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Abstract: As air quality is closely related to human life and physical and mental health, the data of air quality has become a 

concern of the entire society. This study analyzes the characteristics of air quality data from a visibility graph networks point of 

view. The authors select eight monitoring stations in Beijing as samples. The time series of air quality data is mapped to a 

complex network based on the visibility graph algorithm. First, the authors study the topological structure of the networks for all 

the monitoring stations. Comparison results show that all constructed networks have similar structures in terms of the average 

path length, the network diameter, average clustering coefficient, density and the average degrees. Then the authors study the 

evolution of the visibility graph network for Huairou Town station for a long period of time. On the one hand, the value of the 

node degree indicates that the most important dates for air quality are the end of April, the beginning of May and the first three 

weeks of winter. On the other hand, the small-world properties of the networks reveals that the air quality data for the year 2014 

is more stable without extreme fluctuations. This finding is consistent with the conclusion that air quality is largely affected by 

the weather while human activities play a more and more important role. 
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1. Introduction 

Much of the developing world has suffered an air pollution 

problem due to the rapid economic growth and urbanization 

over the past decades [1, 2]. One specific type air pollution, 

commonly known as PM2.5 shorthand for particulate matter 

2.5 micrometers in diameter or smaller is especially harmful. 

In China, air pollution is responsible for killing 1.2 to 2 

million Chinese a year, about one sixth of all the premature 

deaths in the country [3]. Air pollution problem is 

particularly serious in big cities, such as Beijing, which was 

ranked the 13th most polluted city in the world in 2004 [4]. 

In the Chinese capital, the number of so-called haze days has 

increased dramatically since 2011 [5]. 

The Beijing Municipal Government has implemented 

numerous air pollution control measures since 2000 [6]. 

National Ambient Air Quality Standard of China 

(NAAQS-2012) was adopted by the government from 2013. 

Since then, data for air quality index (AQI) of all its 

monitoring sites in the city have been reported from the 

website and the air quality is categorized according to its 

value. AQI is a standardized indicator that comprehensively 

considers the concentration of a diversity of airborne 

pollutants, including PM 2.5, PM 10, CO, NO�  and O� . 

AQI report published by China’s Ministry of environmental 

protection is slightly different from the EPA (Environmental 

Protection Agency), US and is more suitable for the air 

quality analysis in China [7]. 

A large number of studies have been conducted on the 

sources, characteristics and seasonal variations of 

atmospheric pollutants. Elangasinghe et al. used artificial 

neural networks (ANN), combined with k-means clustering, 

to understand the complex time series of PM2.5 

concentrations [8]. Li et al. collected samples of PM2.5 

aerosol from a receptor site in the East China Sea to explore 

the seasonal variation and sources of polychlorinated 

biphenyl ethers [9]. Chen et al. used CMAQ model to 

simulate winter PM2.5 formation in the San Joaquin Valley 

[10]. The CMAQ model generally met the PM2.5 model 

performance criteria and was suitable for the State 

Implementation Plan (SIP) applications. Substantial efforts 
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have been made toward understanding PM2.5 pollution in 

China, especially in Beijing, such as source apportionment 

[11, 12], characteristics of PM2.5 [13], the spatial-temporal 

characterization [14], and monitoring and mitigation policies 

[15]. As a time series, air quality data was analyzed from the 

perspective of correlation complex networks [16]. These 

efforts have greatly enriched the knowledge of PM2.5 

pollution and have done a remarkable job in helping inform 

pollution mitigation policies. 

In the time series literature, there has been an increasing 

trend in investigating a time series through the mapping on 

networks or graphs [17]. Through this mapping, the 

dynamics of the time series is converted into the topology 

properties of the network, and vice versa, the characteristics 

of the time series can be inferred from the network. Time 

series can be mapped into networks with different methods 

[17] such as recurrence networks, correlation networks cycle 

networks, transition networks, and visibility graphs. Among 

these methods, visibility graphs [18] have advantages in 

maintaining time orders of the time series in the order of the 

nodes, the straightforward geometric interpretation of the 

original time series, a simple and fast speed in calculation 

without the need to create the state space which requires a 

large number of sampling points [19]. 

Varying air quality data can be thought as the output of a 

complex system of which the governing rules are hard to be 

understood. This paper applies the visibility graph networks 

(VGN) [18] to disclose the characteristics of air quality data. 

When the air quality data are mapped onto the visibility 

graph networks, dynamics underlying the complex system 

are reflected by the topological measures of the VGNs. A 

global view of correlation of the data and key dates is 

displayed by the visualization of the VGN. In this case, 

researchers can better understand the dynamics of air quality 

data, while policymakers can make more comprehensive and 

objective assessments of existing environmental policies to 

improve local air quality. 

2. Methodology 

2.1. Visibility Graph 

In general, a complex network can be represented by an 

undirected and unweighted graph G � �V, E�, which consists 

of a set of nodes	or	vertices	V � �v�, v�, ⋯ , v�� and a set of 

edges or links	E � �e�, e�, ⋯ , e��. 
The Visibility Graph algorithm [18] maps a time series 

����  into a complex network according to the visibility 

criteria. A node in the visibility graph is a point or location in 

Euclidean plane determined by the observations of the time 

series. Two points ���, ���	� !	��" , �"�  (assume time 

�� # �" and �� 	� !	�"  are the values of the two data points, 

respectively) in the time series are mutually visible if and 

only if for any �$��� # �$ # �"�, the following stands 

�$ # �� % ��" & ���
�'(�)

�*(�)
.                (1) 

Two mutually visible nodes are then connected by an edge. 

 

(a) 

 

(b) 

Figure 1. Illustration of the visibility graph network constructed from a time 

series. (a) A simple time series represented by vertical bars. The lines indicate 

the network connection established according to the visibility criterion of 

Eq.1. (b) The network emerging from the time series in (a). 

Figure 1 illustrates the procedure of converting the time 

series � (Figure 1(�)) to its VG (Figure 1(b). The gray line 

between �,  and �-  in Figure 1( � ) indicates the two 

observations can see each other. The VG is always connected 

because each view is certainly connected to its previous and 

next observations except for the first and last observations. 

The visibility criteria ensure that VGNs are invariant under 

vertical (linear) rescaling, translation and superposition of a 

linear trend of a time series [18]. 

2.2. Measurements of Network Structure 

The degree of a node .�/,� is the number of connections 

of node .. As undirected network, the degree is defined as: 

/, � ∑ �,-- � ∑ �,-,1� .             (2) 

The average degree of a network is the average of /, for 

all nodes in the network, as: 
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Table 1. Topological properties of eight visible graph networks. 

 A1 A2 A3 A4 A5 A6 A7 A8 

Average Path length 4.265 4.74 4.45 4.532 4.592 4.49 4.426 4.526 

Diameter 8 10 8 9 9 9 10 9 

Average Clustering coefficient 0.767 0.767 0.764 0.757 0.766 0.766 0.771 0.763 

Density 0.01 0.01 0.01 0.01 0.01 0.01 0.011 0.01 

Average Degree 7.499 7.244 7.488 7.42 7.255 7.425 7.841 7.214 

 

# / 2�
�

3
∑ /,, .                 (3) 

The degree and the degree distribution are the common 

measurements to analyze complex networks. The degree of a 

node is the number of edges incident with it, and degree 

distribution 4�/� is defined as the probability of a node with 

degree /. 

The diameter 5 of a network is the largest of the shortest 

path distances between any pair of nodes, and the average 

path length # !,- 2 is the average distance of a network 

connecting any pair of nodes . and 6. 

	5 � max
,-

!,- , 	 

	# !,- 2			�
�

3�3(��
∑ !,-,,- .            (4) 

For the overall network structure, the average path length 

and distance is an important measured characteristic [20]. 

The clustering coefficient of a node . is a measure of 

network transitivity, expressing the extent to which neighbors 

of a node are neighbors of each other, and is defined: 

:, �
�;<

=<�=<(��
.                   (5) 

where /, is the number of neighbors of node . and >, is 

the number of connected pairs between all neighbors of node 

.. The average clustering coefficient # :, 2 of a network is 

the average :, as follows 

# :, 2�
�

3
∑ :,,1� .              (6) 

The density is defined as the number of edges divided by 

the largest number of edges possible. 

3. Data and Experimental Results 

3.1. Data 

The authors collected AQI of eight monitoring stations in 

Beijing: Huairou Town (A1), Dingling Changping (A2), 

Changping Town (A3), East 4th north ring road (A4), North 

Xizhimen Street (A5), Fengtai Gardon (A6), Liangxiang 

Fangshan (A7) and Yizhuang Developmetn Zone (A8). The 

authors refer these stations as A1-A8 for simplicity. The 

sample stations are illustrated in Figure 2. Those eight 

monitoring sites located in different areas in Beijing. A2 is 

used as a background site, A6 is an urban site, A4 and A5 are 

traffic monitoring sites while A1, A3, A7 and A8 are 

suburban sites. Time period of the data covers from 1 January 

2013 to 31 December 2014. The AQI data was acquired from 

the website (www.bjmemc.com.cn/xgzs_sjcx.action). There 

are totally 730 observations. Additional time period from 

2011 to 2016 is adopted for a further study of Huairou Town 

station (A1). 

 

Figure 2. Illustration of eight sample monitoring stations. Dots represent 

sample sites. The star represents the Forbidden City. Station in the same 

colors belongs to the same group [16]. 

Based on the visibility graph, the authors mapped the air 

quality of eight monitoring stations into complex networks. 

The authors use daily air quality data as a node in a complex 

network, using the visible algorithm, the connection between 

the nodes is determined to form the edge of the complex 

network. Then, the air quality time sequence of the eight 

monitoring stations is mapped to complex networks. 

3.2. Topological Properties 

The authors calculate the five important topological 

characteristics (the average path length, the network diameter, 

average clustering coefficient, density and the average 

degrees) of the complex networks. The results are shown in 

Tab 1. Average path length ranges from 4.265 to 4.740 with 

the minimum value in A1 and the maximum in A2. The 

averaged value is 4.503, meaning that each of node can be 

arrived through 4.503 days. Diameter varies in the set of 8, 9 

and 10 with A1 has the smallest value while A2 and A7 have 

the largest. This indicates that the longest time between any 

two nodes is about 8-10 days. Average clustering coefficient 

is about 0.7, which is a relative great. This means that the 

VGNs has clear clustering phenomenon. The authors note 

that the maxima value is reached in station A1. The small 

value of density (about 0.01) show that a node is related with 

few other nodes, which is about seven by the value of the 
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average degree (about 7). 

The authors note from Table 1 that most extreme values 

are reached in the Huairou Town station (A1). Therefore, the 

authors will analyze in the next subsection the VGN of AQI 

of the Huairou Town station in a longer time period. 

3.3. Important Nodes 

The authors construct visibility graph networks from the 

Huairou Town in years 2011-2016. Figure 3 visualizes the 

six networks. The circles represent the nodes with the 

number inside it as the index of the date. The size of the 

circle stands for the degree of node. The greater the circle, 

the higher the degree. The edges are represented by the arced 

segments. 

From Figure 3, the authors can find the most important 

date are in spring for the previous year while in winter for the 

later years. The node 121 has the largest degree in 2011. The 

date of the original data corresponding to it 1st May 2011, a 

date in spring. In Spring, Beijing always suffers from 

sandstorms. Thus the appearance of the big node may be 

caused by natural laws. In 2012 and 2013, nodes 120 and 126 

have the largest degree respectively. The corresponding dates 

are 29th April, 2012 and 6th May, 2013. This tells us that the 

laws of environmental change in the past three years are still 

within the adjustable range of nature. However, the authors 

still cannot ignore the narrowing of the gap between the 2013 

annual value gap and the 2011 and 2012 annual values (this 

can be concluded based on the diameter variation of nodes of 

adjacent sizes in the Gephi diagram). 

Figure 3 (d) shows a different pattern than others. There is 

no obvious big node in year 2014. The difference of the 

degree of the nodes is small, and the distribution from the big 

to the small nodes is relatively uniform. This indicates that 

the AQI in 2014 changed steadily, and there were no serious 

environmental pollution factors. There seems to be some 

connection between the emergence of this steady state in 

2014 and the decrease in the gap between the node degrees in 

2013. The reduction of the gap of the annual value is a sign 

of the steady state. 

The important nodes correspond to dates in the winter for 

the later sample period. The date of the original data 

corresponding to this node is 1st December, 2015. It is a day 

in winter, which is the season of coal-fired heating. This is 

the first time rebound after the occurrence of steady state in 

2014. In 2016, a node 64 with a large degree of value also 

appeared. The date of the original data that is in 

correspondence with the node is 4th March, 2016, which 

belongs to the end of the winter and early spring. 

Figure 3 shows two things. On the one hand, the AQI in 

Huairou Town has seasonal property, and the maximum value 

of the node generally appears in spring or winter. On the 

other hand, the AQI has a comprehensive six-year stationary 

change, and the small difference in the adjacent nodes may 

indicate the occurrence of a steady state. 

 

(a) Year 2011. Node 121 corresponds to May 1. 

 

(b) Year 2012. Node 120 corresponds to April 29. 

 

(c) Year 2013. Node 126 corresponds to May 6. 

 

(d) Year 2014. There is no nodes with extra large degree. 
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(e) Year 2015. Node 335 corresponds to December 1. 

 

(f) Year 2016. Node 64 corresponds to March 4. 

Figure 3. Visible graph networks for air quality data of Huairou Town station 

in years 2011-2016. 

3.4. The Small-World Character of Network 

Small-world network model is different from the regular 

networks and random networks in that it has small average 

path length and high clustering coefficient. It is a kind of 

network with good properties [21, 22]. This subsection study 

the small-world property of the visibility graph constructed 

from the data of the Huairou Town monitoring station. The 

time period is from 2011-2016. 

 

Figure 4. The change of average path with the growth of network nodes in 

year 2014 for the Huairou Town station. 

For a complex network, let L  be the average shortest 

path length and N  be the number of nodes. If there is a 

linear relationship between L  and the logarithm of N , that 

is lnL Nα β= + , the network is called a small-world network. 

On the contrary, a network may be considered as a big world 

network when L  has a linear relationship with N . 

Table 2. Fitting results of lnL Nα β= +
 

for the VGN of Huairou Town 

station from 2011-2016. 

 2011 2012 2013 2014 2015 2016 

α  0.958 0.816 0.156 0.34 0.43 0.0254 

β  0.413 0.451 0.633 0.626 0.583 0.629 

2
R  0.859 0.899 0.927 0.968 0.883 0.939 

Figure 4 shows the relationship between ? and @  in 

2014. Fitting curves are similar as that in 2014. For the 

length of the paper, the authors list the fitting results in Tab 2. 

The authors see a clear linear relationship as the fitting 

goodness are all greater than 0.85. This means that the six 

complex networks are small-world. The authors also notice 

that the maximum of A� is obtained in year 2014, indicating 

that the complex network of 2014 has the most obvious 

characteristics of small-world. This means that the air quality 

data for 2014 is more stable without extreme fluctuations and 

all the nodes have almost the same degree. This phenomenon 

has been displayed in Figure 3 (d) where the nodes are in 

near same sizes. 

4. Conclusion 

In this paper, the authors map the air quality of eight 

monitoring points in Beijing basing on visual algorithms to 

complex networks and study the topological features of 

complex networks. The authors map the six-year air quality 

time series of Huairou Town to complex networks basing on 

complex network view algorithms. The authors use Gephi to 

map the view network sequence of Huairou Town’s air 

quality time series for six years (2011-2016). From the 

perspective of complex network diagrams, the reasons for the 

formation of larger nodes in the network and some rules that 

can be revealed by the view are analyzed. In addition to 2014, 

there are one important big node in the other five networks. 

In 2014, there are more nodes with similarity level, and 

nodes between adjacent similarity levels. The difference in 

diameter is also smaller. The authors also find that the 

six-year air quality time series in Huairou Town has a good 

Small-world feature through the linear relationship between 

the average path and the growth of network nodes. In 2014, 

the air quality corresponding network has the most obvious 

Small-world characteristics. It is important to analyze the 

environmental quality of Beijing by analyzing the air quality 

time series of air quality in the view network of air quality, 

which can help to excavate the inherent characteristics of 

time series more deeply. 

This study finds that most important days are the end of 

April and beggaring of May in the previous half sample 

period. It confirms the significant effect of synoptic 

meteorological conditions on air pollution [23]. However, the 
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important days transfer to the coal-heat seasons for the later 

half period, indicating the contribution of human activities on 

air quality. Thus, practical measures should be adopted and 

strengthened to decrease coal consumption both in Beijing 

and its neighbour provinces. Power plants and factories 

violating emissions standards should be fined severely even 

shutdown. It is still a long run for the Beijingese to breathe in 

a green and comfortable way, although the air quality in the 

Chinese capital is actually improving gradually in the 

studying period. 
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