
 

International Journal of Energy and Power Engineering 
2016; 5(1-1): 37-41 

Published online October 14, 2015 (http://www.sciencepublishinggroup.com/j/ijepe) 

doi: 10.11648/j.ijepe.s.2016050101.15 

ISSN: 2326-957X (Print); ISSN: 2326-960X (Online) 

 

Fixed-Point Harmonic-Balanced Method for Nonlinear Eddy 
Current Problems 

Xiaojun Zhao
1
, Yuting Zhong

1
, Dawei Guan

1
, Fanhui Meng

1
, Zhiguang Cheng

2
 

1Department of Electrical Engineering, North China Electric Power University, Baoding, China 
2Institute of Power Transmission and Transformation Technology, Baobian Electric Co., Ltd, Baoding, China 

Email address: 
158748295@163.com (Xiaojun Zhao), yuting315@yeah.net (Yuting Zhong), zhynh123@163.com (Dawei Guan),  

mengfh1990@163.com (Fanhui Meng), emlabzcheng@yahoo.com (Zhiguang Cheng) 

To cite this article: 
Xiaojun Zhao, Yuting Zhong, Dawei Guan, Fanhui Meng, Zhiguang Cheng. Fixed-Point Harmonic-Balanced Method for Nonlinear Eddy 

Current Problems. International Journal of Energy and Power Engineering. Special Issue: Numerical Analysis, Material Modeling and 

Validation for Magnetic Losses in Electromagnetic Devices. Vol. 1, No. 1, 2016, pp. 37-41. doi: 10.11648/j.ijepe.s.2016050101.15 

 

Abstract: A new method to optimally determine the fixed-point reluctivity is presented to ensure the stable and fast 

convergence of harmonic solutions. Nonlinear system matrix is linearized by using the fixed-point technique, and harmonic 

solutions can be decoupled by the diagonal reluctivity matrix. The 1-D and 2-D non-linear eddy current problems under 

DC-biased magnetization are computed by the proposed method. The computational performance of the new algorithm proves 

the validity and efficiency of the new algorithm. The corresponding decomposed method is proposed to solve the nonlinear 

differential equation, in which harmonic solutions of magnetic field and exciting current are decoupled in harmonic domain. 
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1. Introduction 

Non-linear eddy current problems can be solved by the 

time-stepping method [1] or the harmonic-balanced method [2]. 

The time-stepping method requires many periods to approach 

the accurate steady-state solution, while the harmonic-balanced 

method computes the magnetic field directly in the frequency 

domain. Compared with the frequency-domain method, the so 

called brute force method using time-stepping technique spends 

much more time on the transient process. 

A relationship between magnetic field intensity H and the 

magnetic induction B is represented by introducing the 

fixed-point reluctivity νFP[3]. The fixed-point reluctivity νFP can 

be regarded as a periodic variable or a constant in 

harmonic-balanced method. The convergent speed of the 

solutions depends mainly on the strategies to determine the 

value of νFP in non-linear iterations. Different methods to 

optimally determine νFP have been presented and investigated in 

order to ensure the stable and fast convergence of solutions 

[4-6]. 

When the power transformer works under DC-biased 

magnetization, the ferromagnetic core will be significantly 

saturated. Owing to the nonlinearity of magnetic material in 

electromagnetic devices, there often are high-order harmonics 

in the exciting current and magnetic field. Therefore, electrical 

devices such as power transformers and reactors may work 

abnormally due to the magnetic storm and the transmission of 

high voltage direct current [7]. In that case, the DC-biased eddy 

current problem should be solved efficiently and accurately. 

Furthermore, electromagnetic coupling should always be 

considered in numerical computation when the strand coils or 

solid conductors are connected to the voltage source. 

In this paper an efficient algorithm to determine the 

fixed-point reluctivity νFP is proposed. It is aimed at efficiently 

computing the non-linear eddy current problem under 

DC-biased magnetization. The nonlinear magnetic field is 

computed in harmonic domain. The corresponding decomposed 

algorithm is presented to solve the nonlinear differential 

equation sequentially or concurrently, which decreases the 

memory cost of harmonic-balanced computation of large scale 

problems. 

2. Fixed-Point Harmonic-Balanced 

Method 

2.1. Fixed-Point Method 

Maxwell’s equations hold in non-linear eddy current 
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problems, 

H J E
0
σ∇× = +               (1) 
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∂
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∂
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B 0∇⋅ =                      (3) 

where E is the electric field intensity, J0 is the impressed 

current density and σ is the conductivity. 

A relationship between magnetic field intensity H and 

magnetic flux density B is represented by introducing the 

fixed-point reluctivity νFP [8], 

( ) ( )FP
H B B M Bν= −             (4) 

where M is a magnetization-like quantity which varies 

nonlinearly with B. Therefore the magnetic field intensity H is 

split into two parts: the linear part, which is related to the νFP, 

and the non-linear part, which varies with the magnetic 

induction B [3]. 

2.2. Harmonic-Balanced Method 

The periodic variables in the electromagnetic field under 

DC-biased excitation can be approximated by the 

Fourier-series with a finite number of harmonics [9], 
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where W(t) can be replaced by current density J, vector 

potential A, magnetic flux density B, magnetic field intensity 

H, and the magnetization-like quantity M. 

Equation (1) can be rewritten in isotropic material by means 

of harmonic vector in 2-D problems, 
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Each of harmonic vectors Bx, By, Mx and My has a similar 

expression with (7). 

2.3. 2-D Eddy Current Problems 

Non-linear eddy current problems can be solved directly 

with the prescribed impressed current density. However, the 

impressed current density is unknown when the solid 

conductor or strand coil is connected to the voltage source. 

Therefore, the coupling between the magnetic field and 

electric circuits should be investigated if the non-linear eddy 

current problem is solved in the harmonic domain. 

2.3.1. Solid Conductor Connected to Voltage Sources 

When the solid conductor is fed by the voltage source, the 

eddy current exists in the solid conductor and the other 

conducting materials. The non-linear problem can be 

described by the following equation, 

( )A J M
FP
ν∇× ∇× = −∇×           (8) 

where J is the current density. 

The magnetic vector potential A and the scalar potential V 

can be linked to the current density J by the equation as 

follows, 

A
J V

t
σ σ

∂
= − − ∇

∂
               (9) 

The non-linear equation, including the 2-D magnetic and 

electric fields, can be presented as follows [10], 

( ) ( ) M
FP

A
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t
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∂
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The fixed-point harmonic-balanced equation can be 

established by applying the finite element method on the 

whole problem domain, 
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where Ωew, Ωed and Ωen represent the finite element in the 

whole problem domain, eddy current region and the 

non-linear region, respectively. Ni is the shape function on 

node i in each finite element, and m is the total number of 

nodes in one element. DFP and N are the square matrices 

related to the fixed-point reluctivity and harmonic number [2], 

respectively. Aj is the harmonic vector of the magnetic vector 

potential on node j and Pj is the harmonic vector obtained from 

M. U is the voltage in harmonic domain per unit length. 

By integrating (13) on the solid conductor, we can obtain 

C A ZI U
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since 
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where Ωec represents the finite element in the conducting 

region, R is the conductor’s resistance per unit length, Scd is 

the cross-sectional area of the solid conductor. 

2.3.2. Strand Coil Connected to Voltage Sources 

The strand coil consists of fine wires where the eddy current 

is generally too small to be considered for computation. The 

supplied voltage U and the exciting current I in the coil can be 

linked by Kirchhoff’s Law and Faraday’s Law [11], 

=

c

coil

A
N d RI

t
Ω

∂
Ω+

∂∫ U              (19) 

where Ncoil is the turn number of the strand coil. 

The frequency-domain system equation considering 

electromagnetic coupling can be obtained according to the 

harmonic-balanced theory, 
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where Iu is a unit matrix of the same size with DFP and N. 

Consequently, the harmonic solutions of the magnetic field 

and magnetizing current can be computed simultaneously by 

solving (21) when the solid conductor and strand coil are both 

connected to the voltage source, 

S + T G A K P
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where G is related to the spatial distribution of the 

magnetizing current when the strand coil is fed by the voltage 

source, while K appears on the right side of the equation when 

the solid conductor is connected to the voltage source. 

2.4. Determination of Fixed-Point Reluctivity 

The fixed-point reluctivity νFP can be regarded as a periodic 

variable when it is determined in each time step. Consequently, 

the harmonic coefficients of νFP can be used to calculate DFP in 

the harmonic-balanced method [2]. All elements in the square 

matrix DFP are non-zero, which indicates harmonic solutions 

are coupled with each other. In that case the memory demand 

will increase significantly in the large-scale computation, 

although fast convergence is achieved. In fact the νFP can be a 

constant in the harmonic domain, and is determined as 

follows, 

( )max max
/H B Bν = ∂ ∂

FP
         (24) 

where Bmax represents the maximum value of the magnetic 

induction in one period. 

The mean (emean) and maximum (emax) variation of the 

reluctivity defined by ν=H/B can be observed to check the 

convergence of the harmonic solutions. In this paper the 

stopping criterions are set to emean = 0.1% and emax = 1% in the 

numerical computation of the one-dimensional and 

two-dimensional eddy current problems. 

3. Computational Results and Analysis 

3.1. Laminated Steel Sheet 

As shown in Fig.1, A thin electrical steel sheet carrying 

eddy current is modelled and computed to observe variation of 

the magnetic induction when the lamination operates under 

different types of magnetization. 

The 30Q140 oriented steel sheet of 0.3 mm thickness is first 

tested under sinusoidal flux in 50 Hz, and then the DC flux is 

provided. The conductivity of the sheet is σ = 2.22×10
6 
S/m. 

 

Figure 1. Electrical steel sheet. 

 

Figure 2. Magnetic induction in different depths of the steel sheet. 
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The spatial distribution of magnetic induction in the thin 

sheet is well clarified in Fig. 2. The magnetic flux for the 

boundary condition is Bav,ac = 0.994T and Bav,dc = 0.7036T. Fig. 

3 compares the waveforms of magnetic induction under 

sinusoidal (indicated by “ac”) and dc-biased (indicated by 

“dc”) magnetizations. Notice that the eddy current in the sheet 

leads to the non-sinusoidal waveform of the magnetic 

induction. Furthermore, the distribution of the magnetic 

induction varies with the depth of the sheet in the x-direction. 

 

Figure 3. Comparison of the magnetic induction under sinusoidal and 

dc-biased magnetizations. 

 

Figure 4. Geometric structure of the 2-D model. 

 

Figure 5. Calculated current in the copper conductor. 

3.2. Copper Conductor Surrounded by Ferromagnetic 

Screen 

The two-dimensional problem consists of a solid copper 

conductor and an iron screen with an air gap. As shown in Fig. 

4, the iron screen surrounds the conductor. The eddy current 

exists in both the copper conductor and iron screen. The 

conductivities of the copper and iron are σ= 5.7×10
7 
S/m and σ 

= 1.0×10
6 

S/m, respectively. The copper conductor is 

connected to a voltage source of 50 Hz. The B-H curve is 

detailed in [3]. 892 second-order elements with 2781 nodes 

are used in the numerical computation. Computational costs of 

the proposed method and the traditional method [2] are 

compared in Table I. Mc and Tc represent the memory demand 

and computational time, respectively. Nh is the truncated 

harmonic number. Compared to the traditional method, the 

proposed method significantly reduces memory requirements 

with a slight increase in computational time due to a few more 

non-linear iterations. The calculated magnetizing current is 

compared with that obtained by using time-stepping method, 

and the good congruency proves the validity of the proposed 

method. 

Table 1. Comparison between two different methods. 

Method Traditional Proposed 

Memory/Mb 17.51 7.92 

Time/s 951.31 812.86 

Nh 11 11 

4. Decomposed Algorithm 

When the fixed-point reluctivity is computed according to 

(24), the nonlinear equation in (23) can be linearized by νFP 

which is space-dependent and time-independent. Therefore 

harmonic solutions can be decoupled and calculated separately. 

Equation (11) can be decomposed as follows, 

( ), ,
1

, ,
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m
e e e e

ij k FP ij k k j
i

e e

k j k j h

S T
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where k is the harmonic number. 

The decoupled equation system can be solved sequentially 

and concurrently, updating harmonic solutions by Gauss-Seidel 

and Jacobi iterative method respectively. 

5. Conclusion 

The convergent speed of harmonic solutions highly depends 

on the determination of optimal fixed point reluctivity in the 

fixed-point harmonic-balanced method. Differential reluctivity 

can be used to guarantee the stable and fast convergence of 

harmonic solutions. Due to the linearized system equation, 

harmonic solutions can be decoupled and computed in parallel, 

which can improve the computational efficiency and reduce the 

memory cost greatly. The proposed algorithm is more efficient 

than the traditional harmonic-balanced method. 
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