∫  

e

i

v
2 2

2

2 2

K A 1 sin
a {ln( )

1 sin2b

1 b 1 sin
ln( )}sin cos d

b 1 b 1 sin

θ

θ

+ θ=
− θ

+ − θ+ θ θ θ
+ + + θ

∫  

The Integration of (a1) could be found in Yacout [1] as: 

e ei

e i i

2 2 2
2 2

1 2 2 2

2
4 2

2

b cos sin
a A[ ln (b cos ) ln (sin )

4b (b 1) 2(b 1)

cos S
ln (cos )] [cos ] B[cos ]

22b

θ θθ
θ θ θ

+ θ θ= + θ − θ
+ +

θ− θ + θ − θ

 

Put:  

2 2m (b 1)= +    &   sin Xθ =  

Then: 

2 1 2cos (1 X )θ = − , 
d X

c os
d

= θ
θ

, 
2 1 2

d X
d

(1 X )
θ =

−
 

Then: 

e

i

e

i

e

i

e

i

v
2 2

v
2

v
2

v
2

v
1 2 32

K A 1 X 1 m X dX
a [ln( ) ln( )] X ( )(d )

1 X m m X d2b

K A 1 X 1 m X
[ln( ) ln( )] X dX

1 X m m X2b

K A 1 X X m X
[X ln( ) ln( )] dX

1 X m m X2b

K A
[X ln(1 X) X ln (1 X)

2b

X X
ln (m X ) ln (m X)] dX

m m

K A
[t t t

2b

θ

θ
θ

θ
θ

θ
θ

θ

+ −= + θ
− + θ

+ −= +
− +

+ −= +
− +

= + − −

+ − − +

= − + −

∫

∫

∫

∫

e

i

4t ] dX

θ

θ
∫

 



10 Ahmad Waguih Yacout Elescandarany:  The Effect of the Fluid Film Variable Viscosity on the Hydrostatic Thrust   
Spherical Bearing Performance in the Presence of Centripetal Inertia and Surface Roughness 

1

2

3

4

t X ln(1 X)
t X ln(1 X)

X
t ln(m X)

m
X

t ln(m X)
m

= +
= −

= −

= +

 

Integration of each term: 

e e e

i i i

e

i

e e

i i

e e

i i

1

2

2

t dX X ln(1 X) dX X ln(1 X) dX

[(1 X) ln(1 X) ln(1 X)]d(1 X)

(1 X ) ln(1 X) d(1 X) ln(1 X)]d(1 X)

(1 X) 1
[ {ln (1 X) }] [(1 X){ln (1 X) 1}]

2 2
(X 1) (X 3)

[ ln (1 X) (1 X){ }]
2 4

θ θ θ

θ θ θ
θ

θ
θ θ

θ θ

θ θ
θ θ

θ

= + = +

= + + − + +

= + + + − + +

+= + − − + + −

− −= + − +

∫ ∫ ∫

∫

∫ ∫

e

i

θ

 

e

i

e

i

e

e

i

i

2

2

2

1

( X 1) 3 X
[ln (1 X ) ]

2 2(1 X )

(1 X ) 3 X
[ ln (1 X )]

2 2(1 X )
T hen :

(1 X ) 3 X
t dX [ ln (1 X )]

2 2(1 X )

θ
θ

θ
θ

θ
θ
θ

θ

− −= + −
−

− −= − +
−

− −= − +
−∫

 

Integration of (t2) could be done as (t1) with changing the 

sign of (X) to be: 

e

i

e

i

2

2

t dX X ln (1 X )dX

(1 X ) 3 X
[ ln (1 X )]

2 2(1 X )

θ

θ

θ
θ

= −

− += − −
+

∫   

Integration of (t3) 

e e

i i

e

i

e

i

e

i

e

i

3

2

X 1
t dX ln(m X)dX Xln(m X)dX

m m

1
[(m X)ln(m X) mln(m x) ]dX(m x)

m

1
[(m X)ln(m X)]d(m X)

m

ln(m X) d(m X)

1 (m X) 1
[ {ln(m X) } (m X){ln(m X) 1}]
m 2 2

Re arranging :

θ θ

θ θ
θ

θ
θ

θ
θ

θ

θ
θ

= − = −

= − − − − −

= − − −

− − −

−= − − − − − −
−

∫ ∫

∫

∫

∫

 

e

i

e

e

i

i

2 2 2 2

2 2 2 2

3

m X 3m 2mX X
[{ ln(m X)} { }]

2m 4m
Then :

X m X 2mX 3m
t dX [{ ln(m X)} { }]

2m 4m

θ
θ

θ
θ
θ

θ

− + − + += − −

− + −= − −∫

 

Integration of (t4): 

It could be done as in (t3) or directly you get the 

integration after changing the sign of (X) to be: 

e

e

i

i

2 2 2 2

4

X m X 2mX 3m
t dX [{ ln(m X)} { }]

2m 4m

θ
θ
θ

θ

− − −= + −∫
Simplifying:  

e e

e

i

i i

2 2

3 4

m X (m X)
t dX t dX [( ) ln X]

2m (m X)

θ θ
θ
θ

θ θ

− +− = −
−∫ ∫  

And: 

e e

e

i

i i

e

i

e

i

e e

e

i

i i

e

i

2

1 2

2

2

2

1 2

1 2 3 4

2

(1 X ) 3 X
t dX t dX [ ln(1 X)]

2 2(1 X)

(1 X ) 3 X
[ ln(1 X)]

2 2(1 X)

(1 X ) (1 X)
[X ln ]

2 (1 X)
Then:

(1 X ) (1 X)
t dX t dX [X ln ]

2 (1 X)

Then:

t t t t dX

(1 X ) (1
[X ln

2

θ θ
θ
θ

θ θ

θ
θ

θ
θ

θ θ
θ
θ

θ θ

θ

θ

− −− = − +
−

− +− − −
+

− −= +
+

− −− = +
+

− + − =

−= +

∫ ∫

∫ ∫

∫

e

i

e

i

e

i

2 2

2 2 2

2 2 2 2
v

2 2 2 2

X) m X (m X)
( )ln X]

(1 X) 2m (m X)

(1 X ) (1 X) m X (m X)
[ ln ( )ln ]

2 (1 X) 2m (m X)
Then

K A (cos ) (1 sin ) b cos ( b 1 sin )
a [ ln ( )ln ]

2 (1 sin )4b 2 b 1 ( b 1 sin )

θ
θ

θ
θ

θ
θ

− − ++ −
+ −

− − − −= −
+ +

θ − θ + θ + − θ= −
+ θ + + + θ  

Hence: 

2W sin 2F= θ +  

1 2F a a= −  

i

e

e e

i i

2 2 2 2
2 2

1 2 2 2 2

4 2

b cos sin cos
a A[ ln(b cos ) ln(sin ) ln(cos )]

4b (b 1) 2(b 1) 2b
S

[cos ] B[cos ]
2

θ
θ

θ θ
θ θ

+ θ θ θ= + θ − θ − θ
+ +

+ θ − θ

e

i

2 2 2 2
v

2 2 2 2

K A (cos ) (1 sin ) b cos ( b 1 sin )
a [ ln ( )ln ]

2 (1 sin )4b 2 b 1 ( b 1 sin )

θ
θ

θ − θ + θ + − θ= −
+ θ + + + θ

 

A3- The Temperature Gradient Equation 

Due to the human printing error appeared in the equation 

form in references [4 & 5], the author had to re-derive the 

equation and he is sure that the equation form in reference [4] 

is the correct one. So, this form will be adopted after 

replacing the parameter (S) in this form with that of 

references [1-3] to be matching with the author’s previous 

studies. 

2
21

v
2

2 1

2
1

dT p dP dP (S sin 2 )
( ) [( ) 2S sin(2 ) ( )

d c d d 0.84

R sin dP
12( ) ](S sin 2 ) Re f .[4]

dp h

−

θ= − θ +
θ ρ θ θ

µ Ω θ+ θ −
θ
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2 2

2
2 1

2
1

dT dP dP S sin 2
[( ) 2S sin(2 ) ( ) ( )

d d d 0.84
R sin dP

12( ) ](S sin 2 ) Re f . [5]
dp h

−

θ= + θ +
θ θ θ

µ Ω θ+ θ −
θ

 

Where: 

2 2

1

0.15 R
S

p

ρΩ=  

A4-The integration of the frictional factor equation: 

e

i

2 2 2
v
3

(c os )(1 K sin )(cos 1)
M d (cos )

cos

θ

θ

θ + σ − θ θ −= θ
θ∫

 

e

i

M X d ( c o s )

θ

θ

= θ∫
 

2 2 2
v
3

(c o s )(1 K sin )(c o s 1)
X

c o s

θ + σ − θ θ −=
θ

 

Re-arranging: 

4 2 2 2

3

4 2 2 2

3

cos ( 1) cos
X [ ]

cos
K sin {cos ( 1) cos }

[ ]
cos

θ + σ − θ − σ= −
θ

θ θ + σ − θ − σ
θ

 

X term (1) term (2)= −  

Integration of term (1) 

It could be found in Yacout [1] as: 

e

i

2 2
2

1 2

cos
I [ ( 1) ln (cos ) ]

2 2 cos

θ
θ

θ σ= + σ − θ + −
θ

 

Integration of term (2) 

4 2 2 2
v

3

2 2
v v v 3

K sin {cos ( 1) cos )}
term (2)

cos
sin sin

K sin cos K ( 1)( ) K ( )
cos cos

θ θ + σ − θ − σ=
θ

θ θ= θ θ + σ − − σ
θ θ

 

Integration of term (2): 

2 2
2 v 1 v 2 v 3I K a K ( 1)a K a= + σ − − σ

 

Where: 

e

i

1a sin cos d (cos )

θ

θ

= θ θ θ∫  

e

i

2

sin
a ( )d (cos )

cos

θ

θ

θ= θ
θ∫

 

e

i

3 3

sin
a ( ) d (cos )

cos

θ

θ

θ= θ
θ∫

 

Integration of each part: 

e

i

1a sin cos d (c os )

θ

θ

= θ θ θ∫
 

e e

i i

2 2
1a sin cos d sin d (sin )

θ θ

θ θ

= − θ θ θ = − θ θ∫ ∫  

e

i

3

1

sin
a [ ]

3

θ
θ

θ= −  

e e

i i

e

i

2

2

2

sin sin
a ( )d(cos ) ( )d

cos cos

(1 cos )
d

cos

θ θ

θ θ
θ

θ

θ θ= θ = − θ
θ θ

− θ= − θ
θ

∫ ∫

∫
 

e e

i i

e e

i i

2

1
a cos d d

cos

1
[sin ] [ln (tan )]

cos

θ θ

θ θ
θ θ
θ θ

= θ θ − θ
θ

= θ − θ +
θ

∫ ∫  

e

i
2a [sin ln (tan sec )]

θ
θ= θ− θ+ θ  

e

i

e e

i i

3 3

2
2

3
3

sin
a ( ) d(cos )

cos

sin 1 cos( ) d ( ) d
cos cos

θ

θ
θ θ

θ θ

θ= θ
θ

θ − θθ= − = − θθ θ=

∫

∫ ∫
e

i

e e

i i

3

3

1 1
( ) d

cos cos

1 1
( ) d ( ) d

cos cos

θ

θ
θ θ

θ θ

= − θ
θ θ

= θ − θ
θ θ

∫

∫ ∫

 

Then: 

e

e

i

i

1 1
( ) d [ln (tan )]

cos cos

θ
θ
θ

θ

θ = θ +
θ θ∫    

And: 

e e

i i

e

i

3

3

1
( ) d (ecs ) d
cos

1
[sec tan ln (sec tan )]

2

θ θ

θ θ
θ
θ

θ = θ θ
θ

= θ θ + θ + θ

∫ ∫  

Then: 

e

i

e

i

e

i

3a [ln (sec tan )]

1
[sec tan ln (sec tan )]

2
1

[ ln (sec tan ) sec tan ]
2

θ
θ

θ
θ

θ
θ

= θ + θ −

θ θ + θ + θ

= θ + θ − θ θ

 

Then: 

2 2
2 v 1 v 2 v 3I K a K ( 1)a K a= + σ − − σ  
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e

i

e

i

e

i

3
2 v

2
v

2
v

I K [sin 3 ]

K ( 1)[sin ln (tan sec )]

1
K [ ln (sec tan ) sec tan ]

2

θ
θ

θ
θ

θ
θ

= − θ +
σ − θ− θ+ θ −

σ θ + θ − θ θ
 

e

i

2
2 v

2 3

I K [( 1){sin ln (tan sec )}

sin
{ ln (sec tan ) sec tan } ]

2 3

θ
θ

= σ − θ − θ + θ −
σ θθ + θ − θ θ −  

The whole integration: 

1 2M I I= −  

e

i

e

i

2 2
2

2

2
v
2 3

cos
M [ ( 1) ln (cos ) ]

2 2cos
K [( 1){sin ln (tan sec )}

sin
{ln (sec tan ) sec tan } ]

2 3

θ
θ

θ
θ

θ σ= + σ − θ + − −
θ

σ − θ− θ+ θ −
σ θθ+ θ − θ θ −

 

A5- The adopted form of the Temperature equation 

2
21

v
2

2 1

2
1

dT p dP dP (S sin 2 )
( ) [( ) 4S sin(2 ) ( )

d c d d 0.21

R sin dP
12( ) ](2S sin 2 )

dp h

−

θ= − θ +
θ ρ θ θ

µ Ω θ+ θ −
θ

 

Where: 

2 2
1S 3 40( R p )= ρΩ  

A6- The adopted form of the viscosity equation 

Two forms of the viscosity variation equation have been 

applied in previous studies [3, 4 and 5], a comparison 

between both is shown in figure (A1).  

 

Figure 1A. Comparison between the two equations of the viscosity variation. 

The adopted equation in this study is: 

i v(1 K sin ) Ref . [4]µ =µ − θ  
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