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Abstract: Rapid bioassessment protocols (RBP) have been used widely to assess and compare benthic macro invertebrate 

communities, often in the context of determining impacts from impairments to water quality. Given that a relatively small 

sample of 100 organisms often was used to calculate various biological metrics, the question of how frequently differences are 

inferred when in fact the subsamples are from the same population (i.e., Type 1 errors) is of interest. The analysis of 72 large 

(300-1760 organism) field samples uses the differentiation criteria recommended in the first edition of EPA' s RBP 1989 

guidance manual as a case example. A minimum of 100 subsamples each of 100 organisms was used to evaluate the 

uncertainty of metric estimates. Variability in estimates of Community Loss, Similarity (R-Ratio), Jaccard, Sorensen, Bray-

Curtis Similarity indicies, and Bray-Curtis Dissimilarity as well as Diversity and Evenness also are presented. Decision criteria 

for judging two samples are from different parent distributions are provided for each metric at alpha= 0.15 for Type 1 errors. 

The proposed decision criteria are based on pooling all of the estimates of a given metric using the entirety of the calculated 

values of that metric derived from all subsamples of the 72 field samples. The findings demonstrate the need to vet current and 

potential ecological numerical metrics, for variability when estimating their values from subsamples. 

Keywords: Macroinvertebrate Indicies, Ecological Indicies, Community Loss Index, Type 1 Errors in Indicies, Jaccard, 

Sorensen, Bray-Curtis Similarity Indicies, Proposed Criteria 

 

1. Introduction 

"....replicated determinations of a diversity or biotic index 

can be expected to vary by chance alone. Many variance 

formulae for diversity indices are for the sample variance 

and not the variance of the sampling distribution of the 

diversity index. This latter value is needed for statistical 

inference. Without replication and a knowledge of the 

sampling distribution of the index, statistical procedures 

cannot be applied to determine if observed trends or 

differences result because of sampling error, or if they are 

a reflection of true trends or differences in the community 

under study. The uncritical interpretation of trends in an 

index of community structure or condition is a major 

shortcoming in their current application.” [1] 

So, any mathematically based assessment, whether a 

mathematical index or model, should have its variability 

assessed to be useful. No model or index can be considered 

reliable without a sensitivity analysis. The present paper 

addresses the lack of sensitivity analyses for several 

mathematical indicies often used to evaluate aquatic 

macroinvertebrate communities. 

Benthic macroinvertebrates long have been considered an 

important if not definitive indicator of water quality. The 

main rationale for this consideration is the expectation that 

these organisms integrate variations in water quality and 

therefore reflect transient, adverse conditions that can be 

missed by sporadic sampling of chemical and physical 
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properties. In addition, these organisms constitute a 

fundamental element of a waterbody's ecology. Among other 

functions, these organisms form an important part of the food 

chain both as consumers and as prey as well as playing a 

critical role in the cycling of nutrients within lotic systems, 

functioning as transformers of both complex organic and 

inorganic materials. Over the years, many mathematical 

indices have been proposed to capture the status of the 

benthic community. Some of the early work on mathematical 

indices was done in the 1940s [2, 3] followed by several 

others (e.g., [4, 5]). Initially, much of the assessment 

examined the response of benthic organisms to organic 

carbon as measured by biochemical oxygen demand (BOD) 

and/or low dissolved oxygen (DO). This interest reflects the 

fact that many cities, towns and industries discharged 

domestic sewage and other oxygen consuming wastewater 

untreated or inadequately treated to the nearest waterway 

with resulting adverse impacts on water quality. 

Today, as a result of correcting most of the DO problems 

caused by these point-source discharges of BOD, the concern 

has shifted to the water quality impairing forces of nutrient 

enrichment, toxic substances and eroded (clean) sediment. 

While not fully characterized, the impacts of these substances 

are thought to be reflected in the response of the benthic 

community to a range of stressors albeit in detail perhaps 

different from those caused by organic loads and low DO. 

While impairment can be detected based on the composition 

of the benthic community one cannot always identify the 

agent responsible for the impact. In spite of this challenge, 

assessments based on biological information remain very 

informative. In addition to efforts to characterize the 

response of benthic organisms to particular stressors, much 

effort has been devoted to sampling techniques and 

requirements. The United States Environmental Protection 

Agency (EPA) developed detailed guidance for collecting 

and evaluating samples of benthic organisms [6, 7]. Among 

the challenges that need to be addressed is the fact that 

identifications, especially to species, require specialists. In 

addition, the sheer number of organisms gathered in a 

standard sample can represent a significant demand on 

resources. EPA and others have addressed these issues by 

developing techniques which use classifications at levels 

above species and with limited numbers of organisms. While 

information is lost, these streamlined techniques make data 

gathering and evaluation more practical. Among the most 

widely used of these techniques was EPA' s rapid bio-

assessment protocol (RBP) which is based on selecting and 

identifying 100 organisms from a sample to either family 

level for one comparison or to genus or species for a second 

more robust assessment. In addition, the idea of using several 

indices (multi-metric) is now favored but continue to use 

some of the indicies described here as part of the Integrated 

Biological Index (IBI), (e.g., [8]). Both EPA [9] and USGS 

[10] surveyed State biological monitoring programs. While 

the multi-metric analysis now is common, Similarity and 

Diversity remain components in many of the states’ 

biological monitoring programs. One question that arises is 

how reliable is this sampling protocol for characterizing the 

health or differences in benthic communities through various 

indices? More specifically, how often would two samples of 

100 organisms each from the same population be considered 

different (i.e., a Type 1 error)? The variability of 

macroinvertebrate communities based on the number of 

organisms in subsamples was examined [11] in contrast to 

the actual field samples. A main conclusion was that “… in 

subsamples of 100-300 organisms, discriminatory power was 

low enough to mislead water resource decision makers.” 

EPA’s revised RBP guidance [7] provides some statistical 

assessment of certain metrics based on limited data. The 

present work was expanded by examining the effect of 

subsample size and species classification on Richness Ratio 

and Community Loss [12]. 

Analysis of macroinvertebrates continues to be a major 

tool in characterizing and evaluating a wide variety of 

aquatic systems in various parts of the world. This reality is 

illustrated by the diversity of a few selected reports [13-18]. 

However, the variability and hence reliability of the indicies 

used rarely if ever is considered [1]. The objective of the 

present study is to explore and augment the information on 

the variability of selected bio-indicies used to characterize 

benthic invertebrate communities and to propose consistent 

decision values for the metrics examined. Management 

decisions, often for expensive actions, benefit from 

appreciating the variability of the analysis being presented 

and may temper any conclusions and recommendations. 

2. Method 

Study design consisted of mathematically selecting 100 

organisms, randomly from, and based on the distribution of 

organisms in a large field sample. One could construct 

theoretical populations (e.g., [19, 20]) simply as 

mathematical expressions to explore the variability of 

subsamples taken from a larger population. However, to 

gain a greater flavor of reality, numerically large (mostly 

400 to over 1000 organisms) field samples from streams in 

the state of Vermont were used. The State of Vermont 

graciously shared 73 large field samples that were collected 

by or for it. The organisms were identified to the species 

level. In a few field samples, some organisms could not be 

identified at the species level. In those cases, the 

unidentified organisms were differentiated and assigned 

numbers in lieu of species classification. Of the 73 field 

samples available, one was eliminated because, while it had 

22 species, it consisted of only 44 organisms. The 

remaining 72 field samples, representing the “universe” or 

population, were used to document the variability of each 

index based on at least 100 subsamples of 100 organisms 

each. Characteristics of the field samples evaluated are 

presented in Table 1. 

Typically, only one field sample from a site was chosen 

for this exercise even though some sites were sampled in 

more than one year. This restriction was to eliminate 

confounding the results of temporal variation. However, 
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when field samples were collected in duplicate at a location, 

the data were combined to provide the largest universe 

thereby capturing as many species as possible. 

Mathematical sampling of the field sample data was an 

automated "bootstrap" operation performed using an 

EXCEL
®

 spread sheet. The standard approach was to 

generate 100 test subsamples of 100 organisms each and 

then to calculate species Richness Ratio (Similarity), 

Community Loss, Diversity and Evenness. In addition, 

values for Jaccard, Sorensen and Bray-Curtis indicies were 

calculated. 

Table 1. Statistics of the number of organisms in the 72 field samples. 

N 
72 

ORANISMS SPECIES 

MAX 1796 78 

MIN 185 15 

MED 656 43 

MEAN 721 45 

It is expected that the number of species detected increases 

with the number of organisms in the sample. This qualitative 

understanding is given some quantitative estimate through 

Figure 1. 

 

Figure 1. Number of organisms vs number of species in 72 field samples. 

One hundred subsamples were generated and used to 

characterize the range of estimated values calculated for 

several commonly used mathematical indices. The indicies 

commonly are used in the evaluation of aquatic benthic 

macroinvertebrate communities. Random numbers (EXCEL
®
: 

RANDBETWEEN) were selected and ranged from 1 to the 

total number of organisms in a given field sample. The 

random 100 numbers (i.e., organisms) were then sorted into 

bins (EXCEL
®
: FREQUENCY) equal to the number of 

species in the large field sample and based on the probability 

distribution of the organisms in the field sample. Each of the 

indicies examined is defined in the following paragraphs and 

the steps to calculate its values using EXCEL
®
 described. 

The size of subsamples (100 organisms) is specified in EPA's 

RBP guidance [6]. The use of the EPA guidance was to 

assess its performance and to follow its approach for other 

indicies for consistency and for a retrospective analysis. 

2.1. Richness Ratio (Similarity) 

���ℎ����		�
 = �
����	��	�������               (1) 

���ℎ����	�����		����������
	��	���	������� = ��
��    (2) 

S1 is the subsample with the lower number of species and 

S2 is the subsample with the higher number of species. 

The ratio is based on the number of species in two 

subsamples, which, in this case, have been generated from 

the same field sample. For this investigation, the subsample 

with the smaller number of species is considered the test 

sample and the one with the larger number is set as the 

reference sample. The maximum value of 1 therefore results 

when both subsamples have an equal number of species but 

not necessarily with each pair having the same number of 

organisms. 

2.2. Bray-Curtis 

���� − �
����	����������	 �!�" = 	2∑MIN	N12
 	�( + �*

+  (3) 

BC Dissimilarity= 1 −	2∑MIN	N12
 	�( + �*
+           (4) 

BC Dissimilarity is the Bray Curtis Dissimilarity Index. 

∑MIN(N12) is the sum of the fewer of two counts of 

organisms when the same species occurs in both samples. 
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N1 is the number of organisms in species 1. 

N2 is the number of organisms in species 2. 

After generating two subsamples of 100 organisms each, 

one compares the number in each pair of the same species 

occurring in both subsamples and selects the minimum of the 

two entries as identified in EXCEL® by the statement 

=IF(AND(AD104>0, AE104>0), MIN (AD104, AE104),0) 

Where, for example, EXCEL
®

 cells AD104 and AE104 are 

the first cells for the first set of common species in each of 

the two subsamples being compared. 

The 100 organisms are distributed among some if not all of 

the species identified in the field sample according to the 

distribution determined through the field sample. The preceding 

function is used to generate a column of results equal to the 

number of species in the field sample. The minimum of the 

number of organisms is entered if the two entries for a given 

species both are greater than zero, or zero otherwise. The sum of 

this column represents the sum of the minima as specified in the 

Bray-Curtis Similarity equation. This sum is then divided by the 

sum of the total number of individuals in the two subsamples. 

Since, in this case, each subsample has 100 individuals, the total 

number of organisms is 200. The theoretical maximum value is 

1 meaning the subsamples have exactly the same number of 

organisms for corresponding species and the number of 

organisms is the same in each subsample. 

For the Bray-Curtis Dissimilarity metric, one simply 

subtracts the decimal resulting from the Bray-Curtis 

Similarity calculation from 1. 

2.3. Community Loss 

Community Loss= 
	-./


0                           (5) 

a = number of species common to both subsamples. 

d= total number of species present in the subsample with 

the greater number of species and 

e= total number of species present in the subsample with 

fewer species. 

This index is generated from two 100-organism 

subsamples with the first being aligned over the second in the 

same spreadsheet column for convenience. The two 

subsamples will have the same number of organisms (100). 

The two grids are below the top two; they will be populated 

by examining the contents of each cell. If a cell has a non-

zero number of organisms, a 1 will be entered in the first cell 

of grid 3, otherwise a 0 will be entered. The same is done for 

the first cell of subsample 2 and the result is entered in the 

first cell of grid 4. Each cell of grid 3, up to the number of 

species in the field sample, will be filled with a 0 or 1 by the 

statement: 

=IF(AD104>0,1,0) 

Where EXCEL
®
 AD104 is the first cell in the first 

subsample. The same will be done for the rest of the cells in 

subsample 1. The same procedure will be done for subsample 

2 with the results being entered into grid 4. Then the number 

in the first cell of grid 3, which represents subsample 1, will 

be added to the first cell in subsample 2 and so on until the 

all the cells have been added resulting in values of 0, 1, or 2. 

This produces grid 5 with each column containing the same 

number of cells as there are species in the field sample. The 

number of 2s are counted in the column and represent the 

species that appear in both samples. This is done for 100 

columns in the present investigation yielding 100 

comparisons of paired subsamples. 

2.4. Jaccard Index 

1 = 	 �2 	�( + �* − �2
3                         (6) 

J is the Jaccard Index. 

Sc is the number of species in common between the two 

samples. 

S1 is the number of species in Sample 1. 

S2 is the number of species in sample 2. 

The Jaccard Index is calculated using the number of 

species common to two subsamples and the total number of 

species in each subsample reduced by the number in common. 

If Community Loss has been calculated already, then the 

information needed has been developed. Otherwise, one 

would follow the procedure for Community Loss calculations 

until the required data have been developed. 

2.5. Sorensen Index 

� = 2�4 	�( + �*
3                            (7) 

S is the Sorensen Index and the other terms are as defined 

for the Jaccard Index. 

The Jaccard and Sorensen Indices represent a similar 

approach. The same values of variables used in the Jaccard 

Index are used in the Sorensen Index. 

2.6. Shannon-Wiener Diversity Index 

Once the initial subsample is established and the 100 

organisms, in this case, are distributed among the species, the 

decimal occurrence (pi) and –Ln (pi) can be calculated. The 

product of the values of these two variables are entered 

foreach species and the sum is the Shannon-Wiener Index. 

56 = −7 �8ln	�8	
;
8<( 
                    (8) 

H′ is the diversity index. 

pi = proportion of total number of organisms in the i
th

 

species (taxon). 

s = the number of species. 

Note that Shannon and Wiener did not collaborate directly 

on developing the index. Shannon did credit Wiener’s work 

as foundational to his own. Therefore, some prefer Shannon-

Wiener Index to Shannon Index as discussed by [21]. 

2.7. Evenness 

=	56
 = >−7 �8ln		�8
;
8<( 
?/ln		�
              (9) 
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E (H’) is the Evenness metric. 

pi = proportion of total number of organisms in the i
th

 

species (taxa). 

s = the number of species (taxa). 

The Evenness index is calculated by dividing the Shannon-

Wiener Index by the natural logarithm (i.e., ln) of the number 

of species appearing in the subsample being examined. 

3. Results and Discussion 

The results show high variability in estimates of the value 

of indicies based on subsamples. This variability illustrates 

the concern voiced in [1]. 

3.1. Similarity Indicies 

One question of interest is how the Richness of the 

"universal" field sample is reflected in that of the 100-organism 

sub samples. The range and mean of the Richness values for the 

100 100-organism sub-samples are plotted in Figure 2. 

The plots are ordered based on increasing richness of the 

field sample (universe). 

The number of species in a 100-organism sample is 

expected to decrease as the number of taxa increase, since rare 

species will be missed. There is a wide range of richness 

estimates for the 100 test samples as indicated in Figure 2. The 

subsample values increasingly underestimate the richness of 

the field sample as the filed sample richness increases. Figure 

2 indicates as many as 40% or of the species could be missed 

in the more species rich field samples. 

The reality of the variability in estimates from subsample 

depicted in Figure 2 leads to the primary question of this 

retrospective analysis: how often would two-100 organism 

sub-samples from the same population (i.e., same field 

sample in this case) be considered different (Type 1 error) 

when using Similarity (Richness Ratio) between the two 

samples of >= 0.8 to infer both samples came from the same 

population. The maximum Similarity is 1 based on the 

definition presented previously. While the data are scattered, 

there is a modest inverse relationship between Type 1 error 

and richness of the field samples (Figure 3). 

 

Figure 2. Range and mean of estimates for sample Richness based on 100 100-organism subsamples vs Richness (number of taxa) of 72 field samples. 

 

Figure 3. Percent Type I errors versus Richness in 100 100-organism subsamples from each of 72 field samples. 
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Type 1 errors can exceed 30% as noted in Figure 3. Finally, the frequency of Type 1 errors increases rapidly as the decision 

criterion is made more stringent by increasing it above 0.8 (Figure 4). 

 

Figure 4. Type I error in estimates of Similarity (Richness Ratio) for 100-100 organisms subsamples from each of 72 field samples vs decision criterion (the 

higher, the more stringent and the greater potential for type 1 errors) using the criterion >0.8. Lower values increase the potential of Type 2 errors. 

Increasing the criterion beyond >= 0.8 means that two 

samples have to have smaller differences for their ratio to be 

considered from the same population. For Similarity, the 

lower the criterion, the lower percentage of Type 1 errors. At 

the same time, lowering the criterion and reducing Type 1 

errors may increase Type 2 errors (the conclusion that two 

samples are not from different populations when they really 

are). This issue was not addressed in the present effort. 

Subsamples from field samples with higher values of 

Evenness tended to have higher estimates of Evenness and 

lower percentages of Type 1 errors (Figure 5). 

 

Figure 5. Percent of Type I errors in Similarity calculations based on 100 100-organisms subsamples from of 72 field samples. Values of <0.8 constitute Type 

1 errors. 

The Jaccard, Sorensen and Bray-Curtis 

similarity/dissimilarity indicies do not have specific decision 

criteria. However, the variability of their estimates from 

subsamples is represented by their means and standard 

deviations which are shown in Figures 6-9. 

The mean and standard deviation of the Richness Ratio is 

shown for comparison. All four similarity indicies produce 

similar results. Given that the Jaccard and Sorensen Indicies 

are mathematically related, the consistency between those 

two is expected. Bray-Curtis Dissimilarity involves 

calculating an estimate of similarity which is then 

subtracted from 1. So, the similarity portion can be 

compared to the other three indicies explored here. The 

result is a similar pattern for all three similarity calculations 

(Figures 6-8). The Bray-Curtis Dissimilarity calculations 

are presented in Figure 9. 
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Figure 6. Mean and standard deviation of Jaccard Similarity Index based on 100 100-organism subsamples from 72 field samples. 

 

Figure 7. Mean and standard deviation Sorensen Similarity Index based on 100 100-organism subsamples from 72 field samples. 

 

Figure 8. Mean and standard deviation of Bray-Curtis Similarity Index based on 100 100-organism subsamples from 72 field samples. 
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Figure 9. Mean and standard deviation of Bray-Curtis Dissimilarity Index based on 100 100-organism subsamples from 72 field samples. 

The mean and standard deviation of the Richness Ratios (Figure 10) is shown for comparison. 

 

Figure 10. Mean and standard deviation Richness Ratios based on 100 100-organism subsamples from 72 field samples. 

One can obtain a more direct comparison by pooling each set of similarity calculations from subsamples. The mean and 

standard deviations are plotted in Figure 11. 

 

Figure 11. Mean and standard deviation of Similarity/Dissimilarity indicies based on pooling all subsamples calculations from the entire 72 field samples 

N >= 7500. 
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3.2. Community Loss 

Community Loss would be zero for identical samples. The 

authors evaluated the test criterion of <0.5 for the Community 

Loss criterion, as defined previously. A result of Community 

Loss < 0.5 implies that the samples are not from different 

populations. Metric values > 0.5 were considered to denote 

that the sub-samples came from different populations. Type 1 

errors for Community Loss calculations for the 100 pairs of 

samples of 100 organisms each generally are below 25% 

although several values equaled or exceeded 30% (Figure 12). 

The authors were unable to find any obvious differences 

between these five data sets and the other 67 that suggest 

reasons for the large percentage of Type 1 errors. The 

number of times one would conclude that samples from the 

same population were from different populations (i.e., the 

Type 1 error) was independent of the field sample richness 

(R
2
= 0.031, data not shown). For 11 of the 72 field samples, 

the Type 1 error for the calculated values of Community Loss 

exceeded 15% and Type 1 errors tended to be lower for field 

samples with higher Evenness (Figure 12). 

 

Figure 12. Percent Type I errors for estimates of Community Loss from 100 subsamples from each of 72 field samples versus Evenness of field samples using 

the EPA criterion <0.5. 

 

Figure 13. Community Loss: Type I error in 100 100-organism subsamples from 72 field samples versus value of decision criterion. EPA criterion <0.5. The 

lower the value, the more stringent the criterion and the potential for Type 1 errors increases. 
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The same was true for maximum and minimum estimates of 

Community Loss based on subsamples, but with lower R
2
 values 

(0.500, 0.423 respectively, data not shown). The frequency of 

Type 1 errors increases greatly as the decision criterion is reduced 

(i.e., made more stringent) below 0.5 (Figure 13). 

In contrast to Similarity, Type 1 errors for Community 

Loss subsamples were independent of the number of species 

in the field sample (data not shown, R
2
= 0.07). However, a 

substantial reduction of Type 1 errors occurred with making 

the decision criterion less stringent than the one currently 

used (e.g., changing it from <0.5 to <0.55 reduces the Type 1 

errors from 11 to 8 of the 72 field samples tested as noted in 

3.4. Once again, Type 2 errors are likely to increase when the 

criterion is increased for Community Loss. 

3.3. Diversity and Evenness 

Diversity and Evenness metrics share a computational 

component. There is no set criterion for interpreting 

calculations for either as there are for Community Loss and 

Similarity. Yet, the results of the subsamples from the field 

sample provide information that may be useful in selecting a 

criterion for each based on a reasonable knowledge of their 

variation presented here. The results of calculations based on 

subsamples and those calculated for the field samples are 

presented in Figures 14 and 15. 

 

Figure 14. Range of diversity estimates calculated from 100 100-organism subsamples from 72 field samples vs Richness of the field samples. 

 

Figure 15. Range of Evenness estimates from 100 100-organism subsamples drawn from each of 72 field samples versus Richness (number of taxa) of the field 

samples. 
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Diversity of the field samples tended to be underestimated 

by the subsamples as the number of species increased (Figure 

14). Evenness of the field samples tended to be overestimated 

by the random subsamples as the number of species in the 

field sample increased (Figure 15). The 100 calculated values 

give some sense of the variability of the selected metric 

within a particular location. When all the values from 

subsamples are combined, the mean and standard deviation 

are presented in Figure 16. 

 

Figure 16. Mean and standard deviation of Diversity and Evenness based on pooling all calculations of subsamples (N= 11900) compared to combining 

values from 72 field samples. 

Diversity and Evenness, like Richness, are characteristics 

of a given sample. To compare subsamples, it is proposed to 

follow the protocol used for Richness Ratios (R-Ratios) as 

follows.  

A �	B C1,2

AEF	B C1,2
+                  (10) 

Div1,2 are the Diversity values of two samples being 

compared. 

A �	=C1,2

AEF	=C1,2
+                     (11) 

EV1,2 are the Evenness values of two samples being 

compared. 

The maximum value in each case, as for the R-Ratio, is 1. 

The ratios are then compared to respective criteria 

established based on pooled ratios using all subsamples from 

all field samples. The values of the criteria are set at the same 

frequency of occurrence as done for other metrics discussed 

in this paper (i.e., 15%). 

Characterizing variability of estimates of an index’s value 

from subsamples permits setting decision criteria so that 

there is consistency in confidence limits for those indicies as 

presented in 3.4. 

3.4. Proposed Criteria 

The first edition of EPA’s guidance for evaluating aquatic 

macro invertebrates included criteria only for the R-Ratio 

(Similarity) with >0.8 for two subsamples indicating they are 

from the same population and Community Loss with <0.5 for 

two subsamples indicating they are from the same population. 

The percentage of subsample comparisons not meeting those 

criteria are presented in Table 2. 

Table 2. Percent Type 1 errors in subsamples of respective field samples based on using EPA criteria for 72 field samples sampled 100 times for 100 organisms 

mathematically and randomly with replacement. Note that the two EPA recommended criteria yield different estimates of Type 1 errors. 

 

Species Richness Ratio (Similarity) 

Criterion with those <0.8 assumed to be from a different 

population when they are not 

Community Loss Criterion with those 

>0.50 assumed to be from a different 

population when they are not 

Percent Type 1 Errors In 100 Subsamples # Out of 72 field samples # Out of 72 field samples 

>5% 60 20 

>10% 42 9 

>15% 22 4 

>20% 13 3 

 

The decision criteria for Richness Ratio (Similarity) of >0.8 and Community Loss of <0.5 originally proposed by 
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EPA have different percentages of Type 1 errors. For 

example, using 15% for Type 1 errors as being acceptable, 22 

of the 72 field samples exceed this target for Richness Ratio 

while 9 of the of the 72 exceeded the criterion for 

Community Loss (Table 2). The Richness Ratio criterion 

of >0.8 falls far short of the goal for no greater than 15% 

Type 1 errors and would have to be revised. The Community 

Loss criterion of <0.5 is more stringent than is the goal of no 

more than15% Type 1 errors, but could be improved by 

revising the value as proposed later. 

Based on the data presented, the authors are proposing 

criteria for all the inidices evaluated in this research (Table 3). 

Table 3. Proposed criteria for indicies when comparing two samples at 

alpha= 0.15 or 0.85. Values with “<” preceding mean values less than this 

implies samples are different (alpha= 0.15), while values with “>” 

preceding mean samples with higher values are different (alpha= 0.85). 

Index 
Criteria for 

alpha=0.15 

Based on N 

values 

R-RATIO <0.80 11,654 

JACCARD <0.48 7,695 

SORENSEN <0.65 7,695 

BRAY-CURTIS <0.68 11,828 

DIVERSITY RATIO <0.901 11,900 

EVENNESS RATIO <0.933 11,900 

BRAY-CURTIS DISSIMILARITY >0.32 11,828 

COMMUNITY LOSS >0.41 7,695 

An alpha value of 0.15 or 0.85 as appropriate was chosen 

as reasonable for the inherent difficulties of field work. The 

proposed criteria place the two EPA values at the same 

confidence limit. It turns out that the >0.8 value for R-Ratio 

(Similarity) was close to the value chosen here. 

3.5. Application of Criteria 

The proposed criteria are derived from a large pool of data, 

so it is likely that more measurements will not change the 

values. However, since the data pool represents a set of field 

samples with a wide range of characteristics, any single 

metric is not robust enough to work for subsamples from 

every field sample. Therefore, it is recommended that a 

combination of these proposed criteria be used in a multi-

metric application. This means testing each pair of samples 

by applying the values of each of the metrics listed in Table 3 

using the proposed criterion for each metric. Either Bray-

Curtis Similarity and Bray-Curtis Dissimilarity results are 

included but yield identical assessments and therefore are 

redundant. If one or more of the metrics results in the pair of 

samples being considered to be from the same population, it 

is judged that this is in fact true. Recall all pair comparisons 

are from the same population (i.e., field sample), so Type 1 

are the only errors possible. All of the 72 field samples, one 

just barely, met at least one of the metrics. 

4. Conclusions 

Estimates are inherently uncertain. This is axiomatic. 

Important environmental decisions often also have major 

financial implications. For both reasons, it is imperative, 

therefore, to have the best information available. This 

includes estimating the uncertainties associated with the data 

and information driving decisions. The work here quantifies 

the uncertainties some of the tools used in water quality 

evaluations and decisions through macroinvertebrates. The 

proposed decision criteria for the metrics examined places 

each of them at the same confidence level.  

The work here can be expanded. Different ways of 

calculating Diversity and Evenness metrics might establish 

criteria more discriminating than are simple ratios. In 

addition, the size of the samples discussed here can be varied 

to assess its impact on the calculated values of these specific 

indicies. For the samples analyzed here, [12] has provided a 

start for such an evaluation. On a broader, more general scale 

such impacts have been explored by [11]. Other future efforts 

should involve vetting the criteria proposed here using field 

samples composed of more than 100 organisms. Also, the 

proposed criteria could be compared to results derived from 

other analyses, mathematical or not, used to compare aquatic 

macroinvertebrate communities. Finally, large field samples 

could be used to evaluate Type II errors for the criteria 

proposed here to balance Type I and Type II errors explicitly 

for each of the proposed criteria. 

 The results here address a major concern about 

uncertainties in unvetted metrics voiced in [1]. 
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