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Abstract: The remanufacturing of rolling mill rolls offers significant economic, environmental, and societal benefits. 

However, the uncertainty surrounding the performance degradation of retired rolls and its associated timeline poses challenges to 

the efficiency and cost-effectiveness of roll remanufacturing operations. Therefore, the real-time monitoring of the degradation 

status of rolling mill rolls is of paramount importance. This study presents an approach that combines multi-sensor data fusion 

with a multilayer perceptron (MLP) model, which takes into account economic considerations to predict the degradation status of 

hot-rolling mill work rolls and make online decisions for active remanufacturing. The degradation process of rolling mill rolls is 

analyzed, and degradation performance indicators are established. Eddy current signals and torque signals from the rolling mill 

surface are collected during the roll degradation experiments. The friction coefficient and energy of the Hilbert spectrum of the 

eddy current signal are used as online input features for the MLP model, which is trained using the degradation experiment data. 

The superiority of the proposed MLP model is validated through rolling mill roll degradation experiments. Based on the 

predictions of the MLP model, the optimal timing for remanufacturing rolling mill rolls in the time domain is evaluated using 

Wiener and update-reward theories. This approach enables the online monitoring and quantitative characterization of the 

comprehensive degradation of high-speed steel work rolls and facilitates online decision-making regarding the optimal timing 

for active remanufacturing. 
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1. Introduction 

Rolling is a highly popular metal-forming process, and 

rolling mill rolls are among the most critical components in 

rolling operations [1]. During rolling, hot-rolling rolls come 

into contact with the high-temperature workpiece, where the 

roll surface temperature exceeds 500°C [2, 3]. Simultaneously, 

the rolls need cooling fluid to cool their surfaces. They are 

subjected to prolonged exposure to high-temperature, 

high-stress, and humidity conditions. Consequently, the roll 

surfaces undergo oxidation, and alloy carbides and carbon 

precipitation decompose, which degrades the roll surface 

properties, e.g., the hardness, wear resistance, and resistance 

to heat cracking decrease. Since the condition of the work roll 

surfaces directly affects the profile of the rolled steel, the 

product quality is significantly affected. Moreover, the 

condition of the work roll surfaces is closely related to roll 

fatigue [4]. Therefore, it is essential to monitor the operational 

status of the rolls. Furthermore, after the rolls have been 

retired, the failed portion accounts for only 10–15% of the 

entire roll and is primarily concentrated on the roll surface. To 

fully use the core of the roll and some non-failed layers, it is 

necessary to re-manufacture the rolls. Roll remanufacturing 

offers excellent economic, environmental, and societal 

benefits. However, due to the variations in the time and 

condition of the roll retirement, there is uncertainty in the 

quality of re-manufactured rolls, which can impede the 

progress of remanufacturing efforts. Thus, real-time 
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assessment of the roll conditions is required. The real-time 

assessment of the roll conditions is a crucial aspect of 

addressing the uncertainty in roll remanufacturing and plays a 

vital role in efficiently advancing and managing roll 

remanufacturing operations. 

WEIDLICH et al. [5] proposed a surface damage 

coefficient (k) to assess the surface thermal damage and 

plastic strain of rolls by integrating three process parameters 

with weighting. When k exceeds 375, thermal fatigue 

dominates the damage. WU et al. [6] introduced a 

time-varying oil film stiffness model to identify the size of 

surface defects on rolls. LI et al. [7] used finite element 

methods to demonstrate that the surface stress differences on 

rolls could reach 145.7 MPa, and excessive stress differences 

accelerated the roll fatigue. GARZA-MONTES-DE-OCA et 

al. [8] simulated thermal fatigue in high-speed steel rolling 

rolls through roll testing during thermal cycling, which led to 

roll oxidation, carbide decomposition, and peeling in 

high-frequency thermal cycling. XU et al. [9] noted that the 

slip ratio determined the wear failure mode, which affected the 

wear performance of high-speed steel rolling rolls. When the 

slip ratio reaches 5.5%, the friction coefficient on the roll 

surface reaches its peak. 

Traditional analysis methods focus on the 

micro-mechanical aspects of the working process roll 

conditions, but the subsequent operational status of rolls 

remains uncertain. DENG et al. [10] conducted research on 

the temperature and stress fields to simulate the temperature 

changes of rolls and assess their oxidation behavior. They 

noted that the location of carbide spalling was often where 

cracks were initiated [11]. SUN et al. [12] proposed a 

comprehensive finite element-based model to predict the 

steady-state thermodynamic behavior of the strip-roll system 

and the lifespan of the roll. Therefore, they introduced a roll 

active remanufacturing design approach that considers the 

relationships among multiple rolls. 

Previous research often focused on examining only one 

specific aspect of roll degradation. However, the failure of 

rolls is influenced by multiple factors and cannot be 

determined by a single indicator [7]. Relying on a single 

evaluation metric may result in an incomplete assessment of 

the roll condition. Therefore, there is a need for a 

comprehensive and real-time method to assess the roll status. 

The selection of an appropriate timing for roll 

remanufacturing is also a critical aspect of roll 

remanufacturing efforts. However, research on the 

decision-making process regarding the timing of roll 

remanufacturing is scarce. Gan et al. proposed a digital twin 

model based mold wear monitoring method to improve the 

part quality during stamping [13]. Moreover, they developed a 

IoT based energy efficiency monitoring method to reduce the 

energy consumption in stamping workshop, which improves 

economic efficiency [14]. So, the decision regarding the 

timing of roll remanufacturing should inherently consider the 

economic benefits. In other words, the technical condition of 

the rolls and the costs and benefits associated with 

remanufacturing should be considered to make the most 

suitable decision. Research on this issue is of paramount 

importance for the efficient management and economic 

efficiency of roll remanufacturing work. 

To address the aforementioned challenges in roll 

remanufacturing, this study proposes an online method that 

combines multi-sensor data with multiple features and a 

multilayer perceptron (MLP) model considering the economic 

benefits. This approach aims to predict the degradation status 

of hot-rolling mill work rolls and make active 

remanufacturing decisions in real time. Based on roll 

degradation experiments, the study analyzes roll degradation 

and constructs a comprehensive roll health indicator using the 

Beta method. This indicator quantitatively characterizes the 

health status of the rolls. An MLP model is established to 

predict the roll performance degradation using online 

monitoring methods. By combining online monitoring 

techniques, the friction coefficient during the roll degradation 

process is computed, and time-frequency spectral energy sum 

features are extracted from pulse eddy current signals. These 

online features serve as input vectors for the MLP model to 

enable the real-time monitoring and prediction of the roll 

degradation status. Finally, using the update-reward theory, 

this study provides optimal remanufacturing timing points for 

the rolls considering the economic benefits. This work 

advances the monitoring of the real-time roll status and 

identification of the optimal active remanufacturing timing. 

2. Proposed Method 

The study introduces an online method to predict the 

degradation status of hot-rolling mill work rolls and make 

active remanufacturing decisions while considering the 

economic benefits. Figure 1 illustrates the overall process 

flowchart. The process of predicting the degradation status 

and making active remanufacturing decisions for hot-rolling 

mill work rolls online mainly includes the characterization of 

the roll degradation status, selection and extraction of online 

features, design and training of the MLP model, and economic 

evaluation. The training of the MLP model relies on signals 

collected during equivalent simulated experiments that 

involve the rolling mill, and the degradation status of the rolls 

is evaluated based on a combination of multiple indicators. To 

monitor the rolls online, inputs that can be obtained online are 

extracted and used as inputs for the MLP model. Furthermore, 

before training the MLP model, considering the variability of 

signals from multiple sources, the features extracted from 

multiple sensors are normalized to reduce the computational 

complexity and enhance the model accuracy. Iterative training 

yields an MLP model with high accuracy in recognizing the 

degradation status of the rolls. Based on the remanufacturing 

timing provided by the MLP model, the optimal timing for roll 

remanufacturing in the time domain is evaluated using the 

update-reward theory. 

2.1. Roller Degradation State Representation 

During the rolling process, hot-rolling mill rolls come into 

contact with the high-temperature workpiece, where the roll 
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surface temperature in the contact zone exceeds 500°C [2]. 

Simultaneously, the rolls require a cooling fluid to cool their 

surfaces. Being exposed to prolonged high-temperature, 

high-stress, and humid conditions, the roll surface oxidizes 

over time. This oxidation decomposes the alloy carbides and 

carbon precipitation, which degrades the roll surface 

properties such as the hardness, wear resistance, and 

resistance to thermal cracking. Changes in hardness can alter 

the friction coefficient between the work roll and the 

workpiece, where lower hardness corresponds to lower wear 

resistance and more severe wear [15]. The decline in surface 

hardness of the rolls during their service life can reduce the 

quality of rolled products and exacerbate roll surface 

deterioration and wear. 

 

Figure 1. Flowchart of the roll work status prediction and remanufacturing timing decision. 

Roll wear is a primary contributor to the shortened lifespan 

of rolls [15], where cumulative wear accumulates through 

various stages of wear. 
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In the equation, Mᵢ is the cumulative wear amount for the 

i-th cycle, and mᵢ is the stage wear amount. 

In summary, since oxidation and cracks cannot be 

quantitatively described, to comprehensively characterize the 

working condition of rolls during service, the roll hardness, 

wear amount, and wear resistance (stage wear amount) are 

ultimately selected as the assessment of roll degradation. 

Different indicators of the rolls degrade at varying rates during 

their use, such as [insert example]. Therefore, to determine the 

optimal point for the comprehensive performance indicator of 

rolls, it is necessary to comprehensively evaluate various 
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degradation indicators. 

The Beta distribution measures the likelihood of all possible 

probabilities and can be considered the probability 

distribution function for each probability. In each cycle of 

rolling mill operation, each assessment indicator can be 

represented by a Beta distribution. After various assessment 

indicators have been standardized, they share the same range 

of values as the Beta distribution. Therefore, the Beta 

distribution can flexibly represent various probability 

distribution functions. In this study, based on the Beta 

distribution, the set of roll status assessment indicators is fused 

to comprehensively represent the health status of a roll. The 

process of characterizing the roll health status based on the 

Beta distribution is as follows: 

Step1: Building and Normalization of the Evaluation Index 

Matrix 
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Here, i is the number of stage states that correspond to the 

rolls, j is the number of degradation indicators in the 

assessment indicator set, and xij is the value of the j-th 

assessment indicator of the roll in the i-th stage state. 

To eliminate the influence of different orders of magnitude 

and dimensions among different degradation indicators, it is 

necessary to normalize the indicator matrix. Common 

normalization methods include linear normalization, 

nonlinear normalization, and standardization. Regarding roll 

degradation indicators, the trends of various degradation 

indicators slowly change, the values are relatively 

concentrated, and the maximum and minimum values of each 

indicator remain relatively stable during the roll degradation 

process. Therefore, this study chooses the linear normalization 

method. 

The indicators are further classified into positive and 

negative indicators. In this context, the performance of the 

rolls is positively correlated with the hardness and wear 

resistance and negatively correlated with the wear amount and 

surface rough-ness. In other words, the hardness and wear 

resistance are positive indicators, while the wear amount is a 

negative indicator as follows: 
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where bij is the normalized value that corresponds to the j-th 

assessment indicator of the roll in the i-th stage state. 

Step2: Indicator Fusion 

The Beta distribution is used to combine the normalized and 

weighted indicators of the roll hardness, wear amount, and 

wear resistance. The probability density function (PDF) form 

of the Beta distribution is as follows: 
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The PDF that corresponds to the roller state at cycle k is 

given by the following equation, where α and β are the shape 

parameters of the Beta distribution: 
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The estimated values of parameters αk and γk are: 
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In the equation, ( )1, 2,...,jkb j n=  is the normalized values 

of various indicators for cycle k, and jkw  is the weight of 

indicator jkb . The weights are evenly distributed, and the 

point estimate of the roller's state indicators kHI  for each 

cycle is calculated using the maximum likelihood. 

2.2. Acquisition and Processing of Online Features 

2.2.1. Selection of Online Monitoring Methods 

To monitor the rolls online, the selected detection method 

should be capable of operating while the rolling mill is in 

operation. Xu et al. propose a classification model with 

multi-sensor inputs, and the results show that the introduction 

of multiple sensors significantly improves the classification 

accuracy of the model compared to a single sensor based 

model [16]. Therefore, this study uses multiple sensors as 

model inputs. Common online monitoring methods include 

electromagnetic testing, ultrasonic testing, radiographic 

testing, and machine vision inspection. Among these methods, 

radiographic testing is typically suitable for detecting defects 

such as cracks in static structures. Due to its high penetration 

depth and requirement for coupling agents, ultrasonic testing 

is more suitable for detecting internal defects in objects and 

challenging for monitoring rolls in active service [12]. Pulse 

eddy current testing is an improved version of the traditional 

eddy current testing, which follows Faraday's electromagnetic 

induction law. Its principle involves using a pulse eddy current 

probe to induce an excitation magnetic field (i.e., a primary 
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field) without requiring contact with the test object. This 

induction is achieved through pulsed excitation with certain 

frequency, amplitude, and duty cycle values and results in 

vortex-like pulsed currents on the sur-face of the test object. 

These generated eddy currents induce a detection-induced 

magnetic field (i.e., a secondary field) and couple with the 

primary field to form a compo-site coupling magnetic field. 

The coupling magnetic field is an alternating field with 

attenuation characteristics. During the operation of hot-rolling 

work rolls, the martensitic matrix underwent magnetic 

softening, which increased the magnetic permeability and 

decreased the coercivity. Therefore, roll degradation can 

affect the coupling magnetic field, and its degradation 

information can be detected in the pulse eddy current signal. 

Furthermore, for finishing stands in rolling mills, a low 

friction coefficient is a critical factor in roll selection. 

Increased wear also causes an increase in adhesive defects 

[17]. Bataille et al. [18] noted that the surface friction 

coefficient directly affected the surface of the rolled steel plate, 

and an increase in friction coefficient increased the rolling 

force [15]. The friction coefficient can be calculated from the 

torque, which can be obtained using sensors. 

In conclusion, in this study, we use pulse eddy current 

sensors and torque sensors to monitor rolls online. 

2.2.2. Online Monitoring Signal Processing 

The friction coefficient is calculated from the torque 

obtained using the torque sensor as follows: 

T
f

rF
=                   (10) 

where r is the roll radius, F is the rolling force, and T is the 

torque generated during the operation of the work roll. 

Processing pulse eddy current signals requires selecting an 

appropriate processing method. The Hilbert-Huang transform 

(HHT) is a novel time-frequency analysis method suitable for 

handling complex non-stationary signals. Traditional HHT 

begins with an empirical mode decomposition (EMD) of the 

original signal, which divides it into several intrinsic mode 

functions (IMFs). Subsequently, Hilbert transformation is 

applied. This method offers complete adaptability and is not 

constrained by the uncertainty principle. It simultaneously 

provides high time resolution and high frequency resolution. 

However, the IMFs obtained through EMD can sometimes 

exhibit similar frequency components, which results in mode 

mixing. This issue can be effectively ad-dressed by replacing 

the EMD with variational mode decomposition (VMD). In 

VMD, a variational problem is constructed to seek the optimal 

solution to determine the center frequency and bandwidth of 

each IMF. Therefore, in this study, the VMD-Hilbert 

transformation method is used to decompose pulse eddy 

current signals. This method constructs a variational problem 

to find the optimal solution for the center frequency and 

bandwidth of each IMF. Hilbert spectral energy is extracted 

from the pulse eddy current signals as an online feature. 

The Hilbert spectral energy obtained using the 

VMD-Hilbert method is represent-ed as follows: 
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In the equation, H(w,t) is the Hilbert spectrum obtained 

after applying the VMD-Hilbert transformation to the original 

signal, and E is the Hilbert spectral energy. 

2.3. Model Design and Training 

2.3.1. Model Design 

The design of the MLP model is of crucial significance for 

uncovering the complex intrinsic relationships and underlying 

patterns between multiple features and roll degradation. Given 

its strong data mining and feature extraction capabilities, this 

study presents a hot-rolling roll degradation prediction model 

based on MLP. This model is used to monitor the roll 

degradation online during the rolling process. 

To minimize the influence of sample errors on the accuracy 

of the MLP model, in this study, we extract the online 

monitoring features from eight different points on the roll for 

each rolling cycle as the input to the MLP model. The hidden 

layer is a crucial component of the MLP model. When training 

the MLP model to predict the roll degradation status, the 

number of hidden layers and neurons in the hidden layers must 

be optimized and adjusted. The prediction accuracy of roll 

degradation increases with an increase in the number of 

hidden layers and neurons, but too many neurons and hid-den 

layers during the MLP model training can cause overfitting 

problems. Meanwhile, if there are too few parameters in the 

hidden layers, the model may not achieve the de-sired 

accuracy during training. Therefore, to strike a balance 

between the training time and the accuracy of the roll 

degradation prediction, it is necessary to select appropriate 

hidden layer parameters based on experimentation. 

The training process of the MLP model primarily consists 

of three components: First, multi-source online feature 

information from multiple sensors is extracted during the 

workpiece processing. These various source signals are used 

as the input matrix for the model to predict the roll degradation 

state that corresponds to the input data at that moment. 

Subsequently, it entails the computation of errors for all 

neurons during the back-propagation phase. Finally, based on 

these errors, the training process up-dates the gradient for each 

weight and subsequently adjusts the parameters of the MLP 

model. Through iterative training, the optimal online 

prediction model for roll degradation is achieved. 

2.3.2. Model Evaluation Methods 

To validate the feasibility and superiority of the proposed 

method for predicting roll degradation, two evaluation metrics 

were selected: mean absolute error (MAE) and mean absolute 
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percentage error (MAPE) [19]. The MAE and RMSE values 

exhibit a negative correlation with the prediction accuracy of 

roll degradation, which implies that smaller values of these 

evaluation metrics correspond to a higher predictive ac-curacy. 

The respective formulas for their calculation are as follows: 

1

1
ˆ| |

m

i i

i

MAE y y
m =

= −∑            (14) 

2

1

1
ˆ( )

m

i i

i

RMSE y y
m =

= −∑            (15) 

In the equations, "yi" and "ŷi" are the actual and predicted 

values of roll degradation, respectively. 

2.4. Considering Economic Factors in Remanufacturing 

Timing Decision 

In theory, it is optimal to proactively re-manufacture the 

rolls at the inflection point of the roll performance indicators. 

However, in practical production processes, the situation is 

more complex, and factors such as the economic costs must 

often be considered with the roll performance. To determine 

the proactive remanufacturing timing domain, the economic 

optimal point can be selected within this domain and used as 

the proactive remanufacturing timing point for the rolls. 

Therefore, a comprehensive economic analysis of the rolls is 

required. The research objective of the proactive 

remanufacturing timing model for hot-rolling work rolls is to 

maximize their ser-vice life while ensuring that the expected 

cost rate remains low during their use and that the roll 

operation is stable. 

The cost of scrapping and replacing hot-rolling work rolls 

can be expressed as follows: 

f n w h e t oc c c c c c c= + + + + +          (16) 

where cf is the total cost of scrapping and replacing hot-rolling 

work rolls; cn is the cost of purchasing new rolls; cw is the 

expense of handling the old work rolls; ch is the labor costs; ce 

is the depreciation expenses related to equipment; ct includes 

the inspection and evaluation costs; and co is the 

administrative and office management expenses. 

The hot-rolling work roll remanufacturing process can be 

divided into three main parts: pre-treatment, laser cladding, 

and post-processing. Figure 2 illustrates the specific steps. 

 

Figure 2. Work roll remanufacturing process flow chart in hot rolling. 

In addition, the entire remanufacturing process must 

consider the costs associated with disassembly, 

commissioning, and labor. Taking into account all of these 

factors, the cost of hot-rolling work roll proactive 

remanufacturing is as follows: 

p l c a d h e t o r vc c c c c c c c c c c= + + + + + + + + +   (17) 

Here, cp is the total cost of actively remanufacturing 

hot-rolling work rolls; c1 is the cost of laser cladding 

remanufacturing; cc is the cost related to machining; ca is the 

cost related to heat treatment; cd is the cost of cleaning and 

descaling the rolls; ch is the labor costs; ce is the cost of 

equipment depreciation; ct covers the expenses for inspection 

and evaluation; co is the administrative and office 

management costs; cr is the research and development 

expense; and cv covers environmental protection costs. 

The renewal-reward theory focuses on analyzing the 

average cost of equipment during its operational lifetime. 

This theory simplifies the calculation of long-term average 

equipment costs by computing the ratio of the total cost 

incurred in a renewal process to the time spent on that 

renewal process. Using this approach, decisionmakers can 

more efficiently assess and optimize equipment 

remanufacturing timing strategies to reduce operational costs. 

The expected cost rate for the operation of the hot-rolling 

work roll at the k-th monitoring point is calculated. During 

the rolling roll's operating cycle, the primary sources of costs 

are the online monitoring cost, the cost of active 

remanufacturing of the hot-rolling work roll, or the cost of 

scrapping and replacement of the hot-rolling work roll, as 

calculated in Section 4.2.1. The online monitoring cost is 

k×cm. Therefore, at time t, the expected cost from the start of 

the hot-rolling work roll to the end of its service is as 

follows: 

m p f p( ) Pr( | )k k kk c c c c L s t X× + + − < −     (18) 

where cm is the cost of a single online monitoring cycle; cp is 

the cost of actively remanufacturing the hot-rolling work roll; 
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cf is the cost of scrapping and replacing the hot-rolling work 

roll; and Pr( | )k k kL s t X< −  is the failure probability of the 

hot-rolling work roll. 

The expected service duration is as follows: 

( )|
0

( )(1 Pr( | )) |
k

k kk k k k

s t

k L xk k k kl f l x dt s t L t X ls
−

+ − − < − + ∫  (19) 

Combining Equations 4.5 and 4.6, the expected cost rate to 

proactively remanufacturing hot-rolling work rolls at time 

kt  is as follows. In summary, at the k-th monitoring point, 

the proactive remanufacturing timing for hot-rolling work 

rolls is to minimize the expected cost rate while ensuring 

reliability at the moment of proactive remanufacturing. The 

specific expression is as follows: 
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3. Experimental Validation 

3.1. Experimental Design and Data Collection 

3.1.1. Hot-Rolling Simulation Experiment 

To simulate the working conditions of industrial rolling 

mills, a hot-rolling simulation two-roll test rig (Figure 3) was 

developed. The test rig mainly consists of a test roll, a load 

roll, an eddy current detection system, a cooling device, and 

an induction heating device. 

 

 

Figure 3. Hot rolling simulation roll testing device with its sketch. 

The work roll was simulated using the test roll, and the 

steel strip to be rolled was simulated using the load roll. The 

test roll and load roll were separately controlled by two servo 

motors. The rolling force was applied through a set of ball 

screw servo loading systems, which could exert a maximum 

load of 6000 N. To heat the load roll to the temperature 

reached by rolled steel strips in industrial rolling, a 

high-frequency induction heating device was used. The 

power of this device is 25 kW, and it can reach temperatures 

as high as 1200°C within 5 minutes, as monitored by 

temperature sensors placed above the load roll. The 

high-frequency induction heater, temperature sensor, and 

power regulator together form a closed-loop control heating 

system. The cooling device is similar to those used in actual 

industrial environments. After the test roll and load roll make 

contact, a cooling device sprays emulsion coolant at a 

position 120° be-hind the contact area on the test roll. The 

emulsion coolant serves both cooling and lubrication 

purposes. Table 1 shows the specific test parameters. 

Table 1. Hot rolling simulation test conditions. 

Parameters Value 

Test roll revolution/(r/min) 10 

Hertzian contact stress/N 750 

Loading roll temperature/℃ 950 

Force/N 2 500 

Slippage rate (%) 5 

Cycle interval/r 5 000 

Number of cycles 23 

3.1.2. Sample Preparation 

The test roll had a base material made of QT700-2 nodular 

cast iron. A cladding layer was added to the surface of the 

nodular cast iron base material. The cladding layer used 

high-carbon, high-speed steel powder with a particle size of 

45–100 µm. The load roll was made of 45 steel. Both test roll 

base material and load roll blank were made from annealed 

round bars, and high-precision lathes, grinders, and boring 

ma-chines were used to machine the outer circumference, 
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inner bore, keyway, and end face of the rolls. The cladding 

layer of the test roll was obtained through single-pass 

clad-ding using an ND-YAG laser for lateral powder feeding. 

Table 2 shows the cladding parameters. 

Table 2. Melting parameters. 

Parameters Value 

Voltage /V 380 

Current /A 210 

Average laser power /W 900 

Scanning speed /(mm/min) 120 

Powder feeding rate /(g/min) 7 

Spot diameter /mm/ 2 

Protective gas flow rate /(L/min) 10 

Subsequently, the test roll underwent the following heat 

treatment process: It was first subjected to a thorough 

austenitization process at 1050°C, followed by air quenching. 

Finally, the specimen was subjected to two high-temperature 

tempering processes at 550°C. Both test roll and load roll 

were thoroughly cleaned in an ultrasonic cleaning machine 

using anhydrous ethanol as the cleaning agent to remove 

surface stains and machining residues. 

3.1.3. Roller Degradation Detection and Monitoring 

Each revolution of the specimen is equivalent to rolling a 

2.513 m-long piece on the precision rolling mill with a roll 

diameter of 1780 mm. Surface condition monitoring and 

analysis of the work rolls were conducted every 5000 

revolutions. The experiment consisted of three sets, which 

involved three test rolls in total. Each test roll had eight fixed 

monitoring points, and the degradation data for the test rolls 

were obtained by averaging the data from these eight points. 

The data from the first two sets of experiments were used as 

the training dataset, and the data from the last set of 

experiments were used as the test dataset. 

 

Figure 4. The changes in roll hardness, wear amount, and wear resistance. 

The surface morphology and microstructure of the test roll 

were characterized using a ZEISS Gemini 500 scanning 

electron microscope and an Optika B-500MET/XDS-3MET 

optical microscope. Hardness measurements were conducted 

using a microhardness tester. For this study, 16 sets of 

hardness data were randomly obtained for each test roll in 

each state cycle, and the average value was taken. The 

change in roll quality served as a basis for roll wear, and the 

average wear amount for the test roll was calculated. Roll 

wear at different stages was quantified as the roll stage wear. 

Figure 4 illustrates the changes in roll hardness, wear amount, 

and wear resistance. Torque sensors were installed on the 

drive shaft, as shown in Figure 5. 

 

Figure 5. Torque Sensor Installation Diagram. 

To collect pulsed eddy current signals from the surface of 

the work roll, a pulsed eddy current detection system was 

constructed. To ensure that the pulsed eddy current probe 

could provide sufficient magnetic field energy and 

effectively receive the eddy current response during the 

detection process, the optimal design parameters for the 

probe were determined with the assistance of the 

electromagnetic simulation module of the COMSOL 

Multiphysics finite element simulation software. Table 3 lists 

the parameters of the pulsed eddy current detection system. 

Figure 6 shows the detected raw pulsed eddy current signals. 

 

Figure 6. The detected raw pulsed eddy current signals. 

Table 3. Pulsed eddy current inspection system parameters. 

Parameters Value 

Core height /mm 14 

Core diameter /mm 4 

Excitation coil turns 250 

Detection coil turns 500 

Square wave frequency /Hz 100 

Duty cycle (%) 50 

Maximum voltage /V 6 

Rise time /ms 0.02 

Down time /ms 0.02 

3.2. Degradation Characterization and Online Feature 

Extraction 

3.2.1. Roller Degradation Characterization 

Figure 6 shows the degradation trends of the roll hardness, 

wear amount, and wear resistance, which were fused into the 

roll health indicator (HI) using the Beta distribution method. 

The roll performance is inversely proportional to the HI 
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value. In this study, the Beta method was used to fuse the 

primary degradation indicators that affected the roll 

performance, such as the hardness, wear amount, and wear 

resistance, to construct a fused HI. This fused HI serves as 

the basis for evaluating the re-manufacturability of rolls. 

Shifting the focus to the knee (-onset & -point) enables an 

earlier detection of accelerated health degradation, leading to 

more effective predictive maintenance. The Ville inflection 

detection method is a set of inflection detection methods 

using the mathematical definition of curvature as the basis 

for the definition of inflection points, for discrete data, 

combined with different application scenarios of offline and 

on-line [20] Taking the figure as an example, point A is the 

performance degradation inflection point detected using the 

Ville detection method, which corresponded to a rotation 

count of 85,000 revolutions. Thus, the roll operated normally 

in the range of 0–85,000 revolutions, and its performance 

rapidly degraded after 85,000 revolutions. Therefore, the roll 

must be re-manufactured before reaching 85,000 revolutions, 

but the specific timing of remanufacturing should also 

consider economic benefits. 

 

Figure 7. Degradation trends of HI. 

3.2.2. Online Feature Extraction 

The surface friction coefficient obtained through torque 

sensor monitoring is shown in the table. In the range of 0–

10,000 revolutions, the surface friction coefficient first 

decreased and subsequently increased. This behavior is 

attributed to the presence of distinct initial machining marks 

on the roll's surface at zero revolutions (as shown in Figure 

8). 

 

(a) 0 r 

 

(b) 10000 r 

Figure 8. 0-10000 r Roll surface initial machining marks change: (a) 0 r; (b) 

10000 r. 

The existence of these initial machining marks indicates that 

the initial surface quality of the roll has not reached its optimal 

state. After the roll and rolled material had been running for 

10,000 revolutions, the machining marks on the roll's surface 

disappeared, which reduced the measured surface friction 

coefficient "f" from 0.20 to 0.17, as indicated in Table 4. 

Table 4. Variation of friction coefficient on test roll surface7. 

Revolutions /r Friction coefficient 

10 000 0.170±0.001 

20 000 0.162±0.001 

30 000 0.160±0.001 

40 000 0.161±0.002 

50 000 0.164±0.001 

60 000 0.166±0.001 

70 000 0.170±0.002 

80 000 0.175±0.002 

90 000 0.180±0.002 

100 000 0.192±0.003 

110 000 0.220±0.003 

Therefore, the surface friction coefficient was not in its 

optimal state at the initial stage, and it reached its optimal 

state after 10,000 revolutions. The high surface friction 

coefficient in the early stage is related to the initial 

machining method. Due to this reason and the impossibility 

of the roll remanufacturing point occurring in the early stage, 

in this study, we consider the selection of the roll 

remanufacturing point and model training starting from 

15,000 revolutions to eliminate the influence of the initial 

processing method on the model accuracy. 

 

Figure 9. Hilbert spectrum. 
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Figure 10. The change of cumulative energy. 

Figure 9 shows the Hilbert spectrum of the original eddy 

current signal after the VMD-Hilbert transformation, and 

Figure 10 shows the cumulative energy. 

3.3. Comparative Analysis of Models 

To verify the superiority of the MLP model in predicting 

the degradation state of hot-rolling work rolls, multiple linear 

regression and support vector machine (SVM) regression 

using multi-sensor signals were compared for their prediction 

of the degradation state of hot-rolling work rolls. Figure 11 

shows the results. A comparison of Figure 11(a)–(c) shows 

that the MLP model has the best predictive performance 

com-pared with the actual performance degradation process 

of the rolls. The SVM model has better predictive 

performance than the multiple linear regression model. 

Figure 11(b) shows that the SVM model exhibits good 

accuracy in the early stage of prediction, but its effectiveness 

in predicting the rapid degradation process in the later stage 

is unsatisfactory. Meanwhile, the multiple linear regression 

model shows a significant disparity from the actual values 

throughout the entire degradation process. 

From Figure 11, the selected method in this study exhibits 

smaller errors in predicting the degradation of the roll 

performance, which validates the superiority of the MLP 

model in predicting the roll performance degradation. 

Additionally, the predictive performance of the three 

methods was qualitatively analyzed, as presented in Table 5. 

 

Figure 11. Prediction results of roll degradation by three models: (a) MLP model; (b) SVM; (c) Multiple linear regression. 

Table 5. Performance comparison of different algorithms for the roll degradation prediction. 

 MLP Multiple linear regression model SVM 

MAE 0.014244484 0.038241054 0.019873497 

RMSE 0.020934754 0.027139403 0.022376578 

 

The MLP model predicts the roll degradation status with 

small MAE and RMSE, which are 0.01424 and 0.2093, 

respectively. When the multiple linear regression model and 

SVM model are used to predict roll degradation, they yield 

larger errors than the proposed method, and both MAE and 

RMSE values are higher than the MLP model prediction 

error. Therefore, the research findings suggest that this 

method has made some progress in exploring the underlying 

patterns between the extracted online features and the roll 

degradation. 

Now, based on the actual production and operation of the 

third-stand hot-rolling work rolls in a precision rolling mill 

unit of a certain factory, the hot-rolling work roll scrapping 

and replacement cost and active remanufacturing cost can be 
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reasonably determined. Tables 6 and 7 show the specific cost 

breakdown. 

Considering various factors, the hot-rolling work roll 

scrapping and replacement cost cf is 160,000 yuan, and the 

hot-rolling work roll active remanufacturing cost cp is 55,000 

yuan. In the hot-rolling work roll active remanufacturing 

timing prediction model, it is also necessary to set the 

monitoring interval and cost required for each monitoring. To 

match the experimental process, it is set that for every 5000 

revolutions of the hot-rolling work roll, surface monitoring is 

performed once, and the cost of each monitoring is 1000 

yuan, i.e., cm = 1000 yuan. 

Table 6. Work roll scrapping replacement cost in hot rolling. 

Item Cost/$ Item Cost/$ 

Purchase cost of new roller cn 150000 Depreciation cost of related equipment ce 2000 

Disposal cost of used work roll cw 5000 Testing and evaluation cost ct 1000 

Labor Costs ch 1500 Office Administration Costs co 500 

Table 7. Active remanufacturing cost of work roll in hot rolling. 

Item Cost/$ Item Cost/$ 

Laser cladding remanufacturing cost cl 36000 Depreciation cost of related equipment ce 2500 

Machining Related Costs cc 4000 Testing and Evaluation Costs ct 2000 

Heat treatment related expenses ca 2000 Office administration expenses co 1000 

Roll cleaning and descaling cost cd 1500 R&D cost cr 2000 

Labor Costs ch 3000 Environmental Protection Costs cv 1000 

  

Figure 12. Reliability Curve and Expected Cost Rate Curve at 80,000r for Test Roll No. 3(a) Reliability Curve; (b) Expected Cost Rate Curve. 

Based on the Wiener method to calculate the reliability at 

each monitoring point, combined with the update-reward 

theory to give the optimal remanufacturing time of the rolls, 

Figure 12 shows the reliability curve of the rolls at 80,000 r 

and the expected cost rate curve, in which the optimal 

remanufacturing point is 81105r, the lowest expected cost 

rate of 6.687 ¥/r, shown at point A in Figure 12(b). 

4. Conclusion 

This study presents a method for online decision-making 

regarding the prediction of the degradation status and 

proactive remanufacturing timing of hot-rolling work rolls, 

which combines a multi-sensor multi-feature fusion with an 

MLP model while considering economic factors. The 

following conclusions can be drawn from this study: 

(1) By collecting degradation-related quantities during the 

hot-rolling simulation experiment and fusing them 

through a Beta distribution, a degradation indicator for 

rolling rolls was constructed. This indicator 

comprehensively characterizes the degradation status 

of the rolls to avoid the one-sided representation of the 

roll state caused by a single degradation quantity. 

(2) The torque and pulsed eddy current signals were 

collected during the roll degradation process. By 

analyzing the original signals, friction coefficients 

were extracted with pulse eddy current time-frequency 

domain features. These online features were combined 

as input parameters for the MLP model. This approach 

avoids the influence of redundant information on MLP 

model training and reduces the training time, which 

enhances the training accuracy of the model. The 

established MLP model was com-pared with multiple 

linear regression and SVM models, which validates 

the superiority and advancement of the MLP model in 

roll degradation prediction and enables the online 

monitoring of roll performance degradation. 

(3) Combining the MLP model with the Wiener and 

updating-reward theories, this study successfully 

monitored the roll degradation status online, predicted 

it, and determined the economically optimal point for 

roll remanufacturing while satisfying the performance 

requirements. 

The proposed online decision-making method to predict 

the degradation status and determine the optimal 

remanufacturing time of hot-rolling work rolls in this study 

has achieved comprehensive assessment and real-time 

monitoring of the roll status. This approach significantly 
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reduces the uncertainty of the roll retirement time and 

performance and provides important implications for 

real-time monitoring during roll operation and subsequent 

remanufacturing efforts. It holds great promise for further 

development in the field of roll status monitoring and 

remanufacturing. In future works, we plan to expand the 

types of features and the original signals. 
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