

International Journal of Information and Communication Sciences
2017; 2(5): 59-67
http://www.sciencepublishinggroup.com/j/ijics
doi: 10.11648/j.ijics.20170205.12
ISSN: 2575-1700 (Print); ISSN: 2575-1719 (Online)

A Device Independent Platform for Synchronous Internet of
Things Collaboration and Mobile Devices Screen Casting

Nikos Pinikas, Spyros Panagiotakis, Despina Athanasaki, Athanasios G. Malamos
*

Department of Informatics Engineering, Technological Educational Institute of Crete, Heraklion, Greece

Email address:
npinikas@hotmail.com (N. Pinikas), spanag@teicrete.gr (S. Panagiotakis), despinadev@gmail.com (D. Athanasaki),

amalamos@ie.teicrete.gr (A. G. Malamos)
*Corresponding author

To cite this article:
Nikos Pinikas, Spyros Panagiotakis, Despina Athanasaki, Athanasios G. Malamos. A Device Independent Platform for Synchronous Internet

of Things Collaboration and Mobile Devices Screen Casting. International Journal of Information and Communication Sciences.

Vol. 2, No. 5, 2017, pp. 59-67. doi: 10.11648/j.ijics.20170205.12

Received: April 10, 2017; Accepted: May 24, 2017; Published: October 23, 2017

Abstract: WebRTC is project that allows browser-to-browser voice, video and data communication without the use of

plugins. It enables rich, high quality, Real Time Communications applications to be developed for the browser, mobile

platforms, and Internet of Things (IoT) devices, and allows them all to communicate via a common set of protocols. In this

paper we employ the capabilities of the WebRTC APIs to implement a platform for synchronous collaboration, screen casting

and multimedia communication.

Keywords: WebRTC, Online Collaboration, Screen Casting, Collaborative Browsing

1. Introduction

Tools that aid collaboration were around some time before

Computers - whiteboards, flipcharts or even a bit of paper

can be utilized to bolster joint effort [1]. PCs and the Web

altered the way individuals cooperate in gatherings. In the

80s the expression "groupware" was begat by C. A. Ellis who

characterized it as a "PC based framework that care groups of

individuals occupied with a typical assignment (or objective)

and that give an interface to a common situation" [2].

Prevalent groupware programming bundles included Lotus

Notes and Microsoft Exchange.

The Web opened another window for the improvement of

joint effort programming. With Web 2.0 came a plenty of

cloud facilitated Internet-based applications that empowered

wealthier coordinated effort, development of online groups,

and different methods for collaboration. Today online joint

effort apparatuses can be characterized in two classifications

[3]:

(1) No concurrent joint effort devices. These instruments

empower members to work together at various

circumstances and diverse areas. These instruments are

valuable for working together after some time and

giving assets and data that are available whenever. For

instance, by checking the correction history members

can see who has contributed, when they have

contributed, and what they have contributed.

Additionally, the utilization of remarks enable

members to concur, wrangle about, or clarify changes

required in the work.

(2) Synchronous collaboration tools. These instruments

empower members to work together progressively,

regardless of whether in a similar area or in better

places. The key purpose of synchronous apparatuses is

that the innovation gives the communicators a chance

to cooperate in the meantime.

The accentuation of this paper is on synchronous online

colaboration since these sorts of instruments are currently

made conceivable on the Web with the presentation of Web

constant advancements, for example, WebRTC. Synchronous

coordinated effort can have many favorable circumstances

like quick reaction and criticism, video/web conferencing

considering non-verbal communication and manner of

speaking, expanded inspiration and engagement with course

ideas and expanded social nearness. Burdens of synchronous

joint effort incorporate the absence of reflection between

colleagues, the prerequisite for expansive time duty of the

 International Journal of Information and Communication Sciences 2017; 2(5): 59-67 60

associates, the trouble to accomplish one to numerous

correspondence and the way that if the innovation falls flat

the coordinated effort session impractical [4].

Synchronous coordinated effort incorporates whiteboards,

video and sound correspondence, content talk and screen

sharing. Whiteboarding specifically is an educating and

coordinated effort rehearse in which members utilize a

whiteboard zone to draw or compose ideas, graphs, maps,

tables, outlines, conditions and so on. Smith et al. in [5]

directed a writing survey on intuitive whiteboard and found

in addition to other things that they are especially compelling

in training and virtual classrooms enabling educators to

utilize instructing time to talk about understudy created

thoughts as opposed to just displaying data and outlined the

advantages of intelligent whiteboards as takes after:

adaptability and various features, viability in sight and sound

utilize; bolster for the lesson arrange; different assets;

advancement of data and correspondence innovation abilities;

and more communication and understudy interest in classes.

Intuitive whiteboards draw in understudies with their

associates in a shared learning group and it takes into

consideration "more than one educator" in a classroom by

enabling understudies with whiteboards to end up instructors

also [6]. This upgrades inspiration, support and collaboration.

Instructive whiteboards are turned out to be a compelling

learning device for individuals of any age. For instance

Akbaş et al. in [7] have assessed a whiteboard-based

framework that prepared more established individuals to

utilize programmed teller machines.

2. Related Work

Various synchronous online joint effort stages have been

proposed or actualized economically. Jara C. in [8] proposed

a web learning framework which joins synchronous

communitarian learning in 3D virtual research facilities. In

their work, they intergraded their structure in the well-known

EJS material science program, enabling clients to team up

utilizing the WebGL stage. Andrioti Z. in [9] joined

WebRTC and the Evie-m stage [10] to make an online

cooperative instructive virtual condition for educating

arithmetic. WebRTC (Web Real Time Communication) is an

API that permits ongoing distributed correspondence

between programs without the utilization of extra plug-ins. It

is contended that online cooperation utilized as a part of

instruction prompts more positive learning results (learning

through interest in a gathering) and more connected with

learners [11].

Whiteboarding is a standout amongst the most famous

utilizations of synchronous online joint effort. Intelligent

whiteboards offer an impressive potential to upgrade

understudy learning and are great instructive apparatuses

when utilized fittingly [12]. For instance Metz et al. in [13]

composed a synergistic whiteboard which was then assessed

by allocating assignments to a gathering of clients and

gathering information from client collaborations and talk

correspondence. They demonstrated that whiteboard can be a

viable coordinated effort apparatus. Strangely, they watched

that the aggregate awareness of the gathering of clients is

made through off-undertaking associations thus we can

derive that this ability to have "off-assignment connection" is

one reason that video correspondence and content visit

altogether enhance joint effort productivity and is one of the

benefits of synchronous coordinated effort. Today numerous

online whiteboards are industrially accessible on the web.

Community oriented Web Browsing (cobrowsing) is

another type of online coordinated effort in which at least

two client explore the World Wide Web together by sharing a

synchronized normal perspective of a website page and

additionally sharing associations, for example, co-designing,

content highlighting or mouse clicks with each other [31]

[32]. Non intelligent cobrowsing can be exceptionally easy to

actualize and can use the screen sharing API of WebRTC. In

such situation a client is asking for support from an operator.

The operator then continues to share his/her screen with the

client trying to demonstrate the client what to do next while

the client watches the screen sharing stream and follows up

on his own program in like manner.

The genuine test is executing an intuitive cobrowsing

session. The deterrents that should be overcome in module

less intuitive cobrowsing incorporate managing treats, page

personalization, login sessions, or solicitations for validation

while managing the solid safety efforts and certainty

prerequisites given by both the working framework and the

web program (with most essential security impediment being

"A similar inception strategy". In customer server based

cobrowsing framework an answer has been proposed in [14]

by empowering the client to control which web application

information is proliferated and to authorize security strategies

upon private information inside a cobrowse session.

3. WebRTC

The mission of WebRTC is "to empower rich, top notch

RTC applications to be produced for the program, portable

stages, and IoT gadgets, and enable them all to convey by

means of a typical arrangement of conventions" [15].

WebRTC was publicly released by Google in 2011 and after

that a continuous work begun to institutionalize the

conventions related with it by IETF and its program APIs by

W3C. Intrigue and support for WebRTC has been since

developing relentlessly. Today, the most progressive

WebRTC execution is offered by Mozilla Firefox and Google

Chrome. These programs are currently supporting most of

the elements of WebRTC that are proposed by the relating

W3C drafts [16]. Different stages that bolster WebRTC to

some augment incorporate the Opera program, the Android

stage and Apple's iOS stage. Microsoft in its Edge program

bolsters another set conventions named ORTC which does

not utilize the SDP for session depictions but rather it is

wanted to be interoperable with WebRTC [17]. It is normal

that by 2018 WebRTC will be bolstered by 4.7 billion cell

phones [18] and 1.5 billion PCs that run WebRTC

empowered programs bringing the aggregate number to more

61 Nikos Pinikas et al.: A Device Independent Platform for Synchronous Internet of
Things Collaboration and Mobile Devices Screen Casting

than 6.2 billion WebRTC empowered gadgets. WebRTC

executes three browser embedded APIs: MediaStream,

RTCPeerConnection, RTCDataChannel.

The MediaStream API is in charge of catching floods of

media. These streams can be a video taken from the client's

web camera, a stream from a canvas or video component or a

screen catching stream. The RTCPeerConnection API is

utilized to send these streams amongst programs and the

RTCDataChannel API is utilized to trade subjective

information, for example, application and amusement

information additionally metadata between companions.

The nearness of an information station is a standout

amongst the most imperative components of WebRTC

permitting the advancement of all sort of P2P applications

and synergistic arrangements extending from synchronized

improvement [19] to telehealth administrations [20] and

dialect learning [21] to "whiteboard coordinated effort"

which is the subject of this paper. The design of WebRTC

including the flagging server is appeared in the

accompanying schema (Figure 1).

Figure 1. WebRTC Architecture.

In spite of the fact that WebRTC tries to empower Peer-to-

Peer correspondence between programs without handing-off

information through a server, an utilization of a server is as

yet required for two reasons: The main reason is the

conspicuous one, a web server is expected to "serve" the real

JavaScript application that uses WebRTC. The second reason

is more subtle. A server is required with a specific end goal

to instate sessions between the customers that need to impart.

This procedure is known as "Flagging" and is in charge of

the trading of the underlying (meta) information of session

portrayals (utilizing SDP) which contain points of interest on

the shape and nature of the information which will be

transmitted [22]. These data can incorporate system

information, for example, IP addresses and ports, media

metadata, for example, codecs and codec settings, transfer

speed and media sorts, mistake messages or client and room

data [23].

The codecs that are upheld by WebRTC are characterized

by two IETF drafts. Sound codecs are depicted in "WebRTC

Audio Codec and Processing Requirements" [24] and video

codecs in "WebRTC Video Processing and Codec

Requirements" [25]. As indicated by these drafts WebRTC

programs must (total prerequisite) execute the VP8 video

codec as portrayed in RFC6386 and furthermore H.264

Constrained Baseline as depicted in H264, and should

likewise actualize the Opus sound codec depicted in

RFC6716 and the G.711 PCMA and PCMU sound codec

depicted in RFC3551. WebRTC likewise bolsters the iSAC

and iLBC sound codecs.

4. Implementation

The application we developed is a prototype intended to

demonstrate the capabilities of WebRTC and its potential use

for online collaboration, whiteboarding and media streaming.

Many of the APIs used in this paper are still in progress. As a

result some of the features of WebRTC used in this paper are

either not implemented in all major browsers or have some

bugs. We decided to focus our development on the Mozilla

Firefox browser which has almost all WebRTC proposed

features implemented.

As explained, WebRTC requires a minimum load from a

server. The server is used once to download the WebRTC

application code (in our case, the whole application we

developed is less than 160KB including images and code)

and a second time to bring the peers together acting as a

signaling server (the data exchanged is no more than a few

kilobytes per connection).

Figure 2. Application data per type.

In the above figure we see that the whole application

downloaded from the server is under 412KB in size

including images and external code (jQuery 1.12.3)

amounting to a total of 32 HTTP requests. JavaScript

amounts to about 90% of the bulk application data. If we

take out the large size of the jQuery library (which is

requested from its respective domain and not our

application server) we see that the server load for each

application pull is about 300KB.

For these reasons we experimented with running both the

signaling server and the application host on a single-board

computer. The board we selected was the BeagleBone

Black which was designed by Texas Instruments.

BeagleBone was launched in April 2013 and costs about

$ 45 and uses up to 2W of power, making it a very

economical and environmentally friendly solution. The

system runs a precompiled distribution of Node.js v.0.10.41

for the BeagleBoard Black [26]. The Node.js server is then

run using “forever”, a simple CLI tool for ensuring that a

 International Journal of Information and Communication Sciences 2017; 2(5): 59-67 62

given script runs continuously.

4.1. A Protocol for Synchronous Collaboration & Control

The initial move towards characterizing this "protocol"

directed at synchronous online joint effort is to build up some

type of deliberation layer sitting on top of the local WebRTC

RTCDataChannel interface. There are two fundamental

explanations behind this: First, we require uniform functions

to consistently deal with messages traded amongst associates

and second, on the grounds that the utilization of the inward

WebRTC capacities to trade information through the

information channel is regularly a muddled assignment

requiring many lines of code and customizations. We

propose wrapper functions exemplification the information

channel usefulness into basic send and get capacities which

rearrange the improvement and upkeep of the operations. At

last we propose a "protocol" for consistently trading joint

effort data and calling capacity on a remote associate.

Figure 3. Communication Model.

The communication model described above is shown in

figure 3. The foundation of the system is the native WebRTC

data channel RTCDataChannel.send() function and

onmessage property.

For sending data we have developed a function called

sendDataAction() for sending strings and a function called

sendDataFile() for sending binary data. The option to

compress data using the Lempel-Ziv-Welch algorithm is also

supported through an optional argument. In the following

listing the definition of sendDataAction is given:

void sendDataAction(string message, bool compression)

Sends data through the WebRTC Data channel using the

native WebRTC RTCDataChannel.send() method.

message The string to be sent

[compression] Optional. A Boolean representing whether

the data should be compressed before sending

true: Compresses data using the LZW algorithm

false: No data compression (default)

Note that while in our implementation the send Data

Action function broadcasts all messages to the other peer in

the room, in a multiple-user environment this function could

be adapted to send messages to specific users only (for

example by adding an extra parameter defining a username)

The function handle Message evaluates incoming

messages into function calls. Messages are comprised of

array elements separated by a double colon (::). The first

element of the array is always the name of the function to be

called while the other elements correspond to the parameters

of that function. For example when the system receives the

string “::MSGNM::PAR1::PAR2::” the callback function

handleMessage will look for a function named msgnm(p1, p2)

and call it with “PAR1” and “PAR2” as its parameters as

shown in the following schematic:

Figure 4. Converting messages into function calls.

Using the function handle Message we can execute

functions of other JavaScript libraries, such as Cylon.js in

combination with Socket.io to control IoT devices as shown

in fig. 1. A remote peer can send messages to the local peer

who is in direct control of the device. These messages are in

turn translated into function calls of the Cylon Socket.io API.

For example an incoming message to blink LED x every y

seconds could be in the form of “LED::1::1000”. The

function led(led_no, ms) which would utilize the appropriate

Cylon.js function call, would then be called by the system.

Finally the top layer of figure 2 consists of the exchanged

standardized messages in the form of strings which represent

the actions and function calls. This ensures that the system is

well defined and can be easily expanded, but also

interoperable so that any WebRTC applications that use this

protocol can communicate with each other. The proposed

protocol can be used for presenting metadata on video

streams, which can include sketching information

(Whiteboarding), or chat messaging but can be equally used

for any data exchanged between peers including file data

(binary), alerts etc.

As we explained, the way the system communicates

actions between peers is done using a very simple language.

Two colons (::, Unicode U+003A) are used to indicate that

what follows is system data in the form of either strings or

“stringified” JSON objects. Chat messages or any other data

must be filtered and barred from containing this set of

characters. Messages also contain an array of information,

the elements of which are separated by a double colon (::).

The first element of the array is always a 5 letter string

defining the message type e.g.:

a) URMSG: A chat message

b) FILES: An incoming binary file

c) SKTCH: Sketching data etc….

We theorize here that an online collaboration platform is

comprised of these two elements: video streams and users.

Therefore, messages come in two distinct forms: Messages

that are intended for canvases and messages that are intended

for users. For example a drawing corresponds to a canvas

while a chat message corresponds to a user (since a user can

63 Nikos Pinikas et al.: A Device Independent Platform for Synchronous Internet of
Things Collaboration and Mobile Devices Screen Casting

have more than one canvas or video shared). We assume that

in a peer-to -peer environment messages are broadcast to all

peers (all users share the same streams). Of course it is

possible to include the name of the recipient in the message

in order to send data targeted at specific users.

Figure 5. Message types.

We also have predefined and implemented a number of

messages that are useful in a synchronous online

collaboration environment. Some of them are shown in the

following table:

Table 1. Sample messages.

Prefix Data

::URMSG::

UNAME::DATA

A chat message from a user with

username “UNAME”

::SKTCH::

TARGET::WIDTH::DATA

JSON Sketch data including text

annotation for the stream named

“TARGET”

::FILES::

DATA
Data for incoming files

::PAUSE::

TARGET::TIME
Pauses a stream at a specified time

4.2. The Interface

The interface of the developed application consists of the

following areas:

1. The connection box

2. The streams list

3. The maximized stream area

4. The toolbox

5. The chat area

Figure 6. User Interface Organization.

The connection box is where the users can enter a

username and a room name. Users can also chose to start a

screen sharing session from using the dropdown box in the

area. Upon initialization of a session the MediaStream API

prompts the user for permission to use one video and/or one

audio input device such as a camera, a microphone or for

permission to start capturing a screen or part of it. If the user

provides permission, then the returned

Clicking on the maximize button brings the selected

stream on the center area of the page and enables the

collaborative controls for this specific stream.

Once connection is established users have a range of tools

available from the sidebar on the right side of the screen.

Figure 7. A screen capturing session with the PowerPoint window

maximized.

Table 2. Toolbar functions.

Starts or stops recording the currently maximized stream.
The recording is available as a webm file only to the user
that initiated the recording.

Clears all sketches on the currently maximized stream

Pauses or freezes the currently maximized stream

Prompts the user to select a local video file which can
then be streamed to the other peers

Captures a single frame from the currently maximized
stream which can then be saved as a PNG file.

Currently maximized stream in full screen. All
annotations options are disabled in this mode and users
cannot annotate the stream.

Currently maximized stream to its original size.

Resizes the Replaces the currently maximized stream with
a HTML document hosted on the same domain as the
WebRTC application. Basic interactive cobrowsing is
offered to the peers in this mode.

The application communicates messages to the user using

the chat area below the toolbox. For example when a user

clicks on the “Take screenshot” button the system sends a

message to the user notifying him of the link from which he

can download it. This increases system usability by

eliminating the use of popups or other types of alerts. These

“system messages” are only visible to the user they concern

and not to the other peers of the session.

Figure 8. Example system messages.

The chat area can also be used for exchanging files

between users. A user can drag and drop a file on the text

area to send it to other users.

 International Journal of Information and Communication Sciences 2017; 2(5): 59-67 64

Figure 9. Users exchanging files.

Figure 10. Users sketching on a PDF document and on a video.

4.3. An IoT Approach

It becomes obvious that this protocol can be extended to

IoT devices by using existing IoT JavaScript libraries (figure

1). For example the SocketIO API plugin of the Cylon.js

library can be used to remotely interact with an Arduino

microcontroller in real-time. The user of such a library can

use our proposed protocol to call functions of this library

through the WebRTC data channel as seen in figure 8. In this

example a Cylon.js Socket.io connection is established

between one of the peers’ computers. The developer has

defined the message:

::USELED::USER:ACTION::PAR1::PAR2

The message states that user USER requests to perform an

action on a specific LED on the Arduino board. The message

would be translated in the following function call:

function USELED(user, action, par1, par2)

Which would then in turn call the Socket.io emit function:

device.emit(action, par1, par2);

Figure 11. A remote user observing an Arduino board through the webcam

can issue commands.

In the above example a Toggle button has been added so

that when clicked it sends the

“USELED::USERNAME:TOGGLE” string through the

WebRTC data channel. Upon receiving that string, the peer

whose computer has an established connection with the

Arduino device will toggle the state of LED13 on the board.

Applications of this technique could include the collaborative

control and observation of more advanced devices such as

motors, servomechanisms, analog sensors etc.

5. Benchmarking

5.1. Compression Efficiency

We utilized the LZW compression calculation to pack

information sent through the WebRTC information channel.

To quantify pressure productivity we associated two PCs and

measured the time it took to render an outline contingent

upon the span of the JSON question that depicted the draw.

The LZW compression calculation is exceptionally

productive for portraying metadata in view of the high

number of catchphrases and word cycles When the

information is compacted utilizing the LZW calculation the

subsequent information is 6.6KB with a pressure proportion

of 93%. Clearly utilizing pressure on the information channel

can drastically diminish arrange overhead and with current

equipment the compresion/decompression times on the

nearby host framework are really miniscule as appeared in

the accompanying table.

Table 3. Compression Efficiency.

Bytes Before Bytes After Compression
Relative Time

Difference

Decompression Decompression Ratio (%) (ms) - LAN

235 1001 77 0

486 3044 84 15

2001 21645 91 37

2668 31585 92 152

3255 40661 92 83

3991 51650 92 100

5728 76730 93 140

7535 104437 93 194

Figure 12. Compression Efficiency.

In the above table we measure the time required to render

a graphic on the canvas assuming that the initial rendering

(empty canvas) requires 0 milliseconds. Rendering time is

measured from the time a user makes a sketch to the time it is

rendered on the other peer’s computer.

We found that compressing the data channel on LANs and

65 Nikos Pinikas et al.: A Device Independent Platform for Synchronous Internet of
Things Collaboration and Mobile Devices Screen Casting

in situations where network bandwidth is not a problem may

still not be an optimal choice because when combining the

time required to compress a string with the time required to

decompress it, the overhead is significant especially on older

systems. Also the media streams (which are compressed

using the WebRTC codec of choice) take up the majority of

the data transferred.

As a result we concluded that although the compression

ration achieved is very high (up to 93%) and that using

compression on the data channel can be useful on some

situations (e.g. when no media streams are utilized),

compressing data on the data channel does not provide a

significant advantage on most situations.

5.2. CPU Usage

On the signaling server, a typical session description

message is about 2KB in size, while a candidate offer

message is about 150 bytes. Assuming that each peer

exchanges one session description message and 5 candidates

on average, we see that for each peer connection, less that 5

kilobytes of data (10 kilobytes for 2 peers) are send and

received from the signaling server.

On the client, modern hardware is powerful enough for all

the video and canvas operations that are required by most

applications including our own. Furthermore HTML5

Hardware Accelerated canvas is implemented on most

platforms and browsers taking advantage of the capabilities

of modern GPUs.

To measure the processing power requirements of our

system we used the embedded developer tools in Mozilla

Firefox 46. The test system was a laptop equipped with 4GB

of RAM and an Intel Core i3 (U38) CPU with a clock speed

of 1.33 GHz. The computer was running the Microsoft

Windows 7 64bit operating system. The system can be

considered outdated by today’s standards.

To analyze which processes consume more time we used

the Firefox Performance Tool and conducted two 20 second

tests: During the first test the system was used for streaming

media between two peers while during the second test the

sketching feature was also used. During the first test the

average framerate was measured at 42fps while during the

second test average framerate was at 17 fps.

Table 2. Function CPU usage while sketching and while streaming.

 CPU Usage

 Sketching &

Function Streaming Streaming

Gecko (includes idle time)* 37.06% 60.83%

Sketching 19.06% -

Graphics* 16.40% 23.57%

Garbage Collecting* 9.41% 6.52%

JIT* 4.83% 1.88%

Tools* 2.25% 3.28%

Input & Events* 1.79% -

Compression/Decompression Algorithms 1.71% -

Other 7.49% 3.92%

* Denotes internal browser functions

In the following figure we see the framerate in which the

browser renders the page during the tests.

Figure 13. Comparison of framerate during simple streaming (above) and during sketching (below). Negative spikes denote that the user is sketching on the

canvas.

6. Conclusions

WebRTC is a moderately new technology that enables

program to-program correspondence. In this paper we

introduce a conceivable utilization of WebRTC innovation in

the fields of synchronous online joint effort and IoT control.

We propose a uniform method for exchanging information

through the WebRTC information channel. In this manner,

can be utilized to exchange metadata for online cooperation

stages and in the meantime in blend with existing IoT

JavaScript libraries, for example, Cylon.js or Janus to impart

or control IoT gadgets.

We have additionally built up an application as a model

expected to exhibit the abilities of WebRTC and the

proposed convention, and its potential use for online joint

effort, whiteboarding and media gushing. The application

exploits present day HTML5 APIs, for example, the Screen

Capture, Media Recording and Stream Capture from Media

components to offer clients the capacity to share video

streams from an assortment of sources and afterward utilize

the WebRTC information channel to trade cooperation

metadata that incorporate portrayals, video explanations and

IoT gadget activities.

References

[1] J. F. N. Jr, R. O. Briggs and N. C. Romano, Collaboration
Systems: Concept, Value, and Use, New York: Routledge, 2014.

[2] C. A. Ellis, S. J. Gibbs and G. Rein, "Groupware: some issues
and experiences," Communications of the ACM, vol. 34, no. 1,
pp. 39-59, 1991.

[3] T. Walhert, "Synchronous or Asynchronous Tools," Green
Hills Area Education Agency, [Online]. Available:
https://sites.google.com/a/ghaea.org/aiw-iowacore-
techintegration/ synchronous-vs-asynchronous. [Accessed 16
4 2016].

 International Journal of Information and Communication Sciences 2017; 2(5): 59-67 66

[4] B. Kask and S. Wood, "Synchronous and Asynchronous
Communication: Tools for Collaboration," University of British
Columbia, [Online]. Available: http:// etec.ctlt.ubc.ca/510wiki/
Synchronous_and_Asynchronous_Communication:Tools_for_
Collaboration. [Accessed 16 4 2016].

[5] H. J. Smith, S. Higgins, K. Wall and J. Miller, "Interactive
whiteboards: boon or bandwagon? A critical review of the
literature," Journal of Computer Assisted Learning, vol. 21, no.
2, pp. 91-101, 2005.

[6] C. J. Wenning, "Whiteboarding & Socratic dialogues:
Questions & answers," Journal of Physics Teacher Education
Online, vol. 3, no. 10, pp. 3-10, 2005.

[7] O. Akbaş, M. Baturay and a. Y. Söker, "Interactive
Whiteboard-Based ATM Use Training for Older Individuals,"
International Online Journal of Educational Sciences, vol. 8,
no. 1, pp. 87-97, 2016.

[8] C. A. Jara, F. A. Candelas, F. Torres, C. Salzmann, D. Gillet, F.
Esquembre and S. Dormido, "Synchronous collaboration between
auto-generated WebGL applications and 3D virtual laboratories
created with Easy Java Simulations," in 9th IFAC Symposium
Advances in Control Education, Nizhny Novgorod, 2013.

[9] Andrioti, H., Stamoulias, A., Kapetanakis, K., Panagiotakis, S.,
& Malamos, A. G. (2015, June). Integrating WebRTC and
X3DOM: bridging the gap between communications and
graphics. In Proceedings of the 20th International Conference
on 3D Web Technology (pp. 9-15). ACM.

[10] Athanasios G. Malamos, Georgios Mamakis, Paraskevi
Sympa, Eleni Kotanitsi,Yannis Kaliakatsos, Dionysios Kladis,
Alfredo Javier Gonel Crespo, Alvaro Zubizarreta Lopez,
"Extending X3D-based educational platform for mathematics
with multicast networking capabilities", in Proceedings of
WBE2009, Phuket, Thailand, 16-18 March 2009.

[11] M. Hammond, "Online collaboration and cooperation: The
recurring importance of evidence, rationale and viability,"
Education and Information Technologies, pp. 1-20, 2016.

[12] R. Zevenbergen and S. Lerman, "Learning Environments
Using Interactive Whiteboards: New Learning Spaces or
Reproduction of Old Technologies?" Mathematics Education
Research Journal, vol. 20, no. 1, pp. 108-126, 2008.

[13] S. M.-V. Metz, P. Marin and E. Vayre, "The shared online
whiteboard: An assistance tool to synchronous collaborative
design," European Review of Applied Psychology, vol. 65, no.
5, pp. 253-269, 2014.

[14] J. Franke and B. Cheng, "Real-time privacy-preserving
cobrowsing with element masking," in 2013 17th
International Conference on Intelligence in Next Generation
Networks (ICIN), Venice, 2013.

[15] "WebRTC," [Online]. Available: http://www.webrtc.org/home.
[Accessed 4 7 2015].

[16] "Is WebRTC ready yet?" [Online]. Available:
http://iswebrtcreadyyet.com/. [Accessed 2 3 2016].

[17] J. Wagner, "What Developers Should Know About ORTC
Versus WebRTC," ProgrammableWeb, 12 10 2015. [Online].
Available: http:// www.programmableweb.com/news/what-
developers-should-know-about-ortc-versus-
webrtc/analysis/2015/10/12.

[18] ABI Research, "4.7 Billion Mobile WebRTC Devices by 2018

Despite Lack of Open Support from Apple and Microsoft," 25
9 2013. [Online]. Available: https://
www.abiresearch.com/press/47-billion-mobile-webrtc-
devices-by-2018-despite-l/.

[19] K. Jain, A. Himmatramka, A. Bhandary, A. D’silva and D.
Barge, "Synchronized Development Using WebRTC Real-
Time Collaboration in WebRTC," International Journal of
Engineering Science, vol. 6, no. 4, 2016.

[20] L. V. Ma, J. Kim, S. Park, J. Kim and J. Jang, "An efficient
Session_Weight load balancing and scheduling methodology
for high-quality telehealth care service based on WebRTC,"
The Journal of Supercomputing, pp. 1-18, 2016.

[21] I. V. Osipov, A. A. Volinsky and A. Y. Prasikova, "E-Learning
Collaborative System for Practicing Foreign Languages with
Native Speakers," International Journal of Advanced Computer
Science and Applications, vol. 7, no. 3, 2016.

[22] C. Alexandru, "Impact of WebRTC (P2P in the Browser),"
Internet Economic VIII, pp. 39-58, 2014.

[23] S. Dutton, "WebRTC in the real world: STUN, TURN and
signaling," [Online]. Available:
http://www.html5rocks.com/en/tutorials/webrtc/infrastructure/.
[Accessed 20 2 2016].

[24] J. Valin and C. Bran, "WebRTC Audio Codec and Processing
Requirements," 9 2 2016. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-rtcweb-audio-10.

[25] A. Roach, "WebRTC Video Processing and Codec
Requirements," 12 6 2015. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-rtcweb-video-06.

[26] "Node.js for the BeagleBone Black," ARMhf, 27 4 2013.
[Online]. Available: http:// www.armhf.com/node-js-for-the-
beaglebone-black/.

[27] Mozilla Developer Network,
"MediaDevices.getUserMedia()," [Online]. Available:
https://developer.mozilla.org/en-
US/docs/Web/API/MediaDevices/getUserMedia. [Accessed 1
3 2016].

[28] W3C, "Media Capture from DOM Elements," 10 3 2016. [Online].
Available: http:// w3c.github.io/mediacapture-fromelement/.

[29] S. Dutton, "VP9 is now available in WebRTC," Google
Developers, [Online]. Available:
https://developers.google.com/web/updates/2016/01/vp9-
webrtc?hl=en. [Accessed 18 4 2016].

[30] C. Hart, "Does telephony matter if no one talks to each other
anymore?" 18 1 2016. [Online]. Available:
https://medium.com/@chadwallacehart/does-telephony-
matter-if-no-one-talks-to-each-other-anymore-
5edf61f27e71#.gdmm244q7.

[31] Kostas Kapetanakis, Spyros Panagiotakis, Athanasios G.
Malamos, "HTML5 and WebSockets; challenges in network
3D collaboration", in Proceedings of the 17th Panhellenic
Conference on Informatics (PCI 2013), 19-21 September,
2013, Thessaloniki, Greece.

[32] Steiakaki, M., Kontakis, K., Malamos, A. G. “Real-Time
collaborative environment for interior design based on
Semantics, Web3D and WebRTC”. In Proceedings of the 15th
International Symposium on Ambient Intelligence and
Embedded Systems (Ami Es), 2016.

67 Nikos Pinikas et al.: A Device Independent Platform for Synchronous Internet of
Things Collaboration and Mobile Devices Screen Casting

Biography

Nikos Pinikas received his B. Sc and M. Sc

degrees from the Technological Educational

Institute of Crete. He has worked in education

and as a freelance web developer. His research

interests include web programming and

development, web UX design and ICT in

education.

 Spyros Panagiotakis was born in Iraklio,

Crete, in 1973. He received a BSc in

Physics from the University of Athens

(1997), an MSc in Electronic Automation

in 2001 and a PhD in Communication

Networks from the Department of

Informatics and Telecommunications of

the University of Athens in Greece in

2007. He is currently an Assistant Professor at the Department

of Informatics Engineering of the Technological Educational

Institution of Crete in Greece. He is author of over than 40

publications. His research interests focus on mobile multimedia

technologies, communications and networking, web

engineering, mobile applications, pervasive computing, and

sensor networks.

Despina Athanasaki received her B. Eng in

Informatics Engineering from the Technological

Educational Institute of Crete, where she was

also working as a lab assistant for the courses:

“Satellite Communications”, “Industrial

Automations & Information Systems” and

“Microelectronics”. Currently she is a post-

graduate student at the University of

Melbourne, in the faculty of MIT (Master of

Information Technology), with major in Spatial Technologies. Her

research interests include robotics, embedded systems, signal

processing and communications.

 Athanasios G. Malamos received Bsc in

Physics from the Univeristy of Crete and

Msc and Phd from the Technical

University of Crete. Since 2002 is with

Technological Educational Institute of

Crete, Dept. of Informatics Engineering as

assistant professor (2002-2006) and

associate professor (2006 until present).

Dr. Malamos is head of the Media Networks and

Communications Lab. He is an active member of the WEB3D

community. Dr. Malamos has served as Chair, program and

organizational committee in several international conferences

and workshops. He is regular reviewer of international journals.

His research interests include multimedia services and web.

