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Abstract: An artificial neural network (ANN) is adjusted to make analytical approximation of objective function for a 

specific structural acoustic application. It is used as the replacement of the main real objective function during the 

optimization process. The goal of optimization is to find the best geometry modification of the considered model which is 

supposed to produce lower values of the radiated sound power levels. The result of this study shows that the function 

approximation by neural networks can reduce the duration of optimization procedure. Furthermore, the tuning of ANN 

internal parameter settings is a real challenge to be considered. 

Keywords: Design, Optimization, Vibroacoustic, Artificial Neural Networks, Mechanical Structures, Rectangular Plate 

 

1. Introduction 

Passive noise control describes methods to optimize 

structures numerically with respect to various acoustical 

and structural properties such as the root mean square level 

of the structural particle velocity, the radiated sound power 

etc. A survey of methods and applications of structural 

acoustic optimization for passive noise control can be 

found in the review paper by Marburg [1].  

Neural network imitates a neurobiological process that 

processes input and generates output; it can be trained by 

pairs of input and output data. During this training period, 

weight factors are adjusted in the connections between 

certain nodes of the network so that the generated output 

matches expected output data. Once trained, the network is 

used as a simple function that substitutes for an original one. 

A technique for general subsequent usage of artificial 

neural networks (ANN) was proposed by Arslan et al. [2]. 

ANN method (NN) is more suitable for the applications in 

which is no way to describe the problem with an analytical 

function. A trained network presents a rapid mapping of 

given input into the desired output quantities, thereby 

enhancing the efficiency of the redesign process.  

The ANN training comprises the following tasks. At first 

select the proper training set, then find the suitable network 

architecture and determine the appropriate values of 

characteristic parameters such as the learning rate and 

momentum term [3]. However, few applications of neural 

networks as approximation scheme are known for structural 

acoustics. Nagaya and Li [4] applied a three–layered neural 

network system for optimization of fifteen variables. 

Another example of neural networks utilized holographic 

neural network [5]. 

Kirkpatrick et al. [6] were the first to present the 

simulated annealing (SA) concept. This method is able to 

escape from local minima and find the global minimum [7, 

8].  SA algorithm was adapted to problems with 

continuous variables by Corana et al. [9]. The adapted 

version was tested against an adaptive random search 

method and the Nelder and Mead simplex algorithm [10], 

using some of Rosenbrock’s test functions [11]. 

Furthermore, a simulated annealing algorithm was used by 

Constans et al. [12] to minimize the sound power radiated 

from a vibrating shell structure. Also, Shim and 

Manoochehri [13] presented a computer-based shape 

configuration design methodology employing of SA 

method to generate optimum design of specified structures 

satisfying the structural performance requirements and the 

geometric connectivity of the model. 

The problem which will be considered in the current 

paper is too complex to be solved analytically. Therefore, 

only a numerical solution is possible. An ANN is used to 

calculate a numerical model from the objective function. 

ANN trains a set of neurons to work as a replacement for 

the main objective function. For this purpose, a set of 
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training members including the main objective function’s 

values in several discrete design points are be considered. 

Then the neural network is being trained to simulate the 

main objective function virtually. Then the trained 

objective function can be calculated in a shorter time than 

other methods as well as finite elements analysis. 

After careful review of previous works in the field of 

structural acoustic optimization, it is experienced that there 

is a lack of study on the combination of artificial neural 

networks as a virtual function approximation tool and 

simulated annealing method as an optimization tool in 

structural acoustics. The aim of this paper is to explore this 

open research area in structural acoustics. At this regard, 

the global approximation scheme ANN is used in 

combination with the simulated annealing method [14]. 

Furthermore, the results which are presented in this work 

stem from Ranjbar [15]. His work contains many more 

details and even comparison between additional methods 

which are not discussed in detail in this paper.  

2. Optimization Procedure  

A reliable measure for the noise emitted from the structure 

or machine part is the level of radiated sound power or sound 

power level, which is a function of circular frequency [16, 

17, 18]. In this paper, only structure borne sound is 

considered. It means that there is no coupling between the 

structure and the surrounding fluid, i.e. Air. So, the air has no 

effects and induces no pressure on the surface of the model. 

Furthermore, the half-plan radiation is considered. Also, the 

radiation efficiency is considered as one.  

The level of structure borne sound can be interpreted as a 

measure of the vibrational sensitivity of a structure when 

subjected to some excitation.  

Since acoustic power is determined by the surface 

velocity, one alternative and less computationally expensive 

objective function is to consider only vibrational efficiency 

of the structure as expressed by the mean square normal 

velocity [19]. This is also known as the equivalent radiated 

sound power [20]. So, an equivalent radiated sound power 

level is considered as the objective function to be 

minimized. 

The level of structure born sound (LS) constitutes a 

spectrum, i.e. it is a function of circular frequency. To obtain 

some single global measure of the vibrational behavior of a 

structure in a given frequency range of interest, the root 

mean square level of structure borne sound over that 

frequency band, known hereafter as RMSL [21], is 

calculated as 
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In Eq. (1), maxω and minω are the lower and upper 

bounds of the circular frequency range under consideration, 

respectively. The RMSL is the root square of the area 

beneath the LS spectrum divided by the width of the 

frequency band and can be computed numerically. In this 

paper, the RMSL is considered as the objective function to 

be minimized. 

The level of structure born sound (LS) constitutes a 

spectrum, i.e. it is a function of circular frequency ω.  

As it is indicated, a global measure of the vibration 

behavior of a structure is the root mean square level of 

structure borne sound over that frequency band, known 

RMSL.  

The RMSL is the root square of the area beneath the LS 

spectrum divided by the width of the frequency band. Herein, 

the RMSL is the objective function (F) for the minimization.  

The structure to be optimized is a square plate made of 

steel [22,23]. The damping is assumed to be independent of 

frequency with a constant damping coefficient of 0.3%. The 

concept of geometry based modeling technique is followed 

[24].  

Herein, the optimization problem is defined as follows 

min,)()( →= υυ RMSLF               (2) 

While the set of design variables remain in a prescribed 

interval of lower and upper modification values as 

.1010 mmmm i ≤≤− υ               (3) 

Equation (3) defines the design space just as a 

nine-dimensional cube since all parameters are allowed to 

take values within the same fixed interval and all parameters 

are independent of each other’s.  There are no additional 

equality and inequality constraints.  

As mentioned above, the design 

variables, )9,,2,1( …=iZ i
, are the positions of specific 

points, in other words, the normal geometry modifications at 

these movable points. If the shape of the surface is varied by 

means of a spline function, then the positions of the spline 

points are the design variables.  

Fig. 1 depicts the FE model. The geometry is defined by a 

square of 1m edge length. Also, nine design key-points, i.e., 
)9,,2,1( …=iZ i

are considered on the surface of the plate. 

The plate is composed of 16 areas. Each area is meshed by 

5×5 quadrilateral, eight node Serendipity shell elements [24], 

i.e. the plate’s mesh consists of 400 finite elements. The 

plate is simply supported. It is 1 mm thick.  

There are three uniform harmonic pressure excitations on 

the surface of plate which are shown with the hatched areas 

in Fig. 1. All of them act at the same amplitude and phase 

and are uniform over the frequency range of 0-100 Hz. The 

excitations pressures act at the locations where presumably 

all relevant mode shapes of the structure in the frequency 

range of interest are excited. 
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Figure 1. Initial model of the rectangular plate with three harmonic 

excitations (hatched areas) and nine design points connected with splines to 

each other’s. 

The optimization method basically works as follows: 

build initial approximation by ANN based on a given sample 

set which were calculated by previous experiments, use 

optimization method to find the minimum of the 

approximated objective function to get a new design, 

evaluate the new design with the full analysis code, use the 

new results to improve the accuracy of the optimum designs 

and continue until termination criterion is met. The main 

termination criterion used in this study is the maximum 

number of function evaluations, e.g. 500 function 

evaluations. 

In this paper an ANN is used to be trained for the 

calculation of objective function. The objective function 

values produced by ANN are used for the optimization 

process by SA method. Indeed, it is a combination of ANN 

method as the function approximation tool and method of 

Simulated Annealing as the optimizer tool.  

The considered neural network has five hidden neurons 

and uses the back propagation learning algorithm. Initial and 

final learning rates are 0.1 and 0.01. ANN using an initial 

training set of 110 function samples. Training loop is 

repeated for 100 times. The optimization iterations are 

continued up to 500 times. However, this number of function 

evaluations is no problem as it takes actually a very short 

time. A back propagation learning algorithm with five 

hidden neurons is used. Initial and final learning rates are 0.1 

and 0.01 in order. The ANN uses an initial training set of 110 

function values. Then, an initial 110 minutes computation 

time must be invested for the calculation of training set. 

There are a lot of possibilities to consider different 

combinations of different larger or smaller training sets, 

different number of training loops, the number of neurons 

and layers and input-output learning rates. 

Choosing the best parameters for a good neural network 

needs itself a separate study and even with try and error 

approach.  

SA method is employed as the optimization tool. It uses 

the calculated approximate function values by ANN method 

for the minimization process. The required parameters for 

SA solver remain unchanged as explained in ref. [8] and are 

similar with the case when the SA solver works as usual to 

find the minimum of an objective function. Just the user 

must provide an initial start design for SA solver and the 

maximum allowable number of objective function 

evaluations. 

Tuning of suitable initial parameters for optimization 

process needs a try and error approach and is beyond of 

scope of this study. Therefore, the basic and previously 

recommended initial settings for ANN in ref. [25] are used 

to avoid the excessive effort for finding a well-tuned set of 

initial parameters. 

The minimum required number of function evaluations 

for HNN method is variable. It is depended on the type of 

objective function approximation by this method. 

3. Optimization Results  

The root mean square of the radiated sound power level 

RMSL of the initial rectangular plate in the frequency range 

of interest 0-100 Hz is 42.7 dB, where the maximum 

radiated sound level of 80.56 dB can be found in the 

spectrum at the fundamental frequency 4.9 Hz. The 

structural mass of the initial structure can easily be 

determined analytically.  

All of the quantities listed in the table 1 can basically 

serve as either objective function or constraint for the 

optimization calculations. In this paper, as it is mentioned 

before, the root mean square of the radiated sound power 

level (RMSL) is considered as the objective function for the 

optimization process.  

The LS spectrum of the original and initial designs is 

shown in Fig. 2 The maximum LS of the optimized structure 

are decreased to 58.9 dB at the new fundamental frequency. 

The LS value is almost decreased in most of the frequency 

domain. This considerable reduction in the value of 

maximum LS is mainly caused by a suitable control 

parameter setting in algorithm. The proposed optimization 

approach has reduced the RMLS by about 9.6 dB, has 

maximized the first natural frequency by 9.9 Hz, has 

decreased the maximum LS by about 10.2 dB, and has taken 

around 1.86 hours (CPU time) to perform 110 function 

evaluations for an optimization attempt. The optimization 

results for HNN are summarized in Table 1. 

Table 1. Summary of optimization results 

 Initial Design Final Design 

RMSL 42.7 dB 33.1 dB (-9.6 dB) 

Minimum modification -7.58 mm -3.258 mm 

Maximum modification 8.625 mm 9.850 mm 

Fundamental frequency 21.8 Hz 32.8 Hz (+11.1 Hz) 

Maximum LS 69.1 dB 54.9 dB (-14.2 dB) 
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Figure 2. LS spectra of the original and the optimized rectangular plate by 

HNN 

The LS spectrum in Fig 2 shows that there are resonance 

frequencies in the range of 0-100 Hz for the original flat 

plate. It is reduced around five in the initial design which has 

some geometry modifications. Furthermore, it is shown that 

the number of resonance frequencies for the final optimum 

design is relatively similar with initial design case. However, 

it seems that a finer frequency discretization should be used 

in the range of 40-60 Hz, too.   

The contour plot of the plate’s optimized geometry is 

shown in Fig. 3. The optimized geometry distribution can 

also be interpreted as a stiffening rib across the diagonal of 

the plate, which efficiently suppresses vibrations. 

The minimum and maximum geometry modifications, see 

Fig.3, are -3.259 and 9.850 millimeters, respectively. It is 

visible that the modified geometry, will affect most of 

vibrating mode shapes. In fact, they are located in the areas 

which under pressure excitations. 

 

Figure 3. Geometry distribution of the modified rectangular plate (values 

in mm). 

5. Conclusions 

It has been shown that the optimization procedure used 

for this study is able to produce significant improvements of 

the objective function. This method can be used for 

numerical optimization in structural acoustics and it can be 

expected to achieve acceptable results after a certain number 

of objective function evaluations.  

The presented method is able to reduce the RMSL of 

objective function.  

Since the tuning of initial parameters for ANN has been 

done in a tray and error manner, it is actually not possible to 

make a general conclusion about the convergence rate. 

There are still several issues remained to be investigated. 

Other model shapes rather than rectangular should be 

examined. Furthermore, different types of model materials, 

e.g. composites and other metals may be tested. 

The calculation of virtual objective function values by the 

trained NN is very fast. It takes just a few milliseconds. 

Therefore, in comparison with other methods, ANN is 

relatively fast and can produce acceptable optimization 

results. However, designing of an efficient NN depends on 

the type of the problem and the experience of the user and 

sometimes with a trial and error approach.  

Performing of a sensitivity analysis of ANN for the 

various initial parameter settings will be necessary for the 

future works. Indeed, it is necessary to do more researches in 

this field.  
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