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Abstract: Energy has become a panacea for a rapid development of any modern human society. Non-renewable energy 
generation systems are put under tremendous pressure to transition toward a more sustainable energy that reduces impact on 
climate change while enhancing energy efficiency and securing energy supply. Energy systems however, exhibit complex 
dynamics leading in most cases to reductionist approach studies that mainly examine the components of the system in isolation. 
This paper proposes a multi-perspective modeling of the ES through a structural adjustment of its components using multiple 
formalisms as follows: (i) an ontology was built which is, a formal specification of energy simulation knowledge, based on 
agreed upon concepts and their relationships as found in the literature review of the energy simulation domain, (ii) a simulation 
framework was proposed around the identified perspectives that are most often discussed in findings of energy simulation. 
Each perspective is specified in a fitting formalism and represents a family of models with specific objectives that drive 
simulation studies of the energy sector, and (iii) an integration mechanism was developed to unify the isolated perspectives 
into an overall holistic model such that parameters are mutually influenced by one another in a live simulation for a 
comprehensive study of the energy sector. Results showed that power supply failure caused by persistent tripping of 
transmission line was due to a sudden increase in generation power plants. The failure was successfully re-adjusted through 
perspectives integration during live simulation to fit with the maximum wheeling capacity of the power transmission grid 
component. The updated values of the transmission parameters have also matched with the expected outputs of the 
consumption component parameters at the receiving end. Hence, the study has produced closer and efficient results for long-
term performance evaluations of the energy demand fulfilment. 

Keywords: Energy Systems, Modeling and Simulation, Multi-Paradigm Modeling, Holistic Simulation,  
Ontology-Driven Simulation 

 

1. Introduction 

Energy is an essential commodity for a stable and reliable 
modern economy. The energy sector powers multiple other 
sectors such as education, healthcare, transportation, and 
industry that strongly rely on an efficient power 
infrastructure [34]. Energy system is comprised of several 
components including production, transportation, distribution, 
consumption, and finances, which communicate with one 
another through intricate processes in a complex relationship. 

Lately, the need to transition from non-renewable source of 
energy to renewable source of energy due to climate change 
has put the energy systems under tremendous pressure while 
population growth and fast-paced industrialization also 
increase energy consumption greatly. This challenge 
attracted significant research attention on the energy sector 
using various models including computational, mathematical, 
and physical models [46]. Energy systems (ES)s however, 
exhibits complex dynamics due to their various and diverse 
components leading in most cases to isolated studies that 
mainly examine the components of the ES separately while 
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failing to consider the interconnections that exist between 
these components, thus limiting the understanding of the ES 
as a complete whole for better decisions making. Models that 
consider economic factors play crucial role in energy 
decision-making, and they include economic indicators such 
as investment costs, operational expenses, and financial 
mechanisms. They can analyze the cost-effectiveness of 
different energy sources, pricing mechanisms, and the 
impacts of policy instruments like subsidies or carbon pricing 
[6, 42, 49]. Economic factors are often integrated into energy 
system optimization models or cost-benefit analyses. Models 
that address environmental factors are critical for energy 
systems and deal with aspects such as such as greenhouse gas 
emissions, air pollution, land use, and water consumption [3, 
32, 47]. They can assess the environmental impacts of 
different energy technologies and policies, helping to identify 
low-carbon and environmentally friendly pathways. Life 
cycle assessment and environmental impact assessment 
methods are commonly used in such models. Models dealing 
with social factors highlight the significance of social 
inclusion and account for social factors by considering 
aspects such as energy access, energy poverty, employment, 
health, and social acceptance of different technologies. These 
models can assess the distributional impacts of energy 
policies, equity considerations, and social acceptance barriers 
to energy transitions [23, 24, 36, 48]. Stakeholder 
engagement and participatory modeling techniques are often 
used to capture diverse social perspectives. Models 
addressing technological advancements and innovation shape 
energy systems and incorporate technological factors such as 
energy technologies used, costs, efficiencies, and scalability. 
They explore the role of emerging technologies, like 
renewable energy sources, energy storage, and smart grids [5, 
9, 37, 40]. Technological factors are often integrated into 
energy system models, energy scenario analyses, and 
technology diffusion models. Policy frameworks and 
regulations significantly influence energy systems and they 
analyze the impacts of policy instruments such as renewable 
energy targets, carbon pricing, energy efficiency standards, 
and regulations on energy markets, [15, 28, 29, 60]. These 
models evaluate the effectiveness and interactions between 
different policies, identify policy trade-offs, and assess policy 
pathways for achieving sustainability goals. 

We argue that there is a need to develop a unifying 
simulation framework that incorporates these different 
aspects of the energy system together to support researchers 
and policymakers to develop more comprehensive and 
holistic models that account for the diverse dimensions of the 
energy sector. We propose a multi-perspective modeling and 
holistic simulation (MPM&HS) framework that allows 
simulation parameters to be lively and mutually influenced 
by one another to produce closer and efficient results for a 
long-term performance of the energy sector. MPM&HS is a 
well proven and rigorous approach that was successfully 
applied to study complex systems such as healthcare systems, 
and traffic systems [13, 53, 51]. In this work, the MPM&HS 
framework addresses the followings: 

1) Build an ontology based on an extensive literature 
review that is comprised of all the agreed upon concepts 
and their relationships in the domain of modeling and 
simulation of energy systems; 

2) Formulate the level of abstractions that correspond to 
the various perspectives in energy simulation domain. 
These abstractions represent each a family of models 
with specific objectives that drive simulation studies of 
the energy sector. 

3) Integrate these different perspectives into an overall 
holistic simulation model within their respective 
experimental frames through model output-to-
parameters in a live simulation to derive closer results to 
the reality. 

The rest of this document is organized as follows. Section 
2 presents related works and highlights the originality of our 
approach. Section 3 presents the conceptual and operational 
framework (multi-perspective modeling and holistic 
simulation). Section 4 shows how the approach was used in a 
running case study of the Nigerian energy system. Section 5 
presents a discussion of the results obtained. Section 6 
concludes the article. 

2. Related Works 

The energy sector plays a crucial role in modern societies, 
and the efficient management and planning of energy 
systems are vital for sustainability and economic growth. To 
achieve this, major developments have been made by 
researchers these last decades exploring various ways 
ranging from modeling approaches – computational, 
mathematical, and physical models - to the fields - process 
systems engineering, and energy economics [46]. The energy 
sector is a complex and dynamic field that requires 
comprehensive modeling and simulation frameworks to 
understand and optimize its operations. One common way of 
addressing this complex system is the use of multi-
perspective modeling and holistic simulation, which provides 
a comprehensive understanding of the intricate interactions 
of the sub-components and dynamics within the energy 
sector. Multi-perspective modeling is a concept mostly used 
in various fields to analyze complex systems from different 
viewpoints or perspectives [13, 16, 17, 51, 55]. Multi-
perspective modeling in the context of the energy sector 
involves integrating multiple viewpoints or perspectives to 
capture the complex and interconnected nature of energy 
systems. This approach recognizes that the energy sector is 
influenced by various factors, including economic, 
environmental, social, technological, and policy-related 
aspects [1, 7, 10, 18, 38]. To highlight the need for 
alternative estimates and modeling approaches to capture the 
complexities of the energy sector, a study was conducted in 
[45] on gaseous and primary aerosol emissions in Asia in the 
year 2000. They used the RAINS-Asia simulation model to 
generate a comprehensive picture of energy use in the region. 
However, the authors noted that the model did not accurately 
project the reduction in coal use in China after 1996-97. The 
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authors in [56] emphasized the importance of holistic 
evaluation frameworks in the energy sector. They developed 
a multi-method framework for evaluating digital applications 
and applied it to conduct a holistic evaluation of aircraft 
detection lighting systems. The study highlights the need for 
comprehensive assessments that consider multiple 
perspectives and impact areas. A generic framework for 
large-scale literature reviews in the domains of modeling, 
simulation, and management was proposed in [26]. The 
authors conducted a comparative analysis of five reviews and 
identified common elements and differentiating factors. The 
research demonstrates the importance of systematic and 
comprehensive literature reviews in informing the 
development of frameworks. A systematic literature review 
was performed in [41] to assess the state of art in studies that 
applied the Heston model in the energy sector. The review 
highlights the need for comprehensive assessments of 
modeling approaches to forecast energy generation. Likewise, 
a literature review was conducted in [31] on sector coupling 
and its incorporation in energy system models. The review 
provides a comprehensive understanding of sector coupling 
and its advantages in terms of decarbonization, flexibility, 
network optimization, and system efficiency. It emphasizes 
the need for clear understanding and appropriate tools to 
model and analyze sector coupling in energy systems. 

Consequently, it was discussed in [21] the trend towards 
developing more comprehensive energy and economic 
modeling approaches. The authors described various 
approaches for linking top-down and bottom-up models to 
achieve a multi-model/sector perspective. The research 
emphasizes the importance of integrating different modeling 
approaches to capture the complexities of the energy sector. 
However, to emphasize the need for comprehensive 
modeling frameworks that capture the interactions between 
different sectors, different modeling frameworks used in the 
analysis of economic growth, technological change, and the 
environment were compared in [27]. The authors highlighted 
the use of one-sector aggregate frameworks and multi-sector 
disaggregated frameworks in energy/climate policy modeling. 
Similarly, it was presented in [20] a holistic digital twin 
simulation framework for industrial facilities in the energy 
sector. The authors emphasized on the importance of 
integrated modeling and simulation-based optimization to 
achieve energy and resource efficiency. The research 
highlights the need for interdisciplinary approaches that 
consider various subsystems and optimize the overall 
system's performance. In another comprehensive overview of 
the literature, an analysis of various aspects of energy 
demand models, including techniques, prediction accuracy, 
inputs, energy carrier, sector, temporal horizon, and spatial 
granularity was carried out [54]. Overall, the literature review 
highlights the importance of multi-perspective modeling and 
holistic simulation frameworks in the energy sector. It 
emphasizes the need for comprehensive assessments, 
systematic literature reviews, and integrated approaches to 
capture the complexities and optimize the performance of 
energy systems. 

As such, the energy sector requires a powerful modeling 
and simulation approach such as the Multi-perspective 
modeling and holistic simulation approach for understanding 
and analyzing its complexities. To the best of our knowledge, 
there has not been a disciplined approach that integrates 
diverse perspectives of the energy sector such as 
technological, economic, environmental, and social factors 
within a single holistic simulation framework. We argue that 
such a framework is needed to provide valuable insights and 
support decision-making processes while enhancing the 
integration of real-world data, and addressing emerging 
challenges in the energy sector. 

3. Conceptual and Operational 

Framework for Holistic Energy 

Simulation 

We firstly start our methodology by constructing a causal 
looping diagram the structure of the energy sector, then 
presents an ontology where various classes that represent 
major components of ES simulation and their relationships 
are captured. We later formulate perspectives representing 
family of energy simulation models using hierarchy of 
systems specification [58], where models are developed from 
each perspective and coupled within their respective 
experimental frames (EF)s for simulation studies. EFs are 
used to address questions raised by these perspectives from 
which modeling exercise is being carried out. Following that, 
multiple models of energy systems are built and assembled 
within a model repository where instances are retrieved to 
build a specific energy system. Finally, through an 
integration mechanism [13], that links models outputs-to-
parameters at runtime simulation, we conduct a holistic 
simulation of an energy system. 

3.1. Modeling of the Energy Sector Using a Causal Loop 

Diagram 

Figure 1 presents in details components of energy systems 
and the relationships that exist between them using a causal 
loop diagram with major parameters derived from [8, 12, 44], 
which are close to our work. The CLD starts with the primary 
sources of electricity that are from renewable and 
nonrenewable resources. 

The conversion limit of the energy depends on the amount 
of the primary sources as well as other factors such as 
government policy, industry policy, and technology used for 
the electricity generation and the fuel processing. The 
number of installed power plants alongside investment, and 
environmental conditions are major factors that affect the 
bulk of electricity generation which produces the price of the 
electricity in the market based on the cost of electricity. The 
economic condition is used to estimate the electricity cost 
and it is based on parameters such as raw material price, 
equipment price, and investment rate. There is a noticeable 
loop going from the GDP (Gross Domestic Income) that 
determines the income of the consumers resulting to 
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electricity demand that affects electricity consumption for the 
payment of electricity bills, and back to GDP. Fuel 
processing depends on factors such as conversion limit, 
technology used, environmental condition, and the available 
number of plants. Fuel price is function of the amount of fuel 
being processed and the energy generation cost which affects 
electricity price as well. Electricity demand is also 

determined by the number of consumers based on population, 
electricity efficiency and electricity losses. Finally, electricity 
consumption is derived from factors such as season (dry or 
cold season), type of day (working or non-working day), 
temperature, and consumer behavior. Equations describing 
the components of the model will be presented in the 
subsequent sections. 

 

Figure 1. Electricity Sector explained with a Causal Loop Diagram. 

3.2. Ontological Approach 

Energy has become a major resource for a rapid economic, 
social, and political prosperity of any modern human society, 
therefore Modeling and Simulation (M&S) related to Energy 
Systems (ES)s has gained significant research attention these 
last decades. ES and its multiples ramifications makes it 
without a doubt a complex system with various aspects 
interacting with one another through intricate processes. As 
such, when building the ontology, we review the major 
contributions in this area by investigating through an 
extensive literature review existing taxonomies of energy 
systems M&S as suggested by [19, 35, 46, 50]. Hence, the 
resulting ontology captures useful knowledge including 
various classes that represent major building block 

components and their relationships in the energy simulation 
domain as an integrated whole. We formally express the 
ontology using system entity structure (SES) language with 
links to basic models developed in various formalisms and 
stored in a model base (MB) repository [59]. 

SES formalism is a hierarchical knowledge representation 
for high level ontology construction in terms of 
decomposition, coupling, and taxonomic relationships among 
different entities. A decomposition refers to the breaking 
down of an entity while the coupling refers to its 
reconstruction. An entity represented by a box has variables 
written below the box, while an aspect is represented by a 
single vertical line. A multiple-aspect is also referred to as a 
composition and is represented by three vertical lines. 
Specialization is represented with double vertical lines and 
denotes its taxonomy. The taxonomic relationship provides 
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possible variants of the entity. SES is provided with a set of 
axioms and an expressive power for modeling and simulation 
of large and complex systems such as ESs. The ontological 
analysis of ESs using SES/MB framework relies basically on 
the multi-perspective approach that serves to develop models 
at each level of abstraction where different aspects are 
captured by different views within a complete whole as 
introduced in [14]. Hence, modeling ESs becomes more 
practical and richer with deep insights. Classes are built 
based on agreed-upon concepts in ES simulation domain and 
serve to document and formalize knowledge while providing 
notable benefits such as common representation of energy 
models from different simulation platforms, model retrieval, 
and model reuse. Figure 2 presents the SES hierarchy of the 
ontology. Following closely this representation, the first level 
classification splits Energy System (ES) into a specialization 

of source of energy as – Non-Renewable Energy, and 
Renewable Energy - and a multi-aspect, Stakeholders. Non-
Renewable Energy is comprised of sources such as oil, coal, 
nuclear, and natural gas while Renewable source of Energy is 
composed of sources such as biomass, wind, and solar. 
Stakeholders in Energy System are among others Generation, 
Transmission, Distribution, Finance, and Consumption actors. 
Under the component consumption, we have population, and 
individual components which to further components such as 
local, national, regional, and global under special dynamics 
component that characterizes the scale of the energy 
consumption. The individual component of consumption also 
spreads further to components such as commercial, 
household be it at urban or rural level, transportation, and 
Industrial entities. 

 

Figure 2. Ontology for Energy System Modeling and Simulation. 

The ontological specification proceeds furthermore to 
cover concepts such as technological mode of energy 
generation that includes components for both renewable and 
non-renewable energy sources like refinery pant, nuclear 
plant, thermal plant, solar plant and wind turbine. Entities of 
the SES tree are expressed as DEVS based parameterized 
models [13] and stored in the MB repository for model 

retrieval. Models are organized according to the stratification 
of abstractions proposed in our framework where they can be 
mapped into various simulation formalisms such as Discrete 
Even Simulation (DES), System Dynamics (SD), and Agent 
Based Modeling (ABM), within a simulation environment 
like AnyLogic for their execution. Although the authors 
attempt to cover all existing concepts in energy domain, the 
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goal of the proposed ontology is to establish the main 
building blocks that will serve as a starting point to be 
considered in the future energy simulation ontologies. 

3.3. Formation of Levels of Abstraction 

The proposed ontology encompasses a plethora of 
problems that are often discussed in the literature for energy 
simulation. These problems are identified and categorized 
into five major perspectives as presented in Figure 3, with 
each one of them representing main concepts in the energy 
sector while addressing a family of questions that can be 
addressed through their respective experimental frames. 
Perspectives are then integrated to form a holistic view of the 
energy simulation. We consider the following perspectives: 

1) Generation perspective: It addresses problems of energy 
conversion from primary energy sources stored in both 
renewable and non-renewable natural resources such as 
fossil fuel, uranium, wind, and solar to its harvesting as 
electricity and liquid fuels. Models derived from this 
perspective represent abstractions of aggregated 
technologies at the unit operation, processing plant and 
supply chain scale. 

2) Transmission perspective: It relates to challenges 
associated with bulk electricity transmission and the 
power collapse due to problems such as natural disasters, 
transmission losses, and wheeling capacity that affects 
the performance of the overall grid. 

 

Figure 3. Multi-perspective framework for energy systems. 

3) Distribution perspective: It concerns with problems 
affecting reliable electricity supply such as power 
outage frequency, technical and non- technical losses, 
and shutdown duration that occurred mostly during 
electricity distribution and causing customers 
dissatisfaction of the quality of the service. 

4) Consumption perspective: It deals with problems of 
electricity demand from residential, industry, 
commercial, and public service based on factors such as 
population, gross domestic product (GDP), per capital 
electricity consumption, average income, and electric 
appliances used. 

5) Finance perspective: It addresses the issues of expenses 
from total cost of production to total revenue, and the 
leverage points such as cost during transmission, cost 
during distribution, and electricity tariff amongst others. 

The resolutions of the perspectives of the energy systems 
presented in Figure 3 is done according to the specification of 
system hierarchy as introduced by [59]. The axis of 
resolutions includes Micro, Meso, and Macro levels from 
which the details of modeling of perspectives are carried out 
while the axis of formalisms reveals formalisms that can be 

used to model these perspectives and they include among 
many others DES, SD, and ABM formalisms. The dashed 
lines between the perspectives (boxes) depicts various 
interactions that exist between the multiple-perspectives. To 
achieve a holistic simulation of energy systems, which 
unifies all the isolated perspectives and their mutual 
influences within a single simulation model, we follow the 
integration mechanism introduced in [13] which enables live 
exchange of information between concurrent simulations in 
the various perspectives. Section 3.3 provides more details on 
this integration mechanism. 

3.4. Perspectives Integration 

Figure 4, is adapted from [52] and depicts the integration 
mechanism of the energy simulation perspectives as 
discussed in section 3.2, using the concept of experimental 
frame. The same system, that is, the energy system, is subject 
to various objective-driven studies represented by boxes 
around it. One of the common ways to understanding 
complex systems is to impose on them multiple design 
solutions focusing each on different perspective representing 
the sub-components. 
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Figure 4. Holistic Simulation Framework for Energy Systems (Adapted [52]). 

Hence, multi perspective modeling approach helps to 
overcome the limitations of a single-perspective modeling 
approach. A fitting approach adopted in this work is the 
multiple-perspective modeling and holistic simulation 
(MPM&HS) [13, 52, 53] approach that leads to the 
specification of different perspective models of the energy 
system that are bridged together to replicate the overall 
behavior. Perspectives are likened to the concepts of 
experimental frames (EFs) introduced by [58] to address any 
modeling and simulation (M&S) enterprise. In Figure 4, EF 
represents the set of conditions surrounding the system under 
scrutiny which drive the objectives of the study. Each model 
being wrapped up within its own EF is used to run 
simulations while providing altogether various levels of 
explanations of the same system under investigation. The 
integration of models from perspectives is carried out 
through influences of model-outputs from one perspective to 
input-parameters of another perspective using integrators at 
the runtime simulation. The holistic EF is later coupled with 
the resulting holistic model to derive simulations results that 
are closer to the reality than when studying these isolated 
perspectives separately. As a result, a holistic simulation of 
the energy system which aggregates all the isolated 
perspectives is achieved as an integrated whole. 

4. Application and Results 

Having presented the conceptual framework upon which 
the study is carried out, we provide an explanation of models 
built according to each of the identified perspectives. Each 
model studied in isolation produces separate results that are 
later discussed with the results obtained from the holistic 
simulation from the integrated perspectives. The different 
perspectives as well as their integration mechanism are 
presented in the subsequent sections. 

4.1. The Power Sector in Nigeria 

This section outlines the main characteristics of the power 
sector of Nigeria used as a case study, with focus on power 
generation, power transmission, power distribution, and 

power consumer actors respectively as described in the 
modeling section. Electricity generation in Nigeria is 
managed by twenty-three (23) power generating plants 
including generation companies (GenCos), independent 
power providers, and Niger Delta Holding Company - with 
the capacity of generating 11,165.4 MW of electricity -, that 
are connected to the national grid [57]. Electricity in Nigeria 
is produced using hydropower and thermal sources from 
fossil fuels such as gas that accounts for 86% of the overall 
electricity generation capacity. Power generation was 
initially the responsibility for the federal government till the 
signing of the Electric Power Sector Reform Act (EPSRA) in 
2005 that makes the power sector accessible to private 
investors. The privatization of the power industry has taken 
over all the power generation sector. Table 1 shows the 
breakdown of the electricity generation by main producers 
with their capacity and source of electricity production 
respectively. The power plant in Niger Delta (5,455MW) 
tops the production industry followed by IPP (1, 392MW), 
Kainji Jebba Power Plc (1330MW), Sapele Power Plc 
(1,020MW), and Egbin Power Plc (1020MW) respectively. 

The remaining power producers such as Afam Power Plc 
(987.2 MW), Ughelli Power Plc (942MW), Shiroro Power 
Plc (600MW) produce each less than a thousand (100) MW. 
Nigeria main source of electricity production remains mainly 
gas followed by hydro. The generated power is far below 
what is needed to meet the basic needs of household and 
industrial consumers. Electricity generated by the GenCos is 
sent to the national grid through the Transmission Company 
of Nigeria (TCN) and distributed by the Distribution 
Companies (DisCos) to the end consumers. 

Table 1. Breakdown of main power producers in Nigeria. 

Company (Source) Capacity (MW) 

Kainji Jebba Power Plc (Hydo) 1,330 
Ughelli Power Plc (Gas) 942 
Sapele Power Plc (Gas) 1,020 
Shiroro Power Plc (Hydro) 600 
Afam Power Plc (Gas) 987.2 
Niger Delta Power Holding Company (Gas) 5,455 
IPP's (Gas) 1,392 
Egbin Power Plc (Gas) 1,020 
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4.2. Model of Electricity Generation 

The model of electricity generation was developed using 
System Dynamic (SD) Modeling due to its ability to capture 
intricate interactions between sub-components of complex 
systems. SD modeling is based on a stock and flow 
representation of the existing system with inclusion of 
feedbacks and delays and has been largely used these last 
decades for the analysis of the energy sector as witnessed by 
the works of [8, 12, 33, 39]. The SD model presented in [30] 
of dispatchable resources was adopted and extended in line 
with the context of this work using the parametric study of 
thermodynamic performance of the gas turbine power plant 
reported in [43]. While most models use ISO rating of the gas 
turbines with predefined parameter values as given by the 
manufacturer, it is worth reporting that critical parameter 
values such as heat capacity of air, ambient temperature, and 
Mass fraction of air are subject to change during simulation 
studies. Generally, findings in the literature that address 
energy generation using gas power plants are based on the 
following mathematical equations: 

The Thermal efficiency ηth of the Brayton cycle is given as: 

ηth = 
Ẇ���

���
 = 
Ẇ����

���
                           (1) 

Where Ẇnet = Ẇ
 � �
,                   (2) 

is the net power output of the cycle, 
Wt is the turbine power output 
Wc is the power consumed by the compressor, and 
Qin is the rate of the heat added to the cycle. 
The power consumed by the compressor is given as: 

Wc = maCp,a(T2a – T1)                       (3) 

Where ma is the air flow rate, Cp,a is the specific heat 
capacity of the air, 

T2a is the actual temperature at the compressor exit and T1 

is the temperature at the inlet of the compressor, the ambient 
temperature. 

The power produced by the turbine is given by: 

Wt = maCp,g(T3 – T4a)                      (4) 

Where Cp,g is the specific heat capacity of the gases, 
T3 is the turbine entry temperature 
T4a is the actual temperature of the gases at the turbine exit. 
In this work, we adopt the aforementioned equations and 

tailor them into our case study while building our model. 
Figure 5 shows the generation perspective of the electricity 
sector in SD model that depicts continuous changes taking 
place within the system using AnyLogic simulation tool [22]. 
The generator perspective in the model is made up of four 
state variables – Gas power plant (GPP) Under Construction, 
Number of Installed GPP, Capital Employed, and Reserves - 
that represent stock points or accumulations in the system. 
Each stock has inflow and outflow parameters that control 
the rates at which the stock increases or decreases 
respectively in the model over time. For example, the 
Installed GPP stock has New Capacity Start Up (inflow), 
Capacity Retirement (outflow), and Capacity Bankruptcy 
(outflow). Parameters controlling the inflow and outflow of 
the Installed GPP stock are Construction Delay, and Capacity 
Lifespan and estimated to be 5 and 20 years respectively in 
our simulation. The model has many dynamic variables. For 
example, Desired New Capacity, Wholesale Price, Available 
Capacity, net profit, adjustment factor, and depletion factors 
that are calculated in line with equations as specified in [30]. 
Variable, Desired New Capacity Addition is calculated based 
on Approved Ratio, and Min Percent to Invest while variable 
Available Capacity is calculated from the number of Installed 
GPP, and the Net Power Output Per GPP (Wnet) of the 
turbine cycle derived from equation (2). 

 

Figure 5. Power Plant Generation Model. 

Figure 6 shows simulation results of electricity generation 
capacity. The simulation was run for a time window taken to 

be 30 years with a model time unit of 1 year = 365 days, the 
start time was set to be 2020, and stop time 2050. Parameters 
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values such as Exhaust gas temperature, T4 =756.9K, 
Compressor outlet pressure, P =7.97 bar, and the lower 
heating value of the fuel, Hf = 49000kJ/kg, are set in line with 
the work of [43]. The initial value of installed GPP, and GPP 
under construction are set to be 5, and 1 respectively. Net 
Power Output from the GPP is calculated based on the 
installed number of GPP multiply by (times) the available 
capacity that each GPP can generate as specified in equation 
(2). As shown in Figure 6, the increase in the number of 
installed Power Plant from 2020 to 2030 (Figure 6.b) has led 

to a significant increase of power generation (Figure 6.a) 
within the same period. However, the electricity generation 
capacity remained slightly uniform from the period of 2030 
to 2050. This is due to a slow increase of installed Power 
Plant resulting to a slow growth in generation capacity that is 
triggered by factors such as the approved ratio and the min 
percent of investment. The latter variables have negatively 
affected the feedback loop variable, that is the desired for 
new capacity addition. 

 

Figure 6. Electricity Generation Capacity. 

4.3. Model of Electricity Transmission 

 

Figure 7. Electricity Transmission Model. 

The model of the transmission sector is built using Agent-
based (AB) modelling, a powerful tool for representing the 
complexities of electricity transmission line composed of 
multiple pylons that are linked to one another and have 
multiple behaviors. Electricity transmission lines are subject 

to various spatial constraints within a power grid system and 
challenging to manage for the electricity flows [11]. 
However, it is argued that physical subsystem such as energy 
infrastructures, and industrial networks modeled using AB 
modeling can yield fast understanding. A power system can 
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be in multiple states as described in [25]. Hence, we model 
the behavior of the electricity transmission towers 
accordingly in various states such normal, alert, emergency, 
extremis, and restorative, in the agent-based model as shown 
in Figure 7. The normal state implies that all system is well 
functioning with all customer demands met. The alert state 
implies that even though constraints are still satisfied, the 
system has been weakened to a point of power overloading. 
The state changes from alert state to emergency state when a 
sever disturbance occurs, and if an attempt to solve the 
disturbance fails the systems goes to extremis state leading to 
disintegration into multiple sections. The system will go to 
restorative state if a control measure initiated after total 
collapse has been successful. Transmission towers are subject 
to evens such as wind, equipment breakdown, and human 
factors, that could cause disruption in transmission line. 
Adopting the work of [2] for the collapse and pull-down 
analysis of high voltage electricity transmission towers, we 
present the equation as follows: 

Pc =1 – ((1- Pa)× ((1- Pa-1) × (1- Pa+1))            (5) 

where, Pc is the probability of collapse of tower a from all 
mechanisms, 

Pa is the probability of collapse from the direct action of 
wind 

Pa-1, and Pa+1 are the probabilities of collapsed from being 
pulled down on either side by Neighbors a-1 and a+1. 

Figure 8 shows simulation results of transmission model 
with the statistics of tower/pylon mainly in three dominant 
states – green for emergency state; gray for normal state; and 
red for extremis state - considering the location factors and 
connection characteristics of collapse as calibrated in [2]. 
The probabilities are given as Pa = 0.035; Pa-1 = 0.025; and 
Pa+1 = 0.015 respectively. Major causes of repeated 
breakdown of transmission line in Nigeria are attributed to 
poor management, and low gas supply resulting to power 
interruption due to occurrence of faults such as outage, trip, 
and load shedding. The parameter LoadTimeout representing 
the time spent from by the system to transition from 
restorative state to normal state is distributed uniformly from 
3 to 7 days, and MTTF (minimum time to failure) is given to 
be 2 years and an occurring fault is triggered by 1/MTTF. 

 

Figure 8. Electricity Transmission Simulation Result. 

4.4. Model of Electricity Consumption 

 

Figure 9. Nigeria Electricity Consumption Model. 
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The consumption model is show in Figure 9 with the 
estimation of the consumption (MWh) based on major 
variables such as population, Gross Domestic Product (GDP), 
and Per Capita Income, as described in [4]. 

The equation for the Residential Electricity Consumption 
is given as follows: 

EC = P(t) × PCEC × ER                          (6) 

Where: 
EC is the electricity consumption in residential sector 
P(t) is the population at time ‘t’ 
PCEC is the per capita electricity consumption, and 
ER is the electrification rate 
The per capita electricity consumption is estimated as: 

PCEC = GDPPC × α + β                      (7) 

Where GDPPC is the GDP per capita, α = 0.4279, and β = 
26.2808. 

The GDP by expenditure approach and population growth 
were adopted from [33] and the equation is given as follows: 

GDP by expenditure approach = Final consumption 
expenditure + Gross capital formation + Net export of goods 

and services = (Household consumption expenditure + 
Government consumption expenditure) + (Gross fixed capital 

formation + Changes in Inventories) + (Export of goods and 
services – Import of goods and services)          (8) 

The estimation of the future population growth is given as 
follows: 

Population = � ����
� � ���
��
����

���
                (9) 

Where birtht+1 = birthratet+1× Populationt, and death = 

averagelifeexpectancyt+1 × Population 
t = 1 is equivalent to year 2020 and t = 31 is equivalent to 

year 2050. 

  

  

Figure 10. Electricity Consumption Simulation Results. 

The estimate of initial population, P= 200 million; capacity 
factor of distribution = 0.6; transmission losses = 0.074; and 
wheeling capacity = 7500 (MW). The initial GDP of Nigeria 
was chosen to be the GDP of 2000 and was estimated according 
to initial values of each variable given in equation (8) using 
GDP by expenditure approach. Figure 10 shows the results of 
the simulation from year 2020 to year 2030 of variables GDP 
(Million) of US $), Population (Million), DGP Per Capita ($), 
and Electricity Consumption (MWh). It can be observed that in 
all cases, the curves closely follow the same growth patterns. 
This resemblance in trends has helped to conclude that as the 
population keeps increasing at the same time with the GDP, the 
GDP Per Capita which is calculated as a function of the GDP, 
also sees a significant increase. Consequently, this results in a 
considerable increase of electricity consumption within the same 
simulation period because consumers can afford buying for the 
electricity. Hence, we observe an increase in the electrification 
rate in the population. 

4.5. Perspectives Integration 

The different perspectives of the energy sector are 
integrated through outputs of some of the models affecting 
the parameters of the others within the proposed framework. 
Figure 11 illustrates major influences between outputs and 
parameters of developed models including models of 
generation perspective (SD), transmission perspective (AB), 
and consumption perspective (SD). It is worth noticing that 
the experimental frame built to experiment with the resulting 
holistic model provides a more accurate way of model 
outputs to influence model parameters simultaneously at a 
run time. Outputs are the influencing variables while 
parameters are the influenced ones. Hence, we see how 
perspectives impact each other in deriving closer results to 
the reality than when they are taken alone in simulation 
studies. 
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Figure 11. Integration Through Model Outputs and Parameters. 

The integration of the models is carried using Anylogic 
Simulation tool such that the Consumption model output EC 
influencing the Transmission parameter LT, is done through a 
statistical function call - txAndDists.Normal() – returning the 
number of transmission towers in the Normal State, 
txAndDist being an array of towers. The returning value is 
used to determine the appropriate amount of energy to supply 
(MWh) in the next simulation step. Likewise, the 
Transmission model output ESC that influences the 
Generation parameter PP, is achieved through the function 

call - get_Main().Installed_GPP – that returns the number of 
installed Gas Power Plant (GPP)s that are currently 
functioning and supplying the electricity to the grid. This 
value is used to regulate the required energy based on the 
specified wheeling capacity while monitoring the causes of 
transmission lines failures that are due to factors such as 
overloading, line tripping, and heavy wind. Experiments are 
run within the simulation window of 30 years and each 
model is initialized to coincide with the specified period as 
shown in Figure 12. 

 

Figure 12. Holistic Simulation Results. 

Electrical towers are modeled as networked agents in an 
initial “Normal” condition (gray color) across the grid. After 
being in a brief “Alert” condition (light green), we observe at 
the top left in Figure 12, a green coloration of some towers 
that gradually transition to “Emergency” condition. Failed 
controlled to address this condition lead to “Extremis” 

condition (red color) resulting into total collapse or pull 
down. A total power blackout, however does not last long as 
justified by the tiny red line seen in the Figure. At the middle 
left of Figure 12, power generation is closely monitored 
trough output-parameter influence from Transmission model 
to Generation Model such that the pic of generation remains 
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consistent with the grid wheeling capacity as shown from 
year 2030 to 2040. 

This power over-generation occurs as a result of the 
increase in new installed power plants, Figure 12 bottom left. 
We observe another increase from 2040 and above that has to 
be tackled accordingly. The over-generation is simply 
redirected to other transmission lines to avoid persistent 
power line tripping. At the bottom right of Figure 12, we also 
observe how electricity supplied affects electricity 
consumption through output-parameter influence from 
Consumption model to Transmission model as opposed to 
static simulation discussed earlier. Electricity consumption 
sharply declines from year 2020 to year 2030 within the same 
period of repeated power over-generation before picking up 
from 2030 and above after being stabilized to the normal 
transmission line capacity. Consequently, we observe at the 
top right and middle right of Figure 12 a resulting increase in 
GDP (million dollars), and GDP Per Capita ($). 

The key reasons behind the holistic simulation is not only 
about monitoring the actual output – parameter influence but 
also to learn the relative impacts of alternative assumptions 
and government policy interventions in the energy sector as a 
whole. 

5. Discussions 

The proposed framework has demonstrated through the 
case study how multiple levels of explanation can be 
provided when addressing complex system modeling such as 
the energy sector using multi-perspective models within 
multiple experimental frames. Multi-perspective modelling 
and holistic simulation is a concept commonly used in 
various fields ranging from healthcare sector to urban 
transportation to provide a comprehensive understanding of 
the dynamic interactions within complex systems [14, 51, 55]. 
Each experimental frame reveals the effects of hidden 
simulation parameter that cannot be easily identified unless 
when running simulation of the various perspectives 
concurrently. The perspectives-related questions are easily 
answerable following aggregated dynamics of influencing 
factors from other perspectives. Two approaches– statistic 
and dynamic integration - are considered in evaluating the 
simulation results. Most often, in static integration approach 
of the energy sector, models parameters remain constant 
throughout the simulation and perspectives such as energy 
consumption [4], transmission and distribution [33], and 
generation [43] are studied in isolation. Variation of 
parameters implies running new experiments on the model to 
establish the influence of some models outputs on other 
models parameters. However, in the dynamic integration, 
parameters of some models are lively influenced at 
simulation runtime by the outputs of other models through 
integrators. In this paper, we adopt the latter approach in 
which case the mutual influence of model output from one 
perspective to model parameter of another perspective allows 
to bind the isolated perspectives as an integrated whole in a 
holistic manner. The simulation models representing the 

different perspectives of the energy sector such as generation, 
transmission, and consumptions perspectives were run under 
two scenarios observation. Firstly, in static simulation, the 
model parameters were kept constant throughout the 
simulation study. Secondly, in dynamic simulation, the 
model parameters were dynamically updated in a live 
simulation study to depict the interactions between energy 
components. These parameters include transmission losses, 
number of installed power plant, wheeling capacity, 
construction delay, and distribution Losses. The results from 
the second scenario indicates that simulation parameters with 
concurrent update of models output to parameter integration 
fit reasonably with the intended purpose of the model by 
showing closer results to the reality. Hence, the later scenario 
is of great interest to decision makers in formulating energy 
related policies with appropriate impact on the energy sector 
in Nigeria. 

6. Conclusion 

A multi-perspective modeling and simulation framework 
was proposed to holistically study energy systems. The study 
is rooted in an ontology that is built based on an extensive 
literature review that captures useful knowledge representing 
major building block components and their relationships in 
the energy simulation domain. We have formulated a 
stratification of level of abstractions - generation, 
transmission, distribution, consumption, and finance - and 
shown that each one represents a family of models within its 
respective experimental frame based on the objectives of the 
study. While the ontology is expressed using the system 
entity structure, the implementation of the abstractions is 
carried out through diverse formalisms such as system 
dynamics modeling, and agent based modeling, and the 
resulting simulation models are stored in a model based 
repository within the AnyLogic simulation environment. In 
most findings, these perspectives are studies in isolation 
while in this work, they are coupled together through model 
output-to-parameters in a live simulation showcasing the 
interactions that exist between these components in reality. 
This is an important contribution that supports a 
comprehensive analysis of the energy systems simulation. 
The running example of the Nigerian electricity sector was 
used to show how the proposed framework works. The 
holistic study showed the following results as depicted in 
Figure 12: 

1) Electrical pylons/towers are modeled as 500 networked 
agents in a “Normal” (gray color) condition initially 
across the grid. 

2) We observe a live green coloration depicting 
“Emergency” pylons occurrence mainly due to factors 
such as over-generation, over-loading, and severe 
disturbance that can lead to grid collapse and pull down 
as depicted by the red color, “Extremis” condition. 

3) Extremis condition cause a total power blackout but 
doesn’t last long, this is shown by the tiny red line in the 
Figure. 
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4) When a line tripping occurs due to over-generation, the 
power generation is immediately readjusted to its 
maximum generation capacity supported by the 
wheeling capacity. This is seen in the Figure where the 
increase from year 2020 – 2030 is stabilized from year 
2030 – 2040 before another over-generation occurs 
again and the same mechanism is applied. The over-
generation is simply redirected to other transmission 
lines to avoid persistent power line tripping. 

5) It is also worth noticing how power grid performance 
lively affects electricity consumption as opposed to 
static simulation discussed earlier. 

6) We see an unstable power consumption around year 
2020 – 2030 due to the occurrence of the “Emergency” 
pylons within that same period. 

It is observed from this study that not many holistic 
simulation research activities were carried out on the 
Nigerian electricity sector. Hence, in the future we suggest to 
expand each of the developed models toward a complete 
global model that will expose all the hidden and intertwined 
socio-economic and political factors of the Nigeria electricity 
sector. It is hoped that this approach will be generalized and 
used beyond the current work to explore holistic studies of 
other complex systems as well. 
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