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Abstract: The natural frequencies of non-uniform beams resting on two layer elastic foundations are numerically obtained 

using the Generalized Differential Quadrature (GDQ) method. The Differential Quadrature (DQ) method is a numerical 

approach effective for solving partial differential equations. A new combination of GDQM and Newton’s method is introduced 

to obtain the approximate solution of the governing differential equation. The GDQ procedure was used to convert the partial 

differential equations of non-uniform beam vibration problems into a discrete eigenvalues problem. We consider a 

homogeneous isotropic beam with various end conditions. The beam density, the beam inertia, the beam length, the linear (k1) 

and nonlinear (k2) Winkler (normal) parameters and the linear (k3) Pasternak (shear) foundation parameter are considered as 

parameters. The results for various types of boundary conditions were compared with the results obtained by exact solution in 

case of uniform beam supported on elastic support. 

Keywords: Non-linear Elastic Foundation, Vibration Analysis, Non-uniform Beam, Mode Shapes and Natural Frequencies, 

GDQM and Newton’s Method 

 

1. Introduction 

Beams resting on linear and non-linear elastic foundations 

have many practical engineering applications as railroad 

tracks, highway pavement, buried pipelines and foundation 

beams. Due to the difficulty of mathematical nature of the 

problem, a few analytical solutions limited to special cases 

for vibrations of non-uniform beams resting on non-linear 

elastic foundations are found. Many methods are used to 

obtain the vibration behavior of different types of linear or 

nonlinear beams resting on linear or nonlinear foundations 

such as finite element method [1-3], transfer matrix method 

[4], Rayleigh-Ritz method [5], differential quadrature 

element method (DQEM) [6-10], Galerkin procedure [11, 12] 

and [13-15]. There are various types of foundation models 

such as Winkler, Pasternak, Vlasov, etc. that have been used 

in the analysis of structures on linear and non-linear elastic 

foundations. Also, There are different beam types such as the 

Euler-Bernoulli which for slender beams and Timoshenko 

beam model for moderately short and thick beams. Balkaya 

et al. [16] studied vibration of a uniform Euler beam on 

elastic foundation using Differential Transform Method. 

Also, Ozturk and Coskun [17] studied the same problem 

using HPM. Avramidis and Morfidis [18] analyzed bending 

of beams on three-parameter elastic foundation.  
Abrate et al. [19, 21] studied the vibrations of non-uniform 

rods and beams using the Rayleigh-Ritz scheme. Hodges et 

al. [22] used a discrete transfer matrix scheme to compute the 

fundamental frequencies and the corresponding modal 
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shapes. Sharma and DasGupta [23] used the Green’s 

functions to study the bending of axially constrained beams 

resting on nonlinear Winkler type elastic foundations. 

Beaufait and Hoadley [24] used the midpoint difference 

technique to solve the problem of elastic beams resting on a 

linear foundation. Kuo and Lee [25] used the perturbation 

method to investigate the deflection of non-uniform beams 

resting on a nonlinear elastic foundation. Chen [26] used the 

differential quadrature element approach to obtain the 

numerical solutions for beams resting on elastic foundations.  

Bagheri et al. [27] studied the nonlinear responses of 

clamped–clamped buckled beam. They used two efficient 

mathematical techniques called variational approach and 

Laplace iteration method in order to obtain the responses of the 

beam vibrations. Nikkar et al. [28] studied the nonlinear 

vibration of Euler-Bernoulli using analytical approximate 

techniques. Li and Zhang [29] used the B-spline function to 

derive a dynamic model of a tapered beam. Ramzy et al. [30] 

presented a new technique of GDQM for determining the 

deflection of a non-uniform beam resting on a non-linear elastic 

foundation, subjected to axial and transverse distributed force. 

Ramzy et al. [31] presented some problems in structural analysis 

resting on fluid layer using GDQM. Ramzy et al. [32] studied 

free vibration of uniform and non-uniform beams resting on 

fluid layer under axial force using the GDQM. The details of the 

DQM and its applications can be found in [33-34]. 

From previous studies, there are no any attempts to study 

vibration of non-uniform beam resting on two non-linear 

elastic foundations with the linear and nonlinear Winkler 

(normal) parameters and the linear Pasternak (shear) 

foundation parameter. The main goal of this study, to present 

a new combination of a GDQM and Newton’s method to 

obtain the fundamental frequencies and the corresponding 

modal shapes of non-uniform beams resting on two layer 

elastic foundations under appropriate boundary conditions.  

2. Formation 

The kinetic energy of a beam with a non-uniform cross-

section resting on an elastic foundation is as follows:  

2

0

( , )
,

2

L
A v x t

T dx
t

ρ ∂ =  ∂ 
∫  0 ≤ x  ≤ L.                  (1) 

Where the length of the non-uniform beam L, the vertical 

displacement v, the cross- sectional area of the beam A and 

the density of the beam material ρ. 

The strain energy of a non-uniform beam resting on an 

elastic foundation can be derived as follows:  

[ ]
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2
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Where the inertia of the beam I, the constant of the 

foundation k and Young's modulus of the beam material E.  

Due to the axial loading, the work done can be written as 

follows,  

Work = 

2

0

1 ( , )
.

2

L
v x t

p dx
x

∂ 
 ∂ 

∫                        (3) 

Where, p is the axial force. 

The Hamilton's principle is given by:  

( )
2

1

. 0,

t

t

T U W dtδ δ δ− + =∫                        (4) 

where δW is the virtual work. 

Substituting from Equations (1), (2) and (3) into Equation 

(4) yields, 

2 2 2 2

2 2 2 2
0

v v v
E I A p k v

x x t x
ρ

 ∂ ∂ ∂ ∂+ + + = ∂ ∂ ∂ ∂ 
           (5) 

Equation (5) represents the equation of motion of non-

uniform beam resting on elastic foundations under axial 

force.  

The corresponding boundary conditions are as follows:  

For Clamped-Clamped supported (C-C);  

(0)
(0) 0

dW
W

dX
= =                                   (6) 

( )
( ) 0

dW L
W L

dX
= =                                   (7) 

For Simply–Simply supported (S–S); 

2

2

(0)
(0) 0

d W
W

dX
= =                                  (8) 

2

2

( )
( ) 0

dW L
W L

dX
= =                                 (9) 

For Clamped–Simply supported (C–S); 

(0)
(0) 0

dW
W

dX
= =                                (10) 

2

2

( )
( ) 0

dW L
W L

dX
= =                             (11) 

The vibration equation of a flexural non-uniform beam 

resting on two-layer elastic foundation is given as: 

2 2 2 2 2
3

1 2 32 2 2 2 2
( , )

v
EI A p k k k f x t

x x t x x

ν ν νρ ν ν
 ∂ ∂ ∂ ∂ ∂+ + + + − = ∂ ∂ ∂ ∂ ∂ 

, 0 x L≤ ≤                                    (12) 
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To obtain the natural frequencies and mode shapes, one 

can assume: 

(x, t) V (x) e ,
i t

v
ω=                              (13) 

(x, t) (x) e .
i t

f q
ω=                              (14) 

Where the amplitude of free vibration V(x), the natural 

frequency of the beam ω and the external dynamic 

distributed load applied q(x, t). 
 

Figure 1. Non uniform beam on two-layer elastic foundation under axial 

and transverse load. 

Substituting form Equations (13) and (14) into Equation (12) yields 

( )
2 2 2

2
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exp( ) exp ( ) exp( ) exp( )

d V V
EI i t AV i t p i t k V i t

x dx x
ω ρ ω ω ω ω

 ∂ ∂+ + + + ∂ ∂ 
 

( )
2

3

2 3 2
exp (3 ) exp( ) q(x) exp( ),

d V
k V i t k i t i t

dx
ω ω ω− =  0 x L< <                                        (15) 
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Through the normalization process we can transform Equation (16) into non-dimensional form as follows, 

4 3 2 2 2
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The non-dimensional coefficients are: 
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Where the non-dimensional deflection of the beam W, the 

non-dimensional axial loading P, the non-dimensional 

foundation linear stiffness K, the non-dimensional frequency 

of the beam Ω, the beam's flexural rigidity EI, the mass per 

unit length ρA and the inertia ratio S(X). 

Equation (17) is a 4
th

 order ordinary differential equation 

with inertia ratio 2

1( ) (1 )S X X
αα= + . In this section, we will 

study two cases of inertia ratio S(X); the first case α1 = 0.5, 

α2 =1 and the second case α1 = −1, α2 =1. 

3. Solution of the Problem 

The method of GDQ is employed to solve the problem. 

This method requires to descretize the domain of the problem 

into N pointes. Then the derivatives at any points are 

approximated by a weighted linear summation of all the 

functional values along the descretized domain, as follows 

[33-34]: 

( )
1

. ( ),

i

N

x i ij j

jx

df
f x A f x

dx =

= =∑  for i=1, 2, 3,…, N.      (18) 

Where, Aij represented the weighting coefficient, and N is 

the number of grid points in the whole domain. Equation (18) 

is called Differential Quadrature (DQ) technique. It should be 

noted that the weighting coefficients Aij are different at 

different location of xi. The key to DQ is to determine the 

weighting coefficients for the discretization of a derivative of 

any order.  

The weighting coefficient can be determined by making 

use of Lagrange interpolation formula as follows: 

( )
(1)

k k

( )
,

(x x ) M (x )
k

M x
g x =

−
 where k = 1, 2,3,…, N       (19) 

( ) 1 2( )( ).......( )NM x x x x x x x= − − −                 (20) 

( )(1)

1,

( )
N

i i N

k k i

M x x x
= ≠

= −∏                       (21) 

By applying Equation (19) at N grid points, they obtained 

the following algebraic formulations to compute the 

weighting coefficients Aij.  
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For calculating the weighting coefficients of m
th

 order 

( ) (1) ( 1) ( 1) (1). .m m mA A A A A− −         = =           m = 2, 3, 4,…, N-1                                               (24) 

The accuracy of the results obtained by DQM, is affected 

by choosing of the number of grid points, N, and the type of 

sampling points, xi. It is found that the optimal selection of 

the sampling grid points in the vibration problems, are 

chosen according to Gauss-Chebyshev-lobatto points [33-

34], 

1 1
( ) 1 cos

2 1

i
X i

N
π −  = −   −  

, i=1, 2, 3,…, N            (25) 

Applying the GDQ discretization scheme to the non-

dimensional governing Equation (17) yields; 
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Where 
i

W  is the functional value at the grid points 
i

X . 

ijB , ijC  and ijD  is the weighting coefficient matrix of the 

second, third and forth order derivatives. 

Applying the GDQ discretization scheme to the boundary 

conditions are given by Equation (6) through (11) we obtain, 

For Clamped–Clamped (C–C) yields;  

1 1

1

0
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j
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=
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1

0
N
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=

= =∑                                 (28) 

For Simply–Simply (S–S) yields; 
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j

W B W
=
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For Clamped–Simply (C–S) yields; 
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j
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1

0
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j

W B W
=
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Using the method of direct Substitutions of the Boundary 

Conditions into the Governing Equations (SBCGE). The 

essence of the approach is that the Dirichlet condition is 

implemented at the boundary points, while the derivative 

condition is discretized by the DQM. The discretized 

derivatives conditions at two ends are then combined to give 

the solutions 
2

W  and 
1N

W − . The expression for 
2

W  and 
1N

W −  

are then substituted into the discrete governing equation 

which is applied to the interior points 3 2i N≤ ≥ − . The 

dimension of the equation system using this approach is 

( ) ( )4 4N N− × − .  

For clamped and simply supported end conditions, the 

discrete boundary conditions using the DQM can be written 

as: 

1
0W =                                                (33) 
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1,

1

. 0
N

n

k k

k

C W
=
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0
N

W =                                              (35) 
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,
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. 0.
N

n

N k k

k

C W
=
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Where n0 and n1 may be taken as either 1 or 2. By 

choosing the value of n0 and n1, Equation (33) through (36) 

can give the following four sets of boundary conditions, 

n0 = 1, n1 = 1 - clamped–clamped supported. 

n0 = 1, n1 = 2 - clamped–simply supported. 

n0 = 2, n1 = 1 - simply–clamped supported. 

n0 = 2, n1 = 2 - simply supported–simply supported. 

Equations (33) and (35) can be easily substituted into the 

governing equation. We can couple Equation (34) and (36) 

together to give two solutions, 
2

W  and 
1N

W − , as 

2

2

3

1
. 1. ,
N

k

k

W AXK W
AXN

−

=

= ∑                         (37) 
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Where; 
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According to Equations (37) and (38), 2
W  and 1N

W −  are 

expressed in terms of 3
W , 4

W ,…, 2N
W − , and can be easily 

substituted into the governing Equation (26). It should be 

noted that Equations (33) through (36) provides four 

boundary equations. In total, we have N unknowns 2
W ,

3
W ,…, N

W . In order to close the system, the discretized 

governing equation (26) has to be applied at (N − 4) mesh 

points. This can be done by applying Equation (26), at grid 

points 3
X , 4

X ,…, 2N
X − . Substituting Equations (33), (35), 

(37) and (38) into Equation (26) gives the system of 

equations (39). 
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Assuming that the external dynamic distributed load 

changes as the deflection amplitude change, then the 

governing equations system (39) can be written as 
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It is noted that Equations (40) has (N−4) equations with 

(N−4) unknowns, which can be written in matrix eigen-value 

form as 

[ ] { } { } { }3 2

2. . .A W K W W+ = Ω                    (41) 

{ } { }3 4 2, ,.....,
T

NW W W W −=
 

4. Results 

In this section forced vibration of Euler–Bernoulli of non-

uniform beams resting on two layer elastic foundations under 

axial and transverse load is analyzed. The GDQM is used to 

compute the first three natural frequencies and the 

corresponding mode shapes for the forced vibration of non-

uniform under axial and transverse force with two cases of 

inertia ratio 2

1( ) (1 )S X X
αα= + , the first case: 1 α1 = 0.5, α2 

= 1.0 and the second case: α1 = -1.0, α2 = 1.0, with three 

different types of end conditions. Fifteen non-uniformly 

spaced grid points were chosen by the previous relation. 

4.1. Accuracy and Stability 

In order to discuss the stability and accuracy of the 

GDQM, uniform beams are solved using the present 

approach for implementing the boundary conditions and the 

results are compared with the exact results available in the 

literature. The exact solutions are introduced as found in 

Qiang [34] and Blevins [35] for uniform beam S(X) = 1.0. 

The results are presented in Tables (1) through (3). 

Tables (1) through (3) show the first three non-dimensional 

natural frequencies of uniform beam Clamped–Clamped 

Beam (C–C) Supported, Simply–Simply (S–S) Beam 

Supported and Clamped–Simply Beam (C–S) supported, 

respectively. Fifteen non-uniformly spaced grid points were 

chosen by the previous relation. 

The absolute relative error typed in Tables (1) through (3) 

represents the accuracy of the GDQM. This absolute relative 

error can be defined by the formula, Present-Exact 
100

Exact 
× . 

Examining the three tables. 

Table 1. The first three non-dimensional frequencies of uniform Clamped–

Clamped beam. 

Natural Frequency Ω1 Ω2 Ω3 

Exact (Qiang [34], Blevins [35]) 22.3733 61.6728 120.9034 

Present (SBCGM) 22.3733 61. 6728 120.9021 

Absolute relative error % 0.0000 0.0000 0.0011 

Table 2. The first three non-dimensional frequencies of uniform Simply–

Simply beam. 

Natural Frequency Ω1 Ω2 Ω3 

Exact (Qiang [34], Blevins [35]) 9.8696 39.4784 88.8264 

Present (SBCGM) 9.8696 39.4784 88.8249 

Absolute relative error % 0.0000 0.0000 0.0016 

Table 3. The first three non-dimensional frequencies of uniform Clamped–

Simply beam. 

Natural Frequency Ω1 Ω2 Ω3 

Exact (Qiang [34], Blevins [35]) 15.4182 49.9648 104.2477 

Present (SBCGM) 15.4182 49.9648 104.2471 

Absolute relative error % 0.0000 0.0000 0.0006 

4.2. Results Using a Proposed Technique of GDQM 

Tables (4) and (5) show the first three non-dimensional 

natural frequencies of non-uniform beam resting on two layer 

elastic foundations with two cases of inertia ratio 
2

1( ) (1 ) ,S X X
αα= +  the first case: 1, α1 = 0.5, α2 = 1.0 and 

the second case: 2, α1 = -1.0, α2 = 1.0, under the three sets of 

boundary conditions. Fifteen non-uniformly spaced grid 

points were chosen by the previous relation. 

It can be observed from Table (4) and (5) that, the natural 

frequencies increase when the beam resting on two layer 
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elastic foundations. 

The corresponding mode shapes are presented in Figures 

(2-7). Figures (2-4) for the first case of inertia ratio and 

Figures (5-7) for the second case of inertia ratio. 

Case (1): 

Table 4. The first three non-dimensional frequencies of non-uniform 

supported beam (P = 1, F = 1, ( ) (1 0.5 )S X X= + ). 

Foundation 

parameters 

Natural 

Frequency (C-C) 

Natural 

Frequency (S-S) 

Natural 

Frequency (C-S) 

K1 = 1.0, Ω1 = 24.8883 Ω1 = 11.0035 Ω1 = 16.9279 

K2= 1.0, Ω2 = 68.6339 Ω2 = 43.9763 Ω2 = 55.3994 

K3= 1.0 Ω3 =134.5731 Ω3 = 98.9180 Ω3 =115.8263 

Case (2): 

Table 5. The first three non-dimensional frequencies of non-uniform 

supported beam (P = 1, F = 1, ( ) (1 )S X X= − ). 

Foundation 

parameters 

Natural 

Frequency (C-C) 

Natural 

Frequency (S-S) 

Natural 

Frequency (C-S) 

K1 = 1.0,  Ω1 = 11.9742 Ω1 = 6.3249 Ω1 = 10.3991 

K2= 1.0,  Ω2 = 34.3839 Ω2 = 24.6150 Ω2 = 31.1571 

K3= 1.0 Ω3 = 68.3635 Ω3 = 53.5371 Ω3 = 63.4720 

Case (1): 

 
Figure 2. The first three mode shapes of non-uniform Clamped–Clamped 

supported beam (K1= 1.0, K2= 1.0, K3= 1.0, P = 1, F = 1, 

( ) (1 0.5 )S X X= + ).  

  
Figure 3. The first three mode shapes of non-uniform Simply–Simply 

supported beam (K1= 1.0, K2= 1.0, K3= 1.0, P=1, F=1, ( ) (1 0.5 )S X X= + ).  

 
Figure 4. The first three mode shapes of non-uniform Clamped–Simply 

supported beam (K1= 1.0, K2= 1.0, K3= 1.0, P=1, F=1, ( ) (1 0.5 )S X X= + ).  

Case (2): 

 

Figure 5. The first three mode shapes of non-uniform Clamped–Clamped 

supported beam (K1= 1.0, K2= 1.0, K3= 1.0, P=1, F=1, ( ) (1 )S X X= − ). 

 
Figure 6. The first three mode shapes of non-uniform Simply – Simply 

supported beam (K1= 1.0, K2= 1.0, K3= 1.0, P=1, F=1, ( ) (1 )S X X= − ). 

 
Figure 7. The first three mode shapes of non-uniform Clamped–Simply 

supported beam (K1= 1.0, K2= 1.0, K3= 1.0, P=1, F=1, ( ) (1 )= −S X X ). 
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To examine the effect of the non-linear elastic foundation 

"K2", we fix the other values of elastic foundations "K1" and 

"K3", the value of axial load "P" and the value of distributed 

dynamic force "F". Then draw "K2" versus the natural 

frequency. It is clear that increasing the non-linear elastic 

foundation "K2" increases the natural frequency of the beam, 

Figures (8-10) for the first case of inertia ratio and Figures 

(11-13) for the second case of inertia ratio. 

Case (1): 

 
Figure 8. The first three non-dimensional frequencies of non-uniform 

Clamped–Clamped beam with various K2 (P=1.0, F=1.0, 

( ) (1 0.5 )S X X= + ). 

 
Figure 9. The first three non-dimensional frequencies of non-uniform Simply 

–Simply beam with various K2 (P=1.0, F=1.0, ( ) (1 0.5 )S X X= + ). 

 

Figure 10. The first three non-dimensional frequencies of non-uniform 

Clamped–Simply beam with various K2 (P=1.0, F=1.0, ( ) (1 0.5 )S X X= + ). 

Case (2): 

 

Figure 11. The first three non-dimensional frequencies of non-uniform 

Clamped–Clamped beam with various K2 (P=1.0, F=1.0, ( ) (1 )S X X= − ). 

 
Figure 12. The first three non-dimensional frequencies of non-uniform 

Simply –Simply beam with various K2 (P=1.0, F=1.0, ( ) (1 )S X X= − ). 

 
Figure 13. The first three non-dimensional frequencies of non-uniform 

Clamped–Simply beam with various K2 (P=1.0, F=1.0, ( ) (1 )= −S X X ). 

5. Conclusion 

In this paper, an efficient algorithm based on a new 

combination of a GDQM and Newton’s method presented for 

solving eigenvalue problems of non-uniform beams resting 

on two layer elastic foundations. Appropriate boundary 

conditions and the GDQM are applied to transform the 

partial differential equations of non-uniform beams resting on 

two layer elastic foundations into discrete eigenvalue 

problems. The results for various types of boundary 

conditions were compared with the results obtained by exact 

solution in case of uniform beam supported on elastic 

support.  

From the parametric study of nonlinear elastic foundation of 

vibration analysis for various types of boundary conditions, that, 
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the natural frequency of the beam increases with increasing the 

nonlinear Winkler (normal) foundation parameter (K2) 
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